Purpose

Power Smart's *Minimum Requirements for an Energy Study* (see Appendix) provides a comprehensive list of the basic elements which must be included in an Energy Study Report. The intent of this sample report is to provide additional information to consultants and customers and communicate the level of detail expected from the Energy Study Report, supporting documents and calculations.

Power Smart Engineering reviews the Energy Study Report to determine whether the proposed energy savings measures are feasible and sustainable. To support the development of local energy efficiency expertise and speed the turnaround time of future technical reviews, Power Smart Engineering tools and examples are shared with the consultant in this sample report.

Scope

The sections in this sample report correspond to the mechanical items listed in the *Minimum Requirements for an Energy Study*, which can be found in the Power Smart Energy Study Funding Agreement. This sample report does not cover the items related to lighting.

The sample report format is applicable to many different building types and systems and the examples provided cover a variety of applications.

Background

An energy study identifies, analyzes and recommends cost-effective solutions to improve inefficient systems and increase the reliability and energy efficiency of a customer's facility. BC Hydro's Energy Study program helps Power Smart Partners conduct studies within their commercial organizations by co-funding up to 50% of the energy study, maintaining a directory of pre-qualified consultants and providing access to Power Smart's technical and energy management resources.

After the energy study is complete, the customer receives an Energy Study Report that includes suggestions for improvements supported by detailed technical information, quantified energy savings potential and expected implementation costs. Based on the Energy Study Report, the customer should be able to determine the most effective energy savings measures for implementation.

Requirements

At a minimum, the Energy Study Report must include the relevant elements listed in the *Minimum Requirements for an Energy Study*. The consultant should include a brief explanation if elements from the *Minimum Requirements* are not applicable or not relevant to the energy study.

In addition to the Report, separate calculation spreadsheets are required to support the values reported. All energy savings measures being recommended for implementation must adhere to ASHRAE and Illuminating Engineering Society design guidelines and calculation procedure. Energy modeling outputs are not accepted as a substitute for calculation spreadsheets.

The energy consumption baseline for measures that involve equipment replacement is the current version of ASHRAE 90.1.

Additional information and documentation that are relevant to the building energy analysis, performance data and calculations can be provided in the appendices of the Report.

BGhydro © ροwer**smart**

Table of Contents

Purpos	e	1
Scope .		1
Backgr	ound	1
-	ements	
BC Hyd	Iro Power Smart Energy Study Sample Report	
1.0	Applicant Information	
2.0	Executive Summary	
3.0	Facility Description	5
4.0	Mechanical System Description	
5.0	Control Equipment Description	
6.0	Energy Use Analysis	9
7.0	Recommended Energy Conservation Measures	11
8.0	Project Definition	14
Revisio	ns	
Append	dix: Minimum Requirements for an Energy Study	16

BGhydro © ροwer**smart**

BC Hydro Power Smart Energy Study Sample Report

1.0 Applicant Information

Provide the following information for the project:

- Customer company name and address
- Contact person
- Telephone and email
- Facility type
- Consultant name and address
- Contact information
- Date of Energy Study Report completion

For example:

QMS-9462-C-065	BC Hydro Power Smart Engineering	Page 3 of 18
Date of report completion	October 15, 2009	
	Mr.Energy@consultant.com	
	(604) 555-5555	
	Vancouver, BC	
	Main Street	
Report prepared by:	Mr. Energy Conservation Consultant	
	Mr.energy.manager@bchydro.com	
	(604) 555-5555	
	Vancouver, BC	
	Mr. Energy Manager	
Report prepared for:	BC Hydro Power Smart	
	Canada	
	Burnaby, BC	
	Kingsway	
Site identifier:	Power Smart Head Quarters	

<mark>BGhydro ©</mark> ρΟWeſ**smart**

2.0 Executive Summary

This executive summary is important as it will be used to provide the customer and BC Hydro with an outline of the Energy Study's recommendations.

