Jordan River Water Use Plan

Monitoring Programs and Physical Works
Annual Report: 2011

Implementation Period: December 2010 to November 2011

- JORMON-1 Lower Jordan River Inflow Monitoring
- JORMON-2 Fish Index: Lower Jordan River
- JORMON-3 Lower Jordan River Salmon Spawning Assessment and Enumeration
- JORMON-4 Diversion Reservoir Fish Indexing
- JORMON-5 Monitoring Surfing Quality below the Jordan River Generating Station
- JORWORKS-1 Water Release Mechanism at Elliot Dam

For Water Licences FL117999, FL118000, FL118001, FL118004 and FL 118005

December 31, 2011
1 Introduction

This document represents a summary of the status and the results of the Jordan River Water Use Plan (WUP) monitoring programs and physical work to 30 November 2011, as per the Jordan River Order under the Water Act, dated 20 July 2004. There are five monitoring programs and one physical work:

- JORMON-1 Lower Jordan River Inflow Monitoring
- JORMON-2 Fish Index: Lower Jordan River
- JORMON-3 Lower Jordan River Salmon Spawning Assessment and Enumeration
- JORMON-4 Diversion Reservoir Fish Indexing
- JORMON-5 Monitoring Surfing Quality below the Jordan River Generating Station
- JORWORKS-1 Water Release Mechanism at Elliot Dam

2 Background

The water use planning process for BC Hydro's Jordan River project was initiated in April 2000 and completed in November 2001. The conditions proposed in the WUP for the operation of the project reflect the February 2002 recommendations of the Jordan River WUP Consultative Committee.

In February 2002, the Jordan River WUP was submitted to the Comptroller of Water Rights (Comptroller).

On 20 July 2004, BC Hydro was ordered to implement the conditions proposed in the Jordan River WUP and prepare the monitoring programs and physical work terms of reference (TOR).

On 10 June 2005, the Jordan River WUP monitoring programs TOR were submitted to the Comptroller for review and approval. Revised TOR costs were submitted on 28 June 2005. On 30 June 2005, the monitoring programs TOR were accepted by the Comptroller.

On 31 May 2006, BC Hydro sent a letter to the Comptroller requesting a one year delay in the commencement of minimum flow until 30 June 2007 in order to collect two years of pre-flow release field data. On 20 July 2006, the Comptroller approved the delay.
On 31 May 2006, the Jordan River WUP physical work TOR was submitted to the Comptroller for review and approval. On 14 July 2006, the revised TOR was submitted to the Comptroller as the construction schedule would be delayed one year until spring 2007. On 18 September 2006, the revised TOR for the water release mechanism at Elliott Dam were accepted by the Comptroller.

On 28 May 2007, revised TOR for the Lower Jordan River Inflow Monitoring was approved for a study cost increase.

On 16 July 2007, a TOR revision for a cost increase and completion date change to the water release mechanism at Elliott Dam was submitted to the Comptroller. On 24 July 2007, approval was received for the cost increase and for the delay in minimum flow commencement until 15 October 2007.

On 2 October 2007, a letter was sent to the Comptroller to inform of a delay in construction completion of the water release mechanism at Elliott Dam and to request approval for a delay in commencement of minimum flow. Approval was received 29 October 2007 for minimum flow commencement delay until 30 January 2008.

On 21 December 2007, a TOR revision for a cost increase for the Lower Jordan River Inflow Monitoring Study was submitted to the Comptroller. On 24 April 2008, approval was received for the cost increase.

On 20 May 2010, a TOR revision for a cost increase for the Lower Jordan River Inflow Monitoring Study was submitted to the Comptroller. On 8 July 2010, approval was received for the cost increase.

As outlined in the Jordan River WUP, the Jordan River Consultative Committee recommended a review of this WUP after six years of its implementation. A review may be triggered sooner if scientific data or significant new risks are identified that could result in a change to operations.
3 Schedule

The following table outlines the status and schedule for the Jordan River WUP monitoring programs and physical work.

