Resource Options Engagement Wind Update

Presented by Magdalena Rucker

March 5, 2020

Agenda

Purpose of the meeting is to get your feedback on assumptions

- Wind resource/project info
- Turbine characteristics
 - observed trends and assumptions being made in update
 - Impact of changes on net capacity factors
- Assumptions for capital (CAPEX) and Operations & Maintenance (O&M) costs
- Preliminary results for unit energy cost at gate

Wind Resource/Project Info

Continue to use underlying data from 2009 BC Hydro Wind Data Study and 2009 BC Hydro Wind Data Study Update

- Studies identified 130 potential wind project sites
 - Potential sites that overlap with existing wind projects have been removed
 - Installed capacity for each project unchanged
- 10 years of 10-min wind speed time series

Turbine characteristics

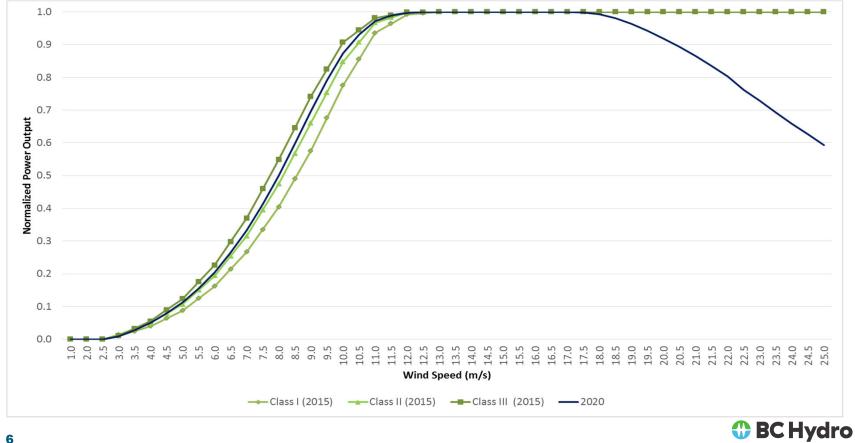
Turbine technology is still evolving

- Contacted 4 OEMs and received information on 9 turbine models
- Both nameplate capacity and rotor diameters have increased from 2015

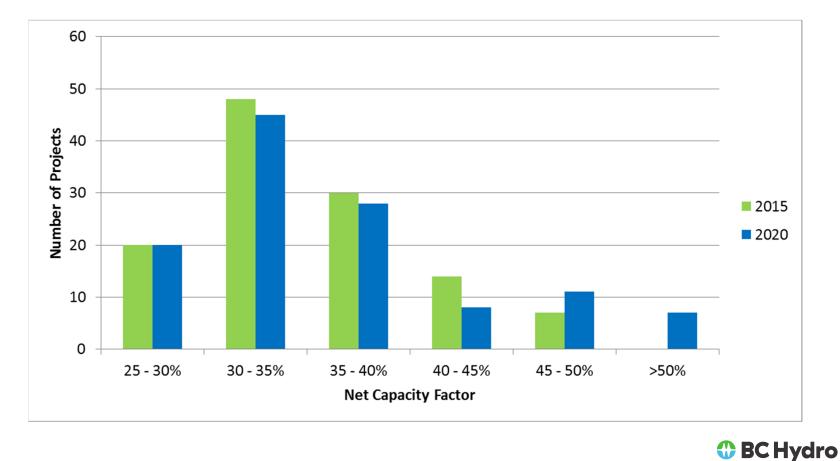
	2015	2020
Nameplate Capacity (MW)	3.0 - 3.3	4.6 - 5.6
Rotor Diameter (m)	101 - 126	136 - 162

- Trends in hub heights less clear
- Emergence of IEC Class "S" turbines designed to be used across all IEC wind classes

4


Proposed changes to turbine characteristics

- Increase hub height from 100 m to 110 m
- Use uniform turbine size of 5 MW (no impact)
- Assume 12.75% loss factor (same as 2015)
- Blended power curve based on information provided by OEMs


Power curve update

Use one power curve for all sites.

Power smart

Impact of changes in turbine assumptions on net capacity factor

Power smart

Cost Updates

In 2018, Hatch provided an update to its 2015 cost analysis.

7-10% decrease in turbine prices

No changes in O&M or BoP costs

Factors, trends not captured in cost analysis

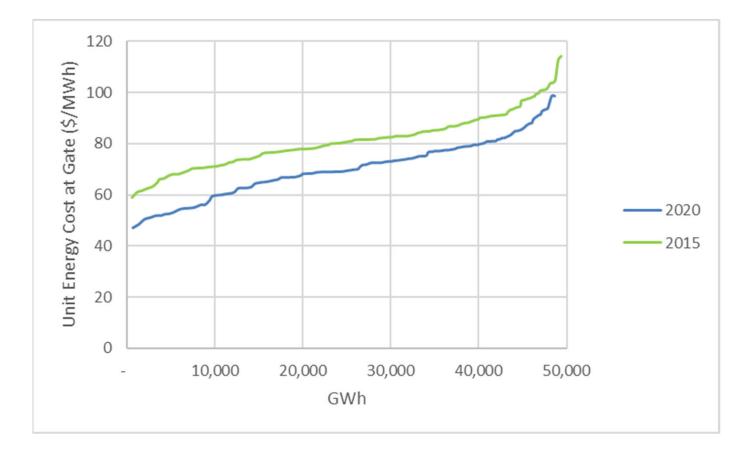
- Turbine design life increasing from 20-25 years to 30 years
- Increased OEM competition, leading to favourable turbine supply agreement terms for the wind developer
- Exchange rate fluctuations can significantly affect project viability
- Increased emphasis on condition monitoring and performance assessment
- Improved turbine technology leading to less O&M

CAPEX assumptions

- Use 2015 Hatch report, with a 15% decrease in turbine cost
- No change in BoP costs
- Assume CAPEX remains same for all regions in BC
- CAPEX scaled with project size
- Assume 20% increase in CAPEX for more complex sites
- Assume 25 year project life

Capex cost for 200 MW project in easy terrain = \$1,990/kW

Capex cost for 200 MW project in complex terrain = \$2,390/kW



O&M Assumptions

- O&M assumed to include turbine O&M, personnel costs and other costs (taxes, leases, rents)
- Assume \$60/kW-yr, based on 2018 Wind Technologies Market Report and collaborated with actual O&M cost for a wind project in BC

Unit Energy Cost at Gate (preliminary)

BC Hydro Power smart

Thank you for your feedback!