Summarize the report in a tabulated format containing the following information:

- List of energy savings options
- Measure descriptions
- Anticipated energy savings (kWh)
- Anticipated demand reduction (kW)
- Peak load demand reduction (kW) if applicable (Dec & Jan from 5pm 7pm)
- Other fuel savings
- Cost savings and estimated incremental and/or project costs to implement each option
- Simple paybacks
- Assumptions

Energy Conservation Measures should be grouped into retrofit, operational or maintenance measures. Both recommended and non-recommended measures should be documented in separate tables.

For example:

Ret	rofit Measures	E	lectric Savir	ngs	Other Fu	el Savings	Measure	Simple
D	Description	kW	kWh/yr	\$/yr	GJ/yr	\$/yr	Cost	Payback
M1	Waterside economizer	0	45,000	\$1,485			\$15,000	10
M2	Replace VIV with ASD	0	15,000	\$495			\$3,000	6
Оре	erational Measures	E	lectric Savir	ngs	Other Fu	el Savings	Measure	Simple
D	Description	kW	kWh/yr	\$/yr	GJ/yr	\$/yr	Cost	Payback
M3	Rescheduling HW pumps		25,000	\$825			\$800	1
M4	Night set back		10,000	\$330	20	\$164	\$2,000	4
Mai	ntenance Measures	E	lectric Savir	ngs	Other Fu	el Savings	Measure	Simple
D	Description	kW	kWh/yr	\$/yr	GJ/yr	\$/yr	Cost	Payback
M5	Re-commissioning		5,000	\$165	25	\$205	\$2,500	6.8
M6	Repairing override		8,000	\$264	15	\$123	\$500	1.3

A. Energy Conservation Measures Recommended for Implementation

Reti	rofit Measures	E	lectric Savir	igs	Other Fu	el Savings	Measure	Simple
D	Description	кW	kWh/yr	\$/yr	GJ/yr	\$/yr	Cost	Payback
M7	Free-cooling chiller	15	85,000	\$2,805			\$375,000	134
M8	Elevators	1	34,000	\$1,122			\$95,000	85
Ope	erational Measures	E	lectric Savir	igs	Other Fu	el Savings	Measure	Simple
D	Description	кW	kWh/yr	\$/yr	GJ/yr	\$/yr	Cost	Payback
M9	Demand Control Ventilation		15,000	\$495	22	\$180	\$12,000	18
M10	Chilled water temperature reset		9,000	\$297			\$6,000	20
Maiı	ntenance Measures	E	lectric Savir	igs	Other Fu	el Savings	Measure	Simple
D	Description	кW	kWh/yr	\$/yr	GJ/yr	\$/yr	Cost	Payback
M11	Insulation replacement				5	\$41	\$350	8.5

3.0 Facility Description

Provide adequate information to allow a 3rd party reviewer of the report a good understanding of the facility's attributes. The information should include the following:

- Building type
- Construction and envelope description (wall construction, types of doors, types of windows and window shadings, type of glazing, glazing levels (% wall area))
- Age and renovation years
- Physical condition
- Internal space use and layout (sketches optional)
- Floor area and number of floors
- Occupancy pattern

For example:

The Tower Office is an office facility in the city's downtown area. The building is concrete block construction with curtain walls. The office offers in excess of 400,000 ft2 of office space. The podium section was completed in 1989 and the tower was completed approximately two years later. The podium is 10 stories with a conditioned area of approximately 150,000 ft2. The tower is 25 stories of general offices with a total conditioned area of approximately 250,000 ft2. The parkade consists of 500 stalls...

The building envelope is curtain wall construction with reflective glazing. The building is judged to be excellent with respect to air infiltration. The main entrances have glass doors with vestibules. Fixed windows make up 50% of the overall wall area and are double-glazed with a reflective tint. The building has no shading other than tenant controlled blinds. The building is partially shaded by adjacent office towers resulting in uneven thermal loads during sunny mornings...