Table 3-1: Status and Schedule of Jordan River WUP Monitoring Programs and Physical Work Implementation

<table>
<thead>
<tr>
<th>Monitoring Programs</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLR YR1</td>
<td>WLR YR2</td>
<td>WLR YR3</td>
<td>WLR YR4</td>
<td>WLR YR5</td>
<td>WLR YR6</td>
<td>WLR YR7</td>
</tr>
<tr>
<td>Lower Jordan River Inflow Monitoring</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>u/w</td>
</tr>
<tr>
<td>Fish Index: Lower Jordan River</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>u/w</td>
</tr>
<tr>
<td>Lower Jordan River Salmon Spawning Assessment and Enumeration</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>u/w</td>
</tr>
<tr>
<td>Diversion Reservoir Fish Indexing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>u/w</td>
</tr>
<tr>
<td>Monitoring Surfing Quality below the Jordan River Generating Station</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>u/w</td>
</tr>
</tbody>
</table>

Physical Works

| Water Release Mechanism | ✓ | ✓ | ✓ | ✓ | | | |

Legend:
- ■ = Program to be undertaken/initiated in identified year
- u/w = Project is underway
- ✓ = Program completed for the year
- x = Program started, but encountered operational or hydrological delays
4 Summary of Monitoring Program

The following section outlines the status of the Jordan River WUP monitoring programs as per the Jordan River order under the Water Act, dated 20 July 2005. Table 4-1 summarizes the monitoring program results according to the key monitoring indicators for each program.

Table 4-1: Summary of Jordan River WUP Monitoring Programs Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Monitoring Indicator</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Jordan River Inflow Monitoring</td>
<td>% Diff from WUP MAD (1.51cms)³</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Analysis deferred to 2012</td>
</tr>
<tr>
<td>Lower Jordan River Fish Indexing</td>
<td>Rainbow Fry Density (fish/100m²)</td>
<td>N/A</td>
<td>3.7 ⁵</td>
<td>4.9</td>
<td>6.4</td>
<td>7.0</td>
<td>3.3</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Rainbow Parr Density (fish/100m²)</td>
<td>N/A</td>
<td>1.4 ⁵</td>
<td>1.6</td>
<td>0.7</td>
<td>2.0</td>
<td>4.8</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Rainbow Trout Condition Factor</td>
<td>1.05 ²</td>
<td>1.07</td>
<td>1.13</td>
<td>1.08</td>
<td>1.06</td>
<td>1.06</td>
<td>1.08</td>
</tr>
<tr>
<td>Lower Jordan River Salmon Spawning Assessment and Enumeration</td>
<td>Salmon (coho and/or chum) escapement</td>
<td>N/A</td>
<td>4 CO</td>
<td>13 CM</td>
<td>0 CM</td>
<td>0 CO</td>
<td>0 CM</td>
<td>0 CO</td>
</tr>
<tr>
<td></td>
<td>Egg to fry survival (%)</td>
<td>80% ¹</td>
<td>76% (97%) ⁶</td>
<td>0% ⁷ (95%) ⁶</td>
<td>96% (99%) ⁶</td>
<td>96% (97%) ⁶</td>
<td>98% (98%) ⁶</td>
<td>98% (97%) ⁶</td>
</tr>
<tr>
<td>Diversion Reservoir Fish Indexing</td>
<td>Rainbow CPUE ¹¹ (Floating and Sinking)</td>
<td>N/A</td>
<td>6.5</td>
<td>6.95</td>
<td>18.55</td>
<td>26.75</td>
<td>21</td>
<td>26.25</td>
</tr>
<tr>
<td></td>
<td>Rainbow Trout Condition Factor</td>
<td>1.05 ²</td>
<td>1.10</td>
<td>1.10</td>
<td>1.07</td>
<td>1.08</td>
<td>1.03</td>
<td>1.07</td>
</tr>
<tr>
<td>Monitoring Surfing Quality Below the Jordan River Generating Station</td>
<td>% Surfers Not Affected by Operations</td>
<td>< 50% ⁴</td>
<td>Not studied</td>
<td>82%</td>
<td>66% ⁵</td>
<td>77%</td>
<td>75%</td>
<td>66% ¹⁰</td>
</tr>
</tbody>
</table>

