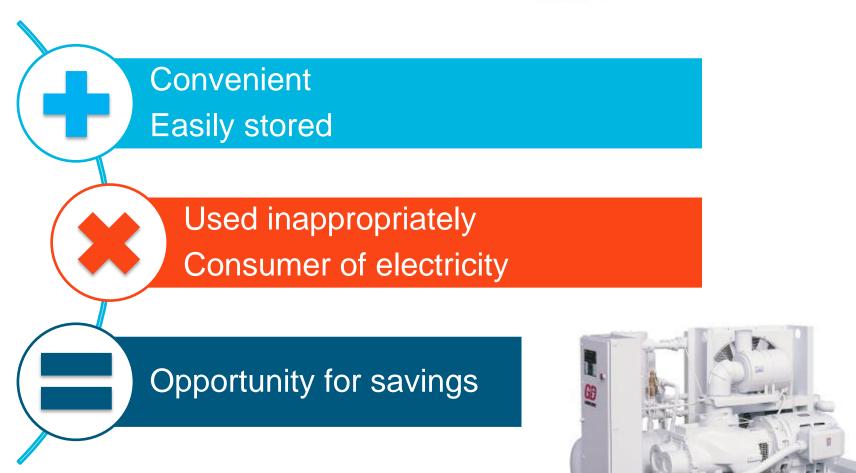


Zeroing in on Compressed Air

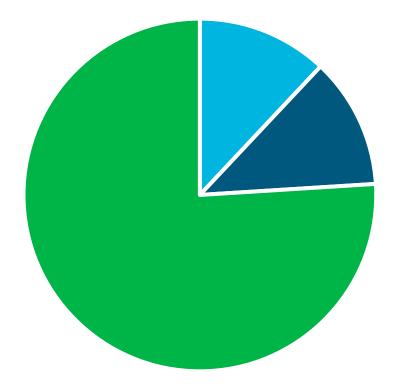
Niels Broers

Specialist Engineer, BC Hydro

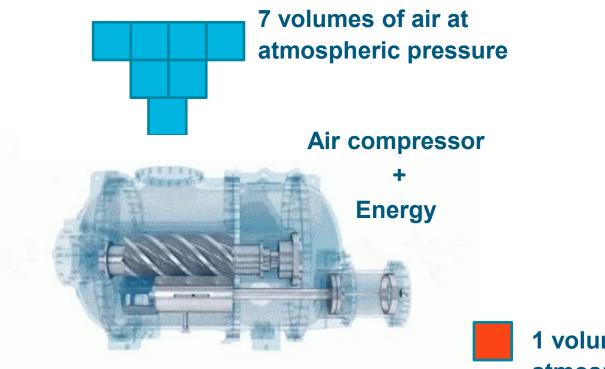

Shane Simard

Sales, Service, and Energy Manager, Compressor Division, Skeans

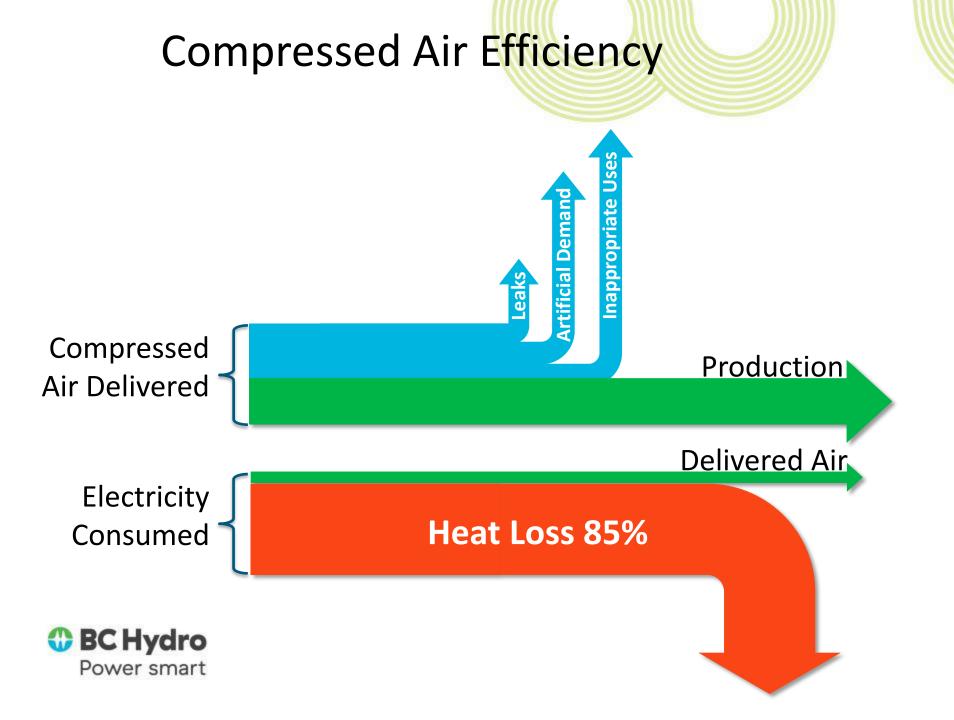
Why Compressed Air?