The podium has Tenant A as a prime tenant on 8 floors. Tenants B and C have floors 1 and 10 respectively. Tenant C operates 24/7 and has special loads. The office tower has other tenants. Approximately 20 floors are multi-tenant floors. Floor layout for tenants is typically open office type with fully enclosed meetings

rooms in each corner of the floor. Generally, the open office areas are divided into 5 zones: one for each orientation and one interior zone. The large meeting rooms in the corners are zoned separately... Typical building operating hours are from 5:00AM to 9:00PM Monday to Saturday with tenant occupancy primarily between 7:00AM and 6:00PM Monday to Friday. The cleaning is performed daily from 8:00PM to Midnight. Security staff are on site after 6:00PM daily...

4.0 Mechanical System Description

Provide adequate information to allow a 3rd party reviewer of the report a good understanding of the facility's mechanical systems, operations and known issues. The information should include the following:

- Types of systems and areas served
- Inventory of equipment
- Operating schedules
- Sequence of operation
- Maintenance schedules
- Equipment conditions
- Equipment efficiencies
- Energy use baseline (in Excel spreadsheet format)

For example:

Ventilation System

The upper floors are zoned on each exposure with an additional interior zone. Floors 2 through 9 are served with separate multi-zone air handling units AHU-2 through AHU-9 respectively. The multi-zone systems operate by blending heated and cooled air to meet space thermal requirements. The units are controlled by a XX brand DDC system comprised of approximately 126 points. The hot and cold deck set-points are --F and --F respectively. Unit AHU-2 runs from 6:00 AM to 5:00 pm. The damper minimum position...

Cooling System

The facility has two chillers. One 450 ton centrifugal Brand A chiller has variable speed capabilities. The other chiller is a 150 ton Brand B screw chiller and operates during peak summer loads only. Chilled water is supplied to the ventilation fans, floor air handling units and fan coil units...

Heating System

Two new forced draft gas fired boilers, 3000 MBH input each, are piped in parallel. Two hot water pumps circulate the water across both boilers. Heating is required all year on the north side of the perimeter except for 4 weeks in the summer. The boiler provides hot water for fan coil units, the heating coils in the multizone units and perimeter radiators...

Domestic Water System

The domestic hot water for all buildings is generated via the integral shell and tube heat exchanger with the heating water system fed from the boilers. The hot water passes through an anti-scalding temperature mixing valve at 140 degree F set-point. DHW is re-circulated by the pump located behind the tank. The system serves the kitchen, refreshment counter and four washrooms on the main floor. Small electric hot water tanks serve the remaining 12 bathrooms in the building...

Inventory Information Spreadsheets

Along with the general mechanical equipment descriptions, this section should provide spreadsheets detailing inventory energy consumption, hours of operation and weekly/seasonal profiles. The detailed inventory spreadsheet and the annual hours of operation spreadsheets are required to be submitted with the final Report in Excel format for review, and should include the following:

- Equipment identifier
- Zones served
- Nameplate information
- Set points
- Annual hours of operation
- Annual energy consumption

The inventory data can also be provided separately in the appendices.