1. Salmonid Enhancement Program biostandards for Vancouver Island (Quinsam River) transplanted eggs (March 1997)
3. Water Use Plan hydrology summary - see Taylor, 2001
4. Drafted as a threshold below which it may be determined that further operational constraints are required.
5. Based on a single survey not necessarily representative of typical surfers. To be reviewed at end of review period.
6. Hatch Stage Assessment normally completed at 350-450 ATUs. Note that 2005 data did not include Site 3 data (potential water quality issues).
7. Incubation cassettes were all lost due to extreme inflows to Jordan River March 2007
8. Reported densities in 2005 (10.2 fry/unit 1.9 parr/unit) were incorrectly summarized - geometric means are being used from now on.
9. Four of five sites/cassettes lost due to extreme inflows.
10. Correction. In 2010 Annual Report incorrectly reported as 60%.
11. Mean CPUE of all floating and sinking nets combined.

5 Jordan River WUP Monitoring Programs

This section outlines the status of the Jordan River WUP monitoring program as per the Order under the Water Act, dated 20 July 2004.

5.1 JORMON-1 Lower Jordan River Inflow Monitoring

5.1.1 Management Questions

The primary management questions discussed regarding the natural inflows below Elliot Dam are:
1) How accurate were the assumptions of local inflows used for WUP recommendations?

2) What implications, if any, are there on the WUP recommendations based on revised inflow data?

3) What are the reasons for the differences, if any, between the monitored and assumed inflows?

5.1.2 Overview

The objective of this monitoring program is to assess the performance of the key WUP decision to increase flows in the lower Jordan River from leakage/local inflows to \(\geq 0.25 \text{ m}^3\text{s}^{-1} \) using instream flow measurements as the performance measure.

The Jordan River Consultative Committee’s recommendation to release a base flow was based, in part, on estimates of weighted usable rearing area. The Jordan River Consultative Committee has recommended that more accurate river discharge and local inflow contributions be assessed.

Monitoring Indicator a): Percentage difference from assumed (Jordan River WUP, Taylor, 2001\(^1\)) mean annual discharge.

This monitoring program involves monitoring instream flow at three locations in Lower Jordan River through the combination of water level monitoring and rating curve (flow-water surface elevation relationship) development.

5.1.3 Status

This monitoring program was initiated in November 2005, and will be carried out over six years. The first year program report was received in November 2006. A storm event in November 2006 resulted in major flooding which compromised all of the hydrometric stations. New more robust stations were installed in 2007. During 2007 the implementing contractor could not complete the project due to health reasons. A new contractor was retained to complete the remainder of the six year program. In 2009 hydrometric equipment was replaced as a result of damage caused by large spill events, and climbing equipment and training was acquired to improve safe access into the steep canyon. Due to the challenges identified above BC Hydro has submitted three revisions between 2007 and 2010 notifying the Comptroller of cost increases and changes to the terms of reference. The fourth year program report was completed in 2010. All field work is now complete. The fifth year program report is currently under review. The sixth and final report is due in February 2011.

5.1.4 Interpretation of Data

At the time of reporting, there was inadequate data to report on the monitoring indicator above. Due to program delays and issues with data collection, an update on this measure will be provided in the upcoming sixth year program report.

The monitoring indicator will provide both the context of the Jordan River Water Use Plan recommendations and the flow response of the water release, for consideration in future planning processes.

5.2 **JORMON-2 Fish Index: Lower Jordan River**

5.2.1 **Management Questions**

The primary management questions discussed regarding the effects of flow increases on Lower Jordan River habitat and fauna were:

1) Does the flow release restore habitat continuity (i.e. are all habitat units connected by flowing water)?
2) How will the planned flow releases affect the standing stock of the rainbow trout population?
3) How will the planned flow releases affect the distribution of fish condition (weight to length) by age within the rainbow trout population?

5.2.2 **Overview**

The objective of this monitoring program is to assess the biological benefits of the key WUP decision to increase flows in the lower Jordan River from leakage/local inflows to $\geq 0.25 \text{ m}^3\text{s}^{-1}$ using stock abundance and fish condition as performance measures.

The Jordan River WUP Consultative Committee recommendation to release a 0.25 m3s$^{-1}$ flow was based, in part, on estimates of increased weighted usable area for rearing rainbow trout. To address this decision, the Jordan River Consultative Committee recommended a monitoring program to detect an increase in the standing stock of rainbow trout.