The Cost of Compressed Air

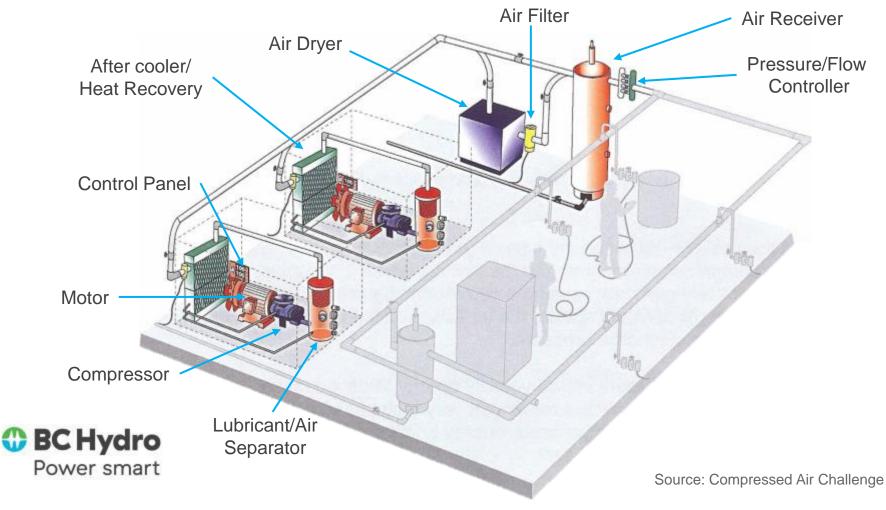

Did you know? The cost of electricity to run a 200hp air compressor for 15 years can total **\$1,000,000!** That is approximately \$70,000 per year.

Electricity is 76% of compressed air costs



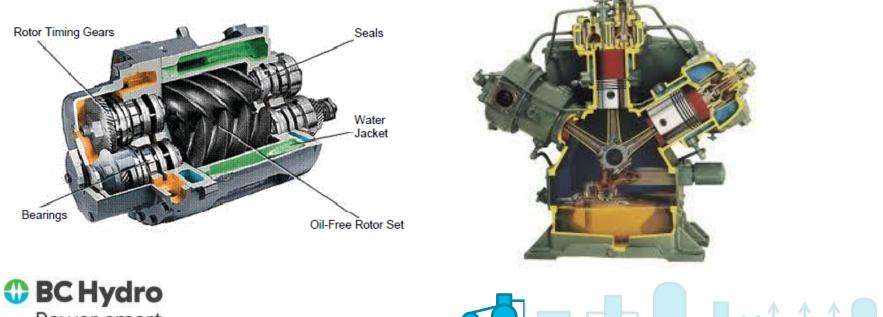
Single Stage Air Compression

1 volume of air at 7x atmospheric pressure



Compressed Air System – Supply Side

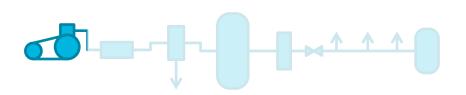
The supply side typically consists of:


Air intake, compressor, motor, after cooler, controls, and treatment equipment and accessories.