Inventory Calculation Spreadsheet

Existing E	quiptment Motor Lis	Click here for existing Chille	<u>er list</u>	Click here for existing Chiller list Name Plate Data Efficiency Efficiency													
Tag	Equipment Type	Category (select from drop down list)	Area Ser v ed	Na Yoltage				Measured Amps	Power Factor (2)	Load Factor (2)	Efi ک	ficiency Actual or Estimated?	٤v	Annual hours	Annual Consumption		
AHU-1SF	Fan (Supply)	Ventilation / Auxilaries	Lobby	575	3	25.0		5.0	65%	82%	60.0%	Actual	3.2	4,500	14,565		
DH-1	Duct Heater Elec	Heating	Lobby	575	3								5.0	4,500	22,500		
AHU-2SF	Fan (Supply)	Cooling	2nd Flr	575	3	20.0		15.0	80%	85%	60.0%	Actual	12.0	4,500	53,780		
AHU-2RF	Fan (Return)	Cooling	2nd Fir	575	3	10.0		15.0	80%	85%	30.0%	Actual	12.0	4,500	53,780		
AHU-3SF	Fan (Supply)	Heating	3rd Fir	575	3	20.0			80%	85%	65.0%	Estimated	19.5	4,500	87,798		
AFHU-3RF	Fan (Return)	Heating	3rd Fir	575	3	10.0		20.0	80%	85%	60.0%	Actual	15.9	4,500	71,707		
AHU-4SF	Fan (Supply)	Ventilation / Auxilaries	4th Fir	575	3	20.0			75%	75%	80.0%	Estimated	14.0	4,500	62,944		
AHU-4RF	Fan (Return)	Ventilation / Auxilaries	4th Fir	575	3	7.5			75%	75%	50.3%	Estimated	8.3	4,500	37,541		
B-1	Boiler (Elec)	Heating	Fir 1- 10	575	3			2.0					15.9	3,800	60,420		
D-1	DHW heater (Elec)	Domestic Water	Fir 1- 10	230	3			3.0					6.5	4,500	29,250		
MAU-1	Fan (Supply)	Ventilation / Auxilaries	Kitchen	575	3	15.0			75%	75%	80.0%	Estimated	10.5	3,000	31,472		
MAU-2	Fan (Supply)	Ventilation / Auxilaries	Gym	575	3	5.0			70%	75%	63.0%	Actual	4.4	2,000	8,881		
IC-1	Misc Equipment	Refrigeration / Food Preparation	10th Fir	575	3								12.0	1,000	12,000		
EF-1	Fan (Exhaust)	Ventilation / Auxilaries	Kitchen	230	3	10.0			60%	60%	60.9%	Estimated	7.3	3,000	22,043		
ER-1	Electric radiant heater	Heating	Loading docl	575	3								2.0	2,500	5,000		
CP-1	Control air compressor	Other Load	Mech Rm	575	3	5.0			60%	50%	60.0%	Estimated	3.1	4,500	13,988		

Chiller Calculation Spreadsheet

Chille	er List		Lick here for existing motor list										Print]								
Tag	Size (ton)	Type	Load %	Load (ton)	FL Eff (k¥/ton	Load (k¥)	1.00	Operating Hours (logged Hours) Jan Feb Mar Apr May Jun Jul Aug Sep					Dat	Nou	Пее	Load %	Consumpt ion by Load%	Equivalent FL hours by Load %	Total Consumptio	Total Equivalen FL hours			
				^	J		van	reu	mai	мрі	may	Jun	Jui	Mug	Seh	OCI	NOV	Dec	(hrłyr) O			n (k∀h/yr)	FL NOUIS
			0 25	0 113	0.00	0 45				123						123			246	0 11.070	0		
ch-1	450	Water Cooled	20 50	225	0.40	113				50	123				123	50			246	38,925	346	278,753	1.107
VIET	100	Centrifugal	75	338	0.60	203				00	25	321	321	321	25	50			1,013	205.133	651		4,01
			100	450	0.00	315					23	25	25	25	20				75	23,625	75		
			0	100	0.00	0					_	20	20	20	_		_		0	0	0		
			25	50	0.60	30													0	0	0		
ch-2	200	Water Cooled Scroll	50	100	0.80	80						20	10	10	20				60	4,800	60	11,550	88
	and Screw	and Screw	75	150	1.00	150						5	20	20					45	6,750	28		
		-	100	200	1.20	240													0	0	0		
			0	0		0								_			_		0	0			
			25	50		0													0	0			0
		Air-Cooled w/	50	100		0													0	0		0	
		Condenser	75	150		0													0	0			
			100	200		0													0	0			
			0	0		0													0	0			
		Water Cooled	25	25		0													0	0			
		Reciprocating	50	50		0													0	0		0	0
		riedprodading	75	75		0													0	0			
			100	100		0													0	0			
			0	0		0													0	0			
		Air-Cooled w/o	25	63		0													0	0			
		Condenser	50	125		0													0	0		0	0
			75	188		0													0	0			
		100	250		0													0	0				