Monitoring Indicators a): Rainbow trout (juvenile) density.
 b): Rainbow trout (juvenile) condition factor.

This monitoring program involves three components:

- Establish sampling protocol expected to provide statistical power to detect changes in standing stock (expected change $\geq 100\%$);
- Collect initial estimates of standing stock, physical habitat changes and fish size and condition for rainbow trout, and;
- Analyse data to compare increases in size, condition and standing stock between pre and post 0.25 m3s$^{-1}$ flow release.

5.2.3 **Status**

This monitoring program was initiated in September 2005 and will be carried out over six years. All field work is now complete. The sixth year program report is currently under review.
5.2.4 Interpretation of Data

Results of the program will be compared between years to determine the level of response as defined by monitoring indicators above. It is anticipated that all six years of data collection will be required to make this determination; however rainbow trout fish condition observed in Year 1 is comparable to Vancouver Island biostandards (Ptolemy, pers. comm.2)

To date, there is insufficient data to determine whether instream flow provisions are a driver in Lower Jordan River fish productivity.

5.3 JORMON-3 Lower Jordan River Salmon Spawning Assessment and Enumeration

5.3.1 Management Questions

The primary management questions discussed regarding the effects of flow increases on Lower Jordan River habitat and fauna were:

1) Will the planned flow releases improve spawning habitat for spawning salmon and steelhead in the anadromous reaches of the Lower Jordan River?

2) Will the planned flow releases improve effective incubation habitat for spawning salmon and steelhead?

3) What effects, if any, do the planned flow releases have on chronic toxicity of rearing and incubating salmonids?

5.3.2 Overview

The objective of this monitoring program is to assess the performance of the key WUP decision to increase flows in the lower Jordan River from leakage/local inflows to \(\geq 0.25 \text{ m}^3\text{s}^{-1} \) using spawning success (number of returns to outmigrants) as the performance measure. Effective spawning and incubation habitat will also be measured.

Spawning success in lower Jordan River is limited by the cumulative impacts of flow reductions, mine operations, and log sort operations in the Lower Jordan River.

Fisheries and Ocean Canada and some members of the Consultative Committee, however, hypothesised that improvements to the base flow in the lower reaches may be adequate to A) improve effective incubation habitat and B) dilute dissolved metal levels (Cu) sufficiently to reduce chronic toxicity. To address this hypothesis the Jordan River Consultative Committee recommended a program to monitor for successful signs of spawning and rearing in the Lower Jordan River following the base flow release.

Monitoring Indicators

a): Salmon escapement (coho + chum).

b): Spawning success (egg to fry survival).

2 Ptolemy, Ron. Fish Biologist, Aquatic Ecosystems Science Section, BC Ministry of Environment, Victoria, BC.
This monitoring program involves repeated snorkel surveys, incubation tests where observations of significant spawning warrant follow-up and analysis of flow information.

5.3.3 Status

This monitoring program was initiated in October 2005 and will be carried out over six years. All field work is now complete. The fifth and sixth year program reports are currently under review.

5.3.4 Interpretation of Data

As observed in 2001 (Benvar\(^3\)) and snorkel surveys between 2005-2010 salmon escapement to the Lower Jordan River is very low, with a total of 2 coho, 0 chum and 0 steelhead adults observed over their respective spawning periods in 2010. Results from incubation assessments conducted in 2005-2010 show that egg to fry survival is very high.

To date, there is insufficient data at this time to determine whether increasing instream flows will influence escapement or spawning success.

5.4 JORMON-4 Diversion Reservoir Fish Indexing

5.4.1 Management Questions

The primary management questions discussed regarding the operations of Diversion Reservoir were:

1) What are the benefits to rainbow trout condition associated with a reduced allowable drawdown?

2) What are the impacts on rainbow trout condition associated with a prolonged extensive drawdown?

5.4.2 Overview

The objective of this monitoring program is to evaluate the effects of extensive drawdown on Diversion Reservoir, using rainbow trout fish condition as the performance measure.

The Jordan River WUP Consultative Committee recommended an operational change that was hypothesised to elicit biologically significant measurable responses in the resident fish populations in Diversion Reservoir. It was hypothesised that the decrease in seasonal and daily reservoir fluctuation and bulk decrease in pelagic volume would increase both the establishment of an effective littoral zone and mitigate against reducing rainbow trout condition factors.