Common Compressors

- Rotary
 - 5 to 900 HP

Reciprocating
– 1 to 30 HP



Power smart

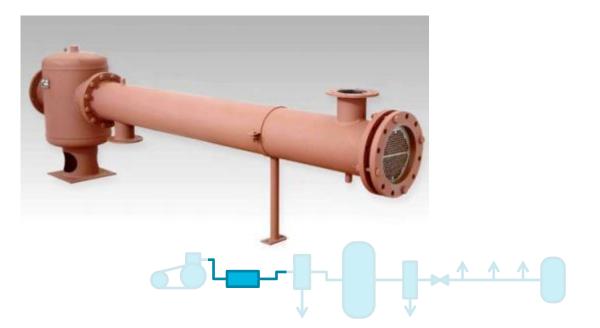
Types of Compressor Controls

Load/Unload	Modulating	Variable Speed	Start/Stop		
Continuous	Restricts Inlet to	Adjusts Motor Speed to	Cycles On/Off to		
Operation	Control Air Output	Control Output	Control Output		
Good Efficiency With Storage	Less Efficient at	Very Efficient at Part	Most Efficient for		
	Part Load	Load	<30hp Compressors		

Compressor Controls Performance

Load	Modulating	Load/Unload 1 gal/cfm Receiver	Load/Unload 10 gal/cfm Receiver	Variable Speed Drive
100%	\$21,680	\$21,680	\$21,680	\$22,110
75%	\$20,050	\$20,810	\$17,610	\$16,250
65%	\$19,400	\$19,940	\$16,690	\$14,090
50%	\$18,430	\$18,640	\$14,520	\$10,840
25%	\$16,800	\$14,960	\$10,080	\$5,420
10%	\$15,820	\$9,970	\$7,040	\$2,170

Based on \$0.06/kWh and 4,250hrs/year



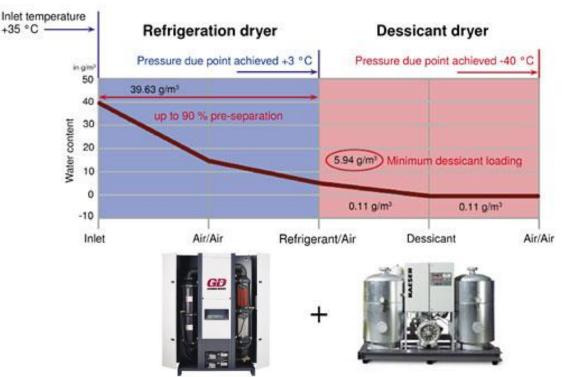
Air Compressor Coolers

- Approximately 80% of the total energy input for a compressor is converted to heat.
 - Intercoolers are used to remove heat between multiple stages of compression
 - After coolers are used to remove heat from both compressor lubricant and discharge air.
 - Heat recovery through heat exchangers is also an opportunity for greater energy efficiency.

Air Dryers

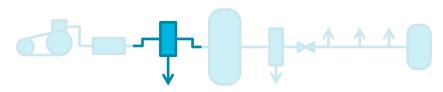
- Since compressed air is warmer than ambient air, condensation is created.
- Air dryers serve to remove moisture, oil and contaminants
- Typical pressure drop across dryer: 3 to 5psi
- Important to consider when evaluating the efficiency of a system
- Air should only be dried to the level required by the facility
- Dryers should be selected based on required pressure dew point

Туре	Dew Point	Power Requirement (kW/100cfm)
Refrigerant	35 to 39⁰F	0.79
Desiccant (twin-tower)	-40ºF	2.0 to 4.0
Deliquescent (single-tower)	15 to 50ºF	0.2
Membrane	-40 to 40ºF	3.0 to 4.0



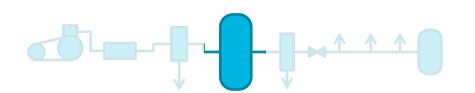
Efficient Air Drying

Refrigeration Dryer Specific Power: Desiccant Dryer Specific Power:


0.79 kW/100cfm 2.0 to 4.0 kW/100cfm

Efficiency Measure:

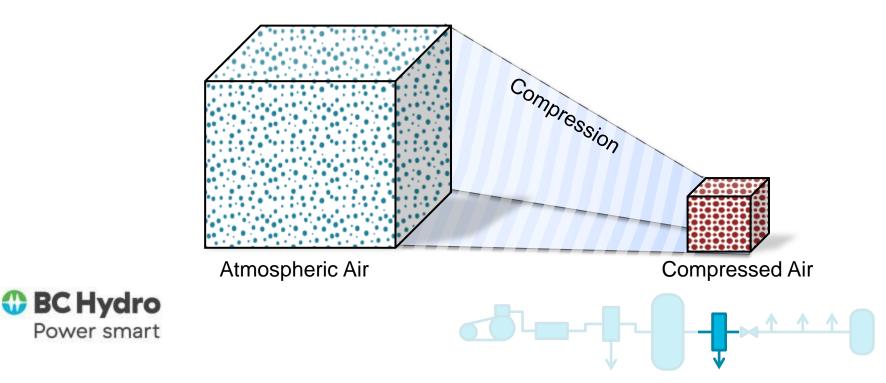
- Cycle between Refrigerated and Desiccant Dryers based on Ambient Temperatures
- Combination of both dryers can achieve savings of up to 67%



Air Storage Receivers

An adequate sized storage tank in the system helps to maintain air quality, air system stability, and overall system efficiency.

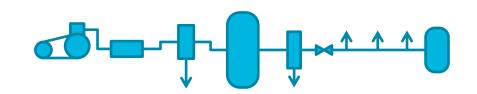
Facilities with large fluctuations in demand or insufficient air pressure should consider one or more receivers in the distribution system to eliminate high operating pressure through false demand.



Air Filters

- The Air Filters protect the compressor from atmospheric airborne particles as well as protect end use devices
 - Use a filter that is recommended by the manufacturer for the compressor and required by the end use.
 - High differential pressure across the filter will result in an increase in energy consumption. Hence a fine filter will consume more energy than a coarse filter.