Weekly Schedules Calculation Spreadsheet

WEEKLY	WEEKLY SCHEDULES													
			Enter tim	es in 24-h	our clock t	format		*4.345 we	eks in a mo	nth				
PROFILE #	Profile Name (Optional)	BACK to Schedules	Mon	Tue	Wed	Thu	Fri	Sat	Sun	MONTHLY Hours Total				
1	Garage	start	6.0	6.0	6.0	6.0	6.0	8.0	8.0	222.4				
1	General	stop	18.0	18.0	18.0	18.0	18.0	16.5	16.0	332.4				
2	Summer	start	7.0	7.0	7.0	7.0	7.0	9.0	9.0	243.3				
2	Summer	stop	16.0	16.0	16.0	16.0	16.0	15.0	14.0	243.5				
3	Continuous	start	0.0	0.0	0.0	0.0	0.0	0.0	0.0	730.0				
	Continuous	stop	24.0	24.0	24.0	24.0	24.0	24.0	24.0	130.0				
		start	5.0	5.0	5.0	5.0	5.0	7.0	7.0	482.3				
4	Cooling													

5.0 Control Equipment Description

Provide adequate information to allow a 3rd party reviewer of the report a good understanding of the facility's control systems. The information should include the following:

- Systems applications
- Equipment inventory
- DDC system points
- Maintenance schedule
- Age

• Operating strategies

For example:

In the north wing, the Big Guy pneumatic system controls the perimeter fan coil units with local electronic pneumatic transducers. There is no central control with a network of remote monitoring of equipment and conditions. While this system is still effective at maintaining temperature set-points in the space, all modifications to the system are manual. The age of the Big Guy system is approximately 18 years...

In the south wing, the Big Guy pneumatic system has been upgraded over the years with DDC technologies. This wing has 4 Delicat version AA panels that provide DDC control to the chillers, pumps and air handling units AHU-1, AHU-2 and F-3. The boilers are operated with Manufacturer D boiler controllers that are shown in the figures below. They are not connected to the DDC system. Only 1 of the 10 fan coil units are connected to the DDC system. Remote access to these controls is provided via a modem link to the Delicat interface...

The control system for the workshop consists primarily of stand-alone programmable electronic thermostats for the HVAC systems and single temperature electric of self-contained thermostats for electric terminal heating units...

6.0 Energy Use Analysis

Provide adequate information to allow a 3rd party reviewer of the report a good understanding of the facility's energy use. A comparison with similar buildings is recommended. The information should include the following:

- Energy rate schedules for each fuel
- Annual energy consumption history for all fuels
- Annual peak demand
- Energy use analysis
- Energy consumption break-down by end use
- Electrical consumption break-down by end use

The major end use categories include the following:

- Heating
- Cooling
- Ventilation/Auxiliary
- Lighting
- Domestic Water
- Refrigeration/Food preparation
- Plug loads
- Other loads

For example:

The Building Energy Performance Index (BEPI) for the building is 15 kWh/ft2 based on a building area of 43,000 ft2. This is much better than the average building in the regional district. Electrical use has decreased in 2007 and 2008 compared with 2005. This is likely due to the lighting retrofit projects completed

at the end of 2006. A large percentage of the annual consumption is during the summer months and is due to cooling, which may indicate an issue with the cooling system.

The natural gas use has increased in the last two years. The gas BEPI has increased six percent. The natural gas profiles for 2007 and 2008 are presented in the figures below referenced against Heating Degree Days...

BChydro © ροwer**smart**

Electrical Inventory Breakdown												
kW kWh/yr % of total kWh/y												
Heating	20	12,000	3.7%									
Cooling	80	62,000	19.3%									
Ventilation/Auxiliaries	12	45,000	14.0%									
Refrigeration/Food preparation	2	2,000	0.6%									
Domestic Water	8	20,000	6.2%									
Lighting	120	160,000	49.8%									
Other Loads	6	20,000	6.2%									
Total		321,000										

7.0 Recommended Energy Conservation Measures

Provide information to allow a technical review of each energy conservation measure (ECM). The information should include the following for each recommended ECM:

- Description of each ECM and the work required to accomplish implementation
- Number of units affected
- Estimated service life
- Annual kWh and kW savings/system savings (include other fuel savings, such as natural gas)
- Material and commissioning requirements
- Estimate of capital cost to accomplish implementation (including design, material and commissioning costs)
- Annual dollar savings
- Other annual energy savings (natural gas, propane etc.) unit and dollar savings (including GST)
- Other non-energy savings (maintenance, occupancy comfort etc.) unit and dollar savings (including GST)
- Estimated payback

T

The consultant should provide a description of the energy analysis methodology, calculations and major assumptions to endorse electricity and fuel savings estimates.