Monitoring Indicators

a): Rainbow trout catch per unit effort (CPUE; sinking + floating gillnet).
b): Rainbow trout condition factor.

This monitoring program involves repeated gill-net and gee-trap surveys set at index sites in the reservoir in late-August/early-September every year, coinciding with typical low-reservoir operations.

5.4.3 Status

This monitoring program was initiated in September 2005, and will be carried out over six years. **All field work is now complete. The sixth year program report is currently under review.**

5.4.4 Interpretation of Data

The six years of data will be compiled with a final assessment of whether constrained Diversion Reservoir drawdown conditions improve fish productivity and health as defined by the monitoring indicators above.

At this time there is insufficient data to determine whether reservoir operations are limiting rainbow productivity in Diversion Reservoir.

5.5 JORMON-5 Monitoring Surfing Quality below the Jordan River Generating Station

5.5.1 Management Question

The primary management question discussed regarding the effects of generation constraints on Jordan River surfing quality is:

- How do constraints on generation benefit surfing quality at Jordan River?

5.5.2 Overview

The objective of this monitoring program is to assess the performance of the WUP decision to constrain maximum discharge opportunistically during the surfing season, using surf quality as the performance measure.

Jordan River is one of the most popular surf locations on Vancouver Island. A surfing survey conducted over the WUP indicated that surf conditions are also affected by Jordan River Generating Station discharge. In some conditions high discharges may flatten waves and make it more difficult for surfers to catch waves against the current.

Monitoring Indicators

a): Surfers not affected by operations.

This monitoring program involves on-site observations of surfing use proximal to the mouth of the Jordan River under constrained and unconstrained conditions, and a surfing survey of Jordan River recreationalists under constrained and unconstrained conditions.
5.5.3 Status

This monitoring program was initiated in March 2006 and will be carried out over six years. All field work is now complete. The sixth year program report is currently under review.

5.5.4 Interpretation of Data

The 2011 study applied similar methods to those utilized in 2001 and 2007 with results varying year to year presumably due to varying surf conditions over the 2011 survey. In terms of monitoring indicators, 61% of surfers were not affected by operations in 2011 compared to, 66% in 2010, 75% in 2009, 77% in 2008, 66% in 2007, 82% in 2006, and 57% in 2001. These results are preliminary and based on small sample sizes.

Due to the fact that an assessment of compiled observations of surfing during both constrained and unconstrained operations cannot be undertaken until the end of the review period, there is insufficient data at this time to determine whether WUP recommendations have improved surf quality at Jordan River.

6 Summary of Jordan River WUP Physical Work

This section outlines the status of the Jordan River WUP physical works as per the Jordan River Order under the Water Act, dated 20 July 2004.

6.1 JORWORKS-1 Water Release Mechanism at Elliot Dam

6.1.1 Overview

The objective of this physical work includes the design and construction of a water release mechanism at Elliott Dam in order to ensure a minimum base flow of 0.25 m³/s from the dam.

During the Consultative Committee process the committee agreed to an objective to maximize fish populations in the Lower Jordan River below Elliott Dam. Currently no base flows are provided below the dam and therefore the committee considered a number of alternatives for releasing base flows. It was agreed to release a base target flow of 0.25 m³/s year-round through the dam. It is expected that the increased base flow will result in improved ecosystem condition and an increase in habitat for fish from the mouth of the river, up to and including the river 300 m below Elliott Dam.

6.1.2 Status

The implementation phase of the physical works was initiated in October 2006 and was completed in 2008. The physical works completion report was finalized in December 2008.

Phase I of the Water Release Mechanism was completed in 2004, prior to the receipt of the Order. Phase II of this physical work was scheduled to be completed by July 2007 but was delayed for the following reasons: 1) the access road to the site was damaged and impassable as a result of winter storms; 2) specialized drilling equipment was unavailable; and 3) construction procedures were altered where the drilling through the dam occurred from the inside of the gallery out to the dam face. Costs increased as a result of changes in the detailed designs and construction.