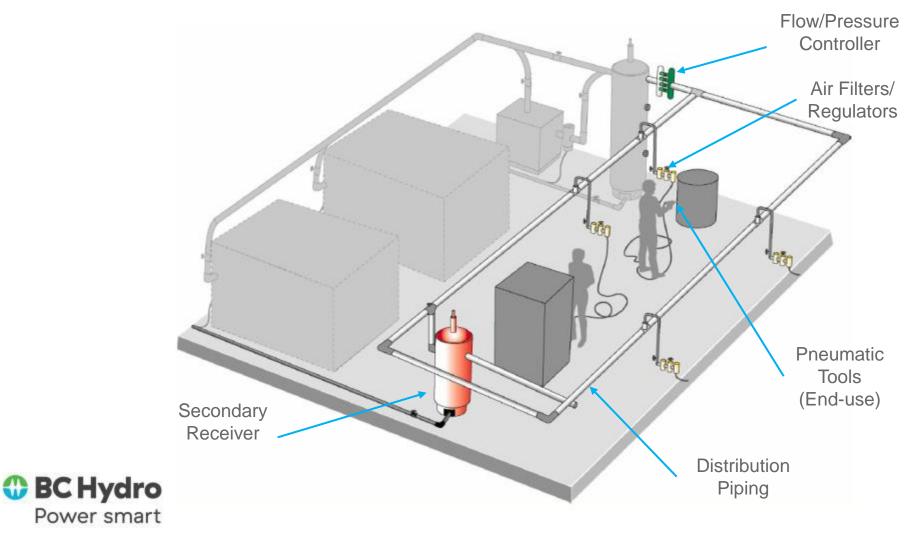
Supply Side Improvement Opportunities

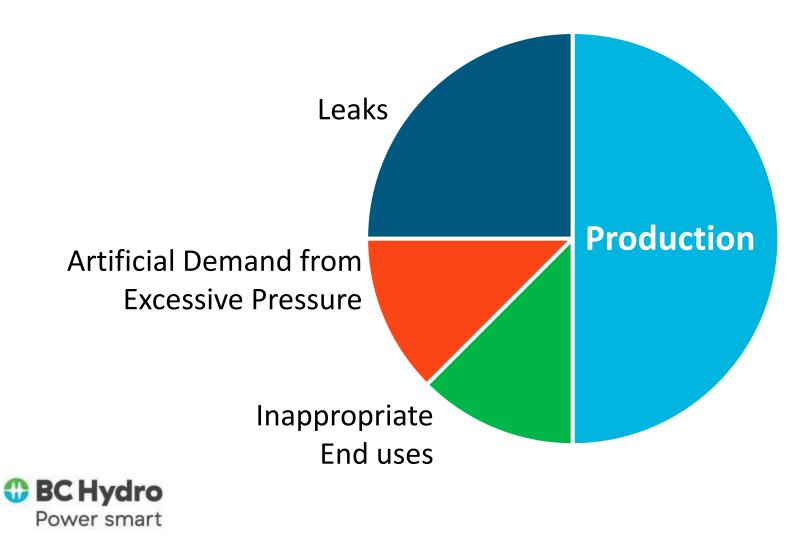

Suggested Actions:

- Shut off compressors when not required
- Install or improve compressor controls
- Optimize air dryers and use dew point controls

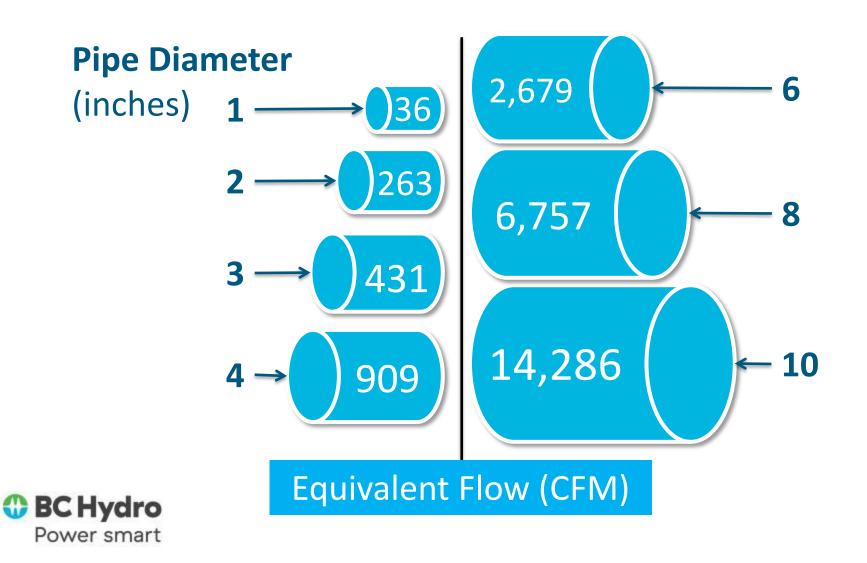
Suggested Actions:

- Increase air storage to reduce compressor cycling and respond to peak air demands
- Use appropriate filters as per manufacturers specification




Compressed Air System – Demand Side

Demand side typically consists of:


Distribution piping, secondary storage, and end use equipment

Typical Components of Demand

Distribution Piping

Reduce System Pressure

Reducing system pressure may:

- improve overall system performance
- reduce leakage rates
- help with capacity problems
- Reduce stress on components

Did you know? Every 2 psi reduction in system pressure equals about 1% horsepower savings.

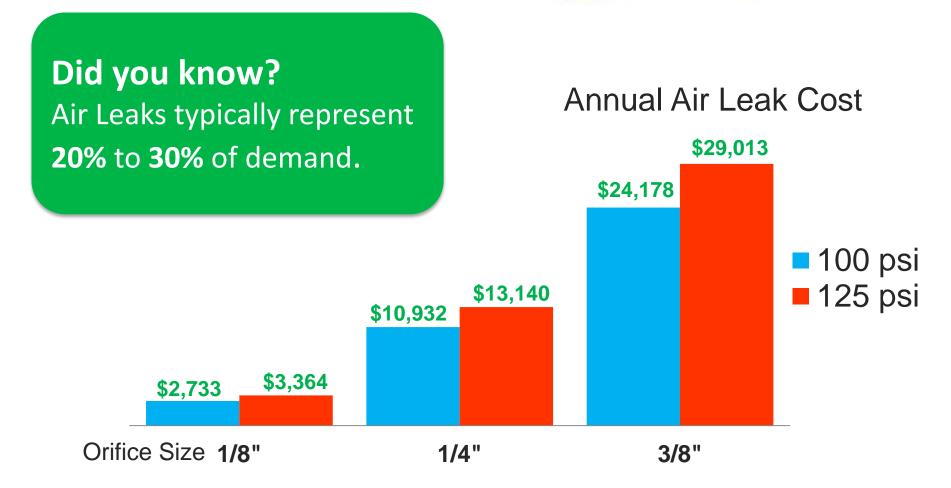
10psi = 5% savings!