Organize the measures according to the following categories:

- Retrofit
- Operational
- Maintenance

Please note that maintenance savings are not eligible for Power Smart implementation funding.

For example:

Retrofit

M.1 Replaced 3-way Piping with 2-way and VFD on Chilled Water Pump

Chilled water pump P-1 (15 hp) circulates chilled water to the cooling coils in the spot cooler serving the ice display in the main hall. The ice display is shut down for 3 weeks each summer for maintenance (504 hr/yr). When activated, the pump operates at full capacity continuously. Cooling capacity adjustments are made at the 3-way bypass valve located at the cooling coil header inlet. When reduced water flow is required, the valve redirects a portion of the flow to the return line.

As an energy conservation measure, the 3-way valve and bypass piping can be replaced with a 2-way valve. The flow modulation can be controlled by a new VFD on the chilled water pump P-1. The VFD will modulate flow using the existing infrared ice temperature sensor controlling the 3-way valve. Based upon a review of the 3-way valve operations, the modulation profile is estimated. Energy savings are possible via the pump operating at reduced flow. The estimated implementation cost is \$500 for the piping and valve changes. There is no cost for the new VFD as it is surplus from last year's conservation project. The estimated annual electric savings are approximately 13,000 kWh/yr or \$400 at current rates. There are no demand savings. The simple payback is 4.1 years. The expected service life of the VFD is 10 years...

Calculation Spreadsheet

BChydro œ power**smart**

VFD for chille	d water pump			and bypass piping with illed water pump ahu-		i air handling unit coolii	ng coil connection						
Existing kWh:	55,618												
kW Savings:	0	-											
ECM Total cost:	\$500.00												
Payback:	4.1	[
	Exist	ting				Proposed							
Equipment Info		Name Plate In	fo	ASD Profile									
Tag:	ahu-1	HP	15	% Flow	24 Time	Hours	k₩	k₩b					
Type:	Pump (Cooling)	Amps	15.0	100.00%	10%	827.3	6.7	5,562					
Category	Cooling	Voltage	460	90.00%	20%	1,654.7	6.1	10,011					
Area Served	main hall	Phase	3	80.00%	30%	2,482.0	5.4	13,348					
Other Info				70.00%	20%	1,654.7	4.7	7,786					
Measured Amps	Not Available	kV	6.7	60.00%	10%	827.3	4.0	3,337					
Power Factor %	75%			50.00%	10%	827.3	3.4	2,781					
Load Factor %	75%	Annual Hours:	8,273.3	40.00%		0.0	5.1	0					
Efficiency %	88.0%	Annual k¥h:	55,618	30.00%		0.0	3.8	0					
(Estimated Efficiency)			20.00%		0.0	2.5	0					
				10.00%		0.0	1.3	0					
				0.00%		0.0	0.0	0					
							Annual kWh:	42,826					
				Annual Saving	zs								
k¥h Savings	12,792	k¥ Savings	0.0	\$ Savings	\$423								

Operational

M.2 Reprogramming DDC System to Allow Night Setback and Free Cooling

The top 2 floors of the facility were the operations center for the Incident Investigation Units (IIU). The IIU used 3 daily shifts with the overnight shift operating at 75% of capacity. The morning and afternoon shifts operated at 100% capacity. With the recent amalgamation with the Regional operations, the overnight shift has been reduced to computer automated operations only. Only security is on duty during the overnight shift. This change in operations is an opportunity to save energy using night setback strategies.

The annual perimeter baseboard heating energy usage is estimated at 100,000 kWh. The current temperature set point at night is 22 degrees C throughout the year. The proposed set point for the 2 floors during unoccupied hours is 18 degrees C. In addition to reprogramming the DDC system to allow night setback, the outside air damper controls will also be revised to allow for pre-cooling of the space when outside air temperature is lower than the indoor temperature set point in the morning.