Construction of Phase II began in October 2007 and completed in 2008. The final testing and commissioning of the mechanism was completed in January 2008. The 0.25 m3s$^{-1}$ minimum flow release from Elliott Dam commenced in January 2008 prior to the ordered date of 30 January 2008.

7 Jordan River WUP Monitoring Programs and Physical Work Costs

The following table summarizes the Jordan River WUP monitoring programs and physical works costs approved by the Comptroller on 30 June 2005, 24 July 2007, 24 April 2008 and 8 July 2010, and the actual costs to 30 November 2011.
Table 7-1: Jordan River WUP Monitoring Programs and Physical Work Costs

<table>
<thead>
<tr>
<th>Monitoring Programs</th>
<th>Activity</th>
<th>Costs approved by CWR</th>
<th>Total Forecast (Life to Date Actuals and Forecast)</th>
<th>Variance Total to Approved</th>
<th>Explanation</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>JORWLR ANNUAL REPORT</td>
<td></td>
<td>$13,274</td>
<td>$11,492</td>
<td>$1,782</td>
<td>Efficiencies found during project implementation</td>
<td></td>
</tr>
<tr>
<td>JORMON#1 LOWER JORDAN RIVER INFLOW MONITORING</td>
<td></td>
<td>$178,412</td>
<td>$164,211</td>
<td>$14,201</td>
<td>Efficiencies found during project implementation</td>
<td>Budget to be reassessed once monitor is completed</td>
</tr>
<tr>
<td>Direct Management</td>
<td></td>
<td>$29,533</td>
<td>$20,291</td>
<td>$9,242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td>$148,879</td>
<td>$143,920</td>
<td>$4,959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORMON#2 FISH INDEX: LOWER JORDAN RIVER</td>
<td></td>
<td>$175,923</td>
<td>$136,883</td>
<td>$39,040</td>
<td>Efficiencies found during project implementation</td>
<td>Budget to be reassessed once monitor is completed</td>
</tr>
<tr>
<td>Direct Management</td>
<td></td>
<td>$51,935</td>
<td>$17,977</td>
<td>$33,958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td>$123,988</td>
<td>$118,906</td>
<td>$5,082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORMON#3 LOWER JORDAN RIVER SALMON SPAWNING ASSESSMENT AND ENUMERATION</td>
<td></td>
<td>$144,894</td>
<td>$120,168</td>
<td>$24,726</td>
<td>Efficiencies found during project implementation</td>
<td>Budget to be reassessed once monitor is completed</td>
</tr>
<tr>
<td>Direct Management</td>
<td></td>
<td>$57,454</td>
<td>$29,800</td>
<td>$27,654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td>$87,440</td>
<td>$90,368</td>
<td>($2,928)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORMON#4 DIVERSION RESERVOIR FISH INDEXING</td>
<td></td>
<td>$121,543</td>
<td>$71,827</td>
<td>$49,716</td>
<td>Efficiencies found during project implementation</td>
<td>Budget to be reassessed once monitor is completed</td>
</tr>
<tr>
<td>Direct Management</td>
<td></td>
<td>$60,028</td>
<td>$12,745</td>
<td>$47,283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td>$61,515</td>
<td>$59,082</td>
<td>$2,433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORMON#5 MONITORING SURFING QUALITY BELOW THE JORDAN RIVER GENERATING STATION</td>
<td></td>
<td>$65,362</td>
<td>$33,455</td>
<td>$31,907</td>
<td>Efficiencies found during project implementation</td>
<td>Budget to be reassessed once monitor is completed</td>
</tr>
<tr>
<td>Direct Management</td>
<td></td>
<td>$45,734</td>
<td>$16,217</td>
<td>$29,517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td>$19,628</td>
<td>$17,237</td>
<td>$2,391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORWORKS#1 WATER RELEASE MECHANISM</td>
<td></td>
<td>$675,982</td>
<td>$670,068</td>
<td>$5,914</td>
<td>Project Completed</td>
<td></td>
</tr>
<tr>
<td>Direct Management</td>
<td></td>
<td>$20,461</td>
<td>$22,542</td>
<td>($2,081)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td>$655,521</td>
<td>$647,526</td>
<td>$7,995</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Red values in parentheses denote overage.