Eliminate Inappropriate Uses

Suggested Actions:

-Walk through your plant and identify all compressed air uses and, if possible, flow & pressure requirements

-Consult with a compressed air specialist to eliminate any inappropriate uses.


Inappropriate	Efficient
Application	Alternative
Open blowing for	Low-pressure
cleaning, drying,	blowers, brooms,
etc.	low flow nozzles
Air actuation	Electric actuation
Air motors (mixers, agitators, etc.)	Electric motors

Air Leaks

Compressed Air Leak Audit

EAK TA

Plant wide walkthrough and review of the compressed air system

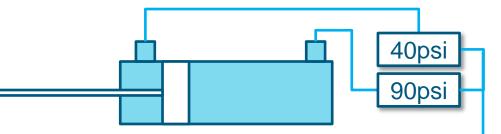
Determine location and size of leaks in the system

Log leaks on a tracking spreadsheet

Calculate air consumption and cost of leaks

Prioritize maintenance schedule

											
27-Oct-14											
	Air Leak	s Repaired	Cost Av	oidance		CO ₂	NO				
	CFM	Cost	Identified	Repaired	% Complete	Identified	Identified	l			
	0.0	\$0.00	\$4,794.88	\$0.00	0%	72250	156				
Record Number	Group Name	Location Name	Type of Gas	Pressure at Leak	dB Reading	Problem Description	Hours Per Day	D			
S101	Wash	Extractor	Air	100	73	Valve Leak, far left	24	Η			
								H			
S102	Wash	Extractor	Air	100	67	Valve leak far right, when activated	1				
0.400			A .	400	40	Valve leak second on left, when	<u></u>				
S103	Wash	Extractor	Air	100	40	ativated	24	\square			
S104	Wash	Dryer	Air	75	25	Drain on filter bowl	24				
S105	Wash	Milnor Dryer	Air	100	27	Compression fitting on 3/8 poly line	24				
						Right cabinet bottom valve, when		┢╴┦			
S106	Wash	Milnor Dryer	Air	100	67	activated	1				
						Left cabinet bottom valve, when		\square			
S107	Wash	Milnor Dryer	Air	100	70	activated	1				
S108	Wash	Sheet folder	Air	75	67	Regulator inside cabinet	24				
S109	Main area	Thermopatch	Air	100	37	Hole in air line	24				
S110	Main Area	Thermopatch	Air	100	34	Inside press	24				


Dual Pressurization

Did you know?

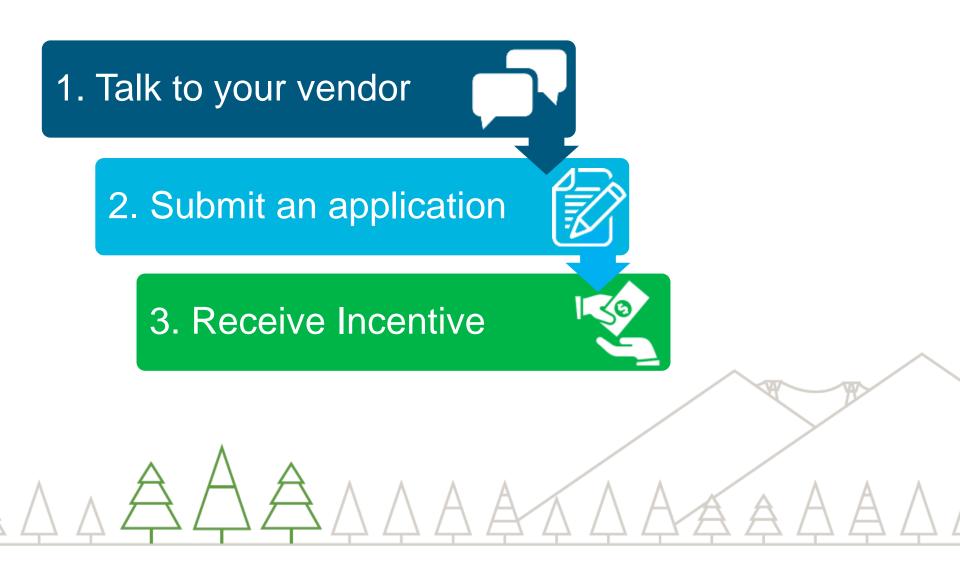
Some applications require high force in only **one direction** and minimal force on the return.