The analysis uses the weather data of Vancouver to determine the times in the day and year that perimeter heating would have been operating...

The calculated annual electric savings is 10,000 kWh or \$330. There are no demand savings. There are no other fuel savings. The estimated cost to implement the revised control strategy is \$950, achieving a simple payback of 3 years. The expected service life of the programming change is 5 years...

Calculation spreadsheet

BChydro © powersmart

FCM	Name:				ECM De:	cription								
	ccupied Set	back				· ·								
	ccupied set	DOCK			Reprogram	nming DDC	System to A	llow Night Setba	ck					
Existing kWh:	100,000													
kW Savings:	0													
	\$965.35													
Payback:	2.93													
e 'Weather data' sheet for	r more infor	mation o	on weath	er statio	ns									
											_			
	ather Statio					ouver		Outdoor	Design Tem	perature:		-7	degrees	Celcius
Established existing spa	ce perimeta	er heatir	ng energy	usage:	100	,000	k₩h		D 317 O					
					-		1		<u>Building Occ</u> Weekdavs	cupancy scr		UT CIOCK J		
	Proposed Indoor OCCUPIED setpoint: Proposed Indoor UNOCCUPIED setpoint:					21 8	degrees		Saturday 8		to to	20	-	
Prop	posea inaoo	ir unuu	JUPIED SE	stpoint:		0	degrees	Celcius			to	20 0	-	
									Sunday	0	to	U	_	
			Canital I	Cost (\$):	¢96	5.35		\$ Saving	s \$325	9.51	Payback:	2.9	33	
			ouplear	0000 (0)1	2,0	0100	_	2 June 2			1 4,04014			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
	Days in month	31	28	31	30	31	30	31	31	30	31	30	31	365
HDD (below 18 de	grees Celcius)	454.9	374	352.6	264.5	170.9	87.5	34.3	31.2	103.7	245.8	357.6	449.4	2,926
Perimete	er Heating kWh	15,545	12,780	12,049	9,038	5,840	2,990	1,172	1,066	3,544	8,399	12,220	15,357	100,000
Hours below 18 degrees	: Celcius (Occ)	48	48	48	48	48	39	24	9	38	48	48	48	494
Hours below 18 degrees C	elcius (UnOcc)	696	624	696	655	673	570	437	441	608	696	672	696	7,464
	ting kWh (Occ)	802	730	622	494	311	153	49	17	167	434	652	793	5,223
Existing	g k Wh (UnOcc)	14,742	12,050	11,427	8,545	5,529	2,837	1,123	1,049	3,377	7,966	11,568	14,564	94,777
1		0.00	5.00	5.96	0.00	450		44.70	15.40	40.00	0.70	5.00	0.00	0.00
Avg DAT C Savings (with 85%	(unoco period) (cofety (cotor)	3.08	5.02 1.287	5.96	8.22 880	11.50 547	14.12 272	14.70 107	15.18 99	13.06 328	9.79 805	5.20 1,233	3.68	9.13 9,955
	sarety ractor) (% of existing)	10.36%	10.07%	1,208	880 9.73%	9.37%	3.09%	9.11%	93	328 9.25%	9.58%	1,233	1,580	9,955
Savings	 or easing)[10.36%	0.07%	10.027	3.73%	3.31%	3.03%	3.11Z	3.30%	3.25%	3.36%	0.037	10.23%	3.33%

Maintenance

M.3 Repairing Occupancy Override Mode

The multipurpose room has an occupancy override button that can be used to obtain after-hours air conditioning to the specific space only. There are instructions next to the thermostat to push the red button for after-hours operation. The red indicator on the button is missing and this has led to poor control of the system. In order to provide air conditioning after hours, the entire building is cooled rather than the space linked to the override button. We recommend replacing the red button and making sure the control system allows for cooling in the override zone only during after-hours operations...

