BChydro : powersmart

Basics Of Industrial Pumps For Small Pump
Program

INDUSTRIAL PUMP BASICS

What is a pump?

A pump is a machine that increases the pressure of a flowing liquid.
Pump construction and terminology: impeller (a.k.a. rotor or wheel), housing (casing), shaft, bearings, other mechanical parts as illustrated below.

BChydro : powersmart

Basics Of Industrial Pumps For Small Pump
Program

Pump assembly operation: on/off, throttle, speed control drive (direct, VFD, belt \& pulley, magnetic).
A typical pump assembly:

Pumps are part of some industrial process systems. What is a system? A system includes pumps and the associated equipment that all work together to do something useful such as deliver water for a cooling system, circulate refrigerant in a refrigeration system or pump sewage in a treatment system.

A sample industrial system that includes pumps:

Basics Of Industrial Pumps For Small Pump Program

What can be done to reduce the kWhs consumed by pumps?

	Measure	Range of kWh savings
Improve pump or pump assembly	Better control (eliminate throttle losses, reduce speed, use it when you need it)	$5-50 \%$
	Upgrade or replace with a more efficient pump	$10-30 \%$
	Replace V-belt with an energy-efficient "sync" belt	$3-5 \%$
	More efficient motor (not usually your best bet)	$2-5 \%$
Improve system	Modify the process to reduce flow or pressure required	$5-50 \%$

What does Power Smart need to know to help our customers?

Information to ask	Possible or sample answer
Description of pump and what it does?	Pumps water, part of refrigeration, ...
For each pump: rated motor horsepower (hp)	50 hp
For each pump: hours of operation per year	6 days / week @ 16 hours / day = 96 hours/week (~5000 hr/yr)
For each pump: how is it controlled?	On/off (automatic? manual?), variable speed, throttle valve (automatic? manual?)
Any problems with this pump?	High maintenance, fails frequently, difficult to control, not enough capacity, vibrates a lot, overheats
"Look beyond the energy savings"	Are there plans to expand production? Reduce production? Save maintenance costs?

Look Beyond Energy Savings

Attach dollar values to non-energy benefits
-Increased productivity
-Reduced costs of environmental compliance
-Reduced production costs
-Reduced waste disposal costs

- Improved product quality
-Improved capacity utilization
- Improved reliability
-Improved worker safety
- Production quantity (e.g. tonnes/yr, widgets/day)

Sample calculation of pump savings in kWh/year and \$/year

Information you are given (e.g., from questions you asked on the phone):

1. "Nameplate" information on the motor: $25 \mathrm{hp}, 460$ volt, 26 amps.
1.1. Note: information on nameplate is always the nominal, full load rating. Actual motor amps are usually less than nameplate, but sometimes a bit higher. Nameplate power may be horsepower (hp), or could be in kilowatts (kW).
1.2. To convert hp to kW, multiply hp by 0.746 :

25 hp * $0.746 \mathrm{~kW} / \mathrm{hp}=18.7 \mathrm{~kW}$
2. 19 amps measured by the customer's electrician.
3. The pump operates 52 weeks/yr, 6 days/wk, 16 hrs/day (5000 hours per year).
4. Average electricity cost is 5.5 cents $/ \mathrm{kWh}(\$ 0.055 / \mathrm{kWh})$.
5. Pump is controlled with a throttle valve.

Information you assume:

1. Based on table on page 3, make a "guesstimate" that 25% can be saved by speed control.
2. Assume motor "power factor" is 0.9 .

Calculation:

(a) kWh/yr consumption:

kWh/yr this pump consumes ("baseline")
kW ${ }^{1}=$ volts * amps * $\sqrt{ }(3)$ * (power factor) $/ 1000$
$=460 * 19 * 1.73 * 0.9 / 1000=13.6 \mathrm{~kW}$
$\mathrm{kWh} / \mathrm{yr}=13.6 \mathrm{~kW}$ * 5000 hours $/ \mathrm{yr}=68,000 \mathrm{kWh} / \mathrm{yr}$

(b) potential kWh/yr savings:

About how many kWh/yr can be saved each year?
$\mathrm{kWh} / \mathrm{yr}$ savings $=0.25 * 68,100 \mathrm{kWh} / \mathrm{yr}=17,000 \mathrm{kWh} / \mathrm{yr}$

(c) \$/yr savings:

How much money can be saved each year?
17,000 kWh/yr * \$0.055/kWh = \$940/yr

Additional Resources

1. Improving Pumping System Performance - A Sourcebook for Industry ($2^{\text {nd }}$ edition) http://www1.eere.energy.gov/industry/bestpractices/motors.html
2. Variable Speed Pumping: A Guide to Successful Applications (2004). http://www1.eere.energy.gov/industry/bestpractices/motors.html
3. Guidance for Draft Standard for Trial Use: EA-2-2008 Energy Assessment for Pumping Systems (American Society of Mechanical Engineers)
http://www.cee1.org/files/ASMEEnergyAssessmentforPumpingSystemsGuidancev0.2.pdf
4. www.pumpsystemsmatter.org
5. www.pumps.org
6. www.pumplearning.org
[^0]
[^0]: ${ }^{1}$ This is a useful formula to keep handy. It is good for 3-phase power systems, typical of industrial plants. Note that in our homes we have 1-phase power, and the formula is the same except take out the $\sqrt{ }$ (3).