Cylinder Volume =1.59 ft³

6" Dia. X 36" Stroke

Compression Ratio: @90psi = 7.12 @40psi = 3.72

Air used by cylinder $Up = 4.2 \text{ ft}^3$ $Down = 2.2 \text{ ft}^3$


> Air saved: = 24%

Proven Energy Efficiency Measures

Supply Side (25-35% Savings)	Demand Side (65-75% Savings)
Improve Controls (Sequencer)	Identifying and repairing air leaks
Reduce system pressure	Regular maintenance
Regular maintenance	Eliminate inappropriate air usage
Energy Efficient Compressors/Dryers	Minimize unregulated users
Compressor heat recovery potential	Look for alternative forms of power

Self Serve Incentive Program

ne of Vendor : diting Period :	Tree Hug 7/7/2015	Audit Details	Repor SIP File N	rt Date : lumber :	7/27/20 1600	015				%		9
		Executive Summ		or power,	plant pre	ssure and	-				verintion	
neral comments July 7th the abov ow. After review o	e reference f the data, \ les can be a	Executive Summer d facility was data logged /SWP consumes a total of 3 chieved through up-gradin	g of equipme	s/year in t	he compre of stragety	and re-		Proposed Air D	Rated Package	Rated Flow	Pressure	Туре
one. Energy savin	Table 1: P	roposed Energy Conserv	Demand Reduction [KW	Energy (kW	Savings h/yr] Pr	roject Cost [\$]		facturer / Model	[kW]	[acfm] 246	[psig] 120	Refrigerated - Cycling
ECM # 1 Reduce Sys	Pressu	re	3	15		\$ 13,500 \$ 62,000	rdn	er Denver RES246	+	-	+	
Contraction Co	ompressed		23				-			1		
4 5 6	5 Total: 28 193,000 ¥						8.0 Conclusions and Recommendation of the customer. In doing					
	P	roposed Compressor	System De	scriptio	n Rated		- 3	ting to reduce the	new compre	ssor, dry	ne equipmer	nt. Incremental costs are
		Manufacturer / Model	Motor Power	Rated Flow [acfm]	Pressure [psig]	Control / Typ	e	LE CLOANSI ION SIL		lertr	ICAI SUPP.	a pain all tarm
ompressor ID	Function	Gardner Denver VS40 (54)	(HP) 1P) 54	243	100	VFD		ting maybe required	ISIS		lated at var	ious time throughout the
								FEEDER FOILING		in m	inutes beau	in the could be pro-
						adjustmen	y additio	nd side analysis on ne system. Inal recommendation	ns for the cu	stomer to ow points	consider	em to remove condensate. A the oil from the condensate
BC	Hyd	ro				condensa before dr	ate mai raining e the e	nagement system to sewer. New byl xisting "wet tank"	aws are in drain will com has been	place for ome with added to	condensate new tank an o this study.	the oil from the concern management systems. Add nd all related compressor ro Contact Skeans for more
	er sm					equipme informa	ent. no	condensate syste				

Thank You!

Niels Broers: niels.broers@bchydro.com

Specialist Engineer, BC Hydro

Shane Simard: shanes@skeans.com

Sales, Service, and Energy Manager, Compressor Division, Skeans