8.0 Project Definition

Provide recommendations for the energy conservation measures. Include the following:

- Reason for selection of the preferred measures
- Total investment required
- Annual energy savings
- Project simple payback

Revisions

Date	Change	Acknowledgments
March 17, 2011	Updated Minimum Requirements list to include only mechanical items	
	Inserted Table of Content	
June 18, 2014	Added QMS# back into document, added "Purpose" to the Table of Contents. Under "Background", changed co- funding to "up to 50%". Under 2.0 Exec Summary, added "incremental and/or project", "Peak load demand", "Assumptions" to the list.	Updated by Greg Morandini, based upon feedback from Stan Ma and Tommy Yim.

<mark>BGhydro ©</mark> ρΟWeſ**smart**

Appendix: Minimum Requirements for an Energy Study

The following minimum requirements for an Energy Study are a set of basic elements which must be included in the Energy Study but these requirements are not intended as a step by step protocol for the Consultant to follow.

1. Applicant Information:

- Customer company name and address
- Site contact person (Facility Owner/Manager)
- Contact name, telephone and email.
- Facility type (reference ASHRAE building types)
- Date of energy study report completion
- For Adaptive Street Lighting Program only: Roadway lighting types analyzed (residential, collector, major, freeway, etc)

2. Executive Summary

- List of energy saving options
- Measure description
- Provide anticipated energy savings in kWh
- Indicate anticipated demand reduction in kW
- Other fuel savings
- \$ Saved and estimated costs to implement option
- Simple paybacks

The executive summary is important as it will be used to provide the Applicant and BC Hydro with an outline of the Energy Study's recommendations.

3. Facility(ies) Description

- Building Type
- Construction and envelope description (wall construction, types of doors, types of windows, and window shadings, type of glazing and % glazing)
- Age and renovation years
- Floor area and number of floors
- Internal space use and layout (sketches optional)
- Physical condition
- Occupancy pattern

4. Mechanical System Description

BChydro © ροwer**smart**

- Types of systems and areas served
- Inventory of equipment
- Operating schedules
- Sequences of operation
- Maintenance schedules
- Equipment conditions
- Equipment efficiencies
- Energy use baseline (in Excel spreadsheet format)

5. Control Equipment Description

- System applications
- Equipment inventory
- DDC system points
- Maintenance schedule
- Age
- Operating strategies

6. Other Electrical Load Description

- Description and inventory
- Estimate of plug loads

7. Energy Use Analysis

- Energy rate schedules for each fuel
- Annual energy consumption history for all fuels
- Annual peak demand
- Energy Use Analysis
- Energy consumption break-down by end use
- Electrical consumption break-down by end-use

8. Recommended Energy Conservation Measures ("ECM")

- Description of each ECM and the work required to accomplish implementation
- Number of units affected
- Estimated service life
- Annual kWh and kW savings per measure (include other fuel savings, such as natural gas)
- Material and commissioning requirements
- Estimate of capital cost to accomplish implementation including design, material and commissioning
- Annual dollar savings
- Estimate payback
- Provide a description of the energy analysis methodology, calculations and major assumptions to endorse electricity and fuel savings estimates

BChydro © ροwer**smart**

- Provide calculations for the energy analysis, identify other energy (natural gas, propane etc.) savings and non-energy savings (maintenance, occupancy comfort etc.) unit and dollar savings
- Organize the mechanical measures according to the following categories:
 - Retrofit
 - Operational
 - Maintenance

9. Project Definition

- Reason for selection of the preferred measures
- Total investment required
- Annual energy savings
- Project simple payback

Any energy saving measures being recommended for implementation must adhere to current ASHRAE design guidelines and calculation procedure.

For Energy Performance Contract Projects the following additional requirements must also be included in the Energy Study.

- 1. Energy Savings
 - Provide anticipated Energy Savings (kWh) with a minimum target of 10% in electrical energy reduction
- 2. Measurement and Verification
 - Consultant submits an M&V plan with the Energy Study / concept report that complies with the BC Hydro EPC Measurement and Verification Guidelines as outlined below
 - Consultant provides a baseline and energy model for BC Hydro review before the contract is executed
 - Consultant / Customer / BC Hydro agree to the M&V plan and baseline
 - Consultant submits M&V reports including baseline adjustments ("BLA") at the same frequency to BC Hydro as to the customer