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1 Introduction 1 

Long-term planning in the energy sector is an inherently uncertain exercise. 2 

BC Hydro has been working to incorporate risk and uncertainty into its long-term 3 

resource planning and analysis. This Appendix focuses on the quantitative aspect of 4 

estimating uncertainty, exploring in more detail the tools and methods in which this 5 

IRP has attempted to address risk and uncertainty and bring difficult to quantify 6 

elements into a rigorous and consistent analytical structure.  7 

The following sections discuss five tools that were used in the risk and uncertainty 8 

analysis:  9 

 Eliciting subjective probability estimates 10 

 Creating probability distributions by combining estimates 11 

 Accounting for portfolio effects when aggregating estimates 12 

 Deriving discrete scenarios from continuous ones 13 

 Combining scenarios into probability trees 14 

Each section will offer detailed explanation of the approach being discussed and will 15 

reference where this has been used in the IRP. References to academic literature, 16 

limitations of these approaches, and best practices in this area will be made in each 17 

section where pertinent. This Appendix concludes with a brief discussion of tools 18 

used to communicate the risk and uncertainty analysis within the IRP and also some 19 

overall conclusions. 20 

Despite making some advances in the application of techniques, their inherent 21 

limitations mean that professional judgment will always be applied when considering 22 

quantified results within this IRP. The conclusion to Appendix 4B discusses some of 23 

these limitations to quantifying the uncertainty of DSM estimates. 24 
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2 Eliciting Subjective Probability Estimates 1 

In cases where it was difficult to quantify the uncertainty of certain long-term 2 

planning variables, subjective judgement was used to derive probability estimates. 3 

The use of subjective judgement to put probability estimates to discrete scenarios or 4 

to generate a probability distribution around a forecasted point estimate is a key 5 

element to the IRP’s planning and analysis framework. However, such judgements 6 

are not done without difficulty. Subjective probability judgements are hard to do and 7 

are subject to well documented perils:  8 

 experts are often ‘wrong’ in the sense that they cannot perfectly forecast future 9 

uncertainty 10 

 they tend to be biased 11 

 they tend to be overconfident in the estimates that they make 12 

Researchers in this field of decision science have developed protocols to address 13 

these issues and reduce these errors; assessments used in the IRP’s planning and 14 

analysis framework were carried out with guidance from these advances. However, 15 

in the end it needs to be recognized that subjective probability assessment is an 16 

inexact science and the outcomes should be taken as rough indicators of relative 17 

likelihood and not highly precise measures.  18 

In general, the approach for assigning probabilities to scenarios or to ranges of 19 

possible outcomes in this IRP followed the steps listed below. 20 

 Gather subject matter experts 21 

 Decompose problem into a manageable set of key drivers of uncertainty 22 

 Pull out the key events underlying these drivers of uncertainties 23 

 Use this information to rank the relative likelihood of these events (from most 24 

likely to least likely) 25 
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 With ranking as a starting point, get an ‘order of magnitude’ feel and qualitative 1 

likelihoods (e.g., “very probable”, “almost impossible”) 2 

 Use the structure of the problem (e.g., probabilities must sum to 100 per cent) 3 

to find probabilities that the experts feel match the descriptions above 4 

 Review results with experts to confirm results. Revise if needed 5 

The method laid out above is consistent with the “textbook” approach to expert 6 

elicitation (Clemen (1996)). In their seminal work on risk and uncertainty in decision 7 

analysis, Granger and Henrion (1992) emphasize that the process of probability 8 

elicitation from experts is challenging, but it is the “only game in town” when trying to 9 

incorporate uncertain estimates into a framework of analysis. By sending out some 10 

of the key judgement tasks in advance, collecting them, and then using that as a 11 

basis for discussion, this approach resembles the modified Delphi approach for 12 

reaching consensus among experts on parameter estimates (Burgman, 2005). 13 

Where was this used in the IRP? – Probability assessment with subject matter 14 

experts was used in several keys areas in the IRP, including: 15 

 DSM energy savings – from rates, codes and standards, and programs 16 

 DSM capacity factors 17 

 Market Scenarios 18 

 IPP attrition 19 

3 Creation of Probability Distributions by Combining 20 

Estimates  21 

As noted in the previous section, it is often useful to decompose an assessment task 22 

into several sub-tasks where the expert is more comfortable about estimating 23 

probabilities. Once this is done, then these assessments can be recombined into a 24 

probability assessment for the overall task at hand. If this is done over a large 25 
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number of sub-tasks, then this large number of random variables will roll up into a 1 

continuous, bell-shaped distribution. 2 

For this IRP, BC Hydro used an Excel-based software package from Palisade 3 

Corporation called “@Risk” to perform these functions. In general, adding together 4 

random variables to create an overall distribution of the resultant sum can be done 5 

through a Monte Carlo distribution. If each probability sub-task is a distribution of 6 

possible outcomes, then a Monte Carlo simulation would take a random draw from 7 

each sub-task, add them together to get a sum, and store this sum. When done a 8 

number of times, the stored results form a distribution of possible outcomes for the 9 

sum of the random subtasks. From this distribution, different statistics of interest can 10 

be calculated such as central tendency (mean, median, mode), dispersion (standard 11 

deviation) or downside risk (tenth percentile, fifth percentile, etc.). 12 

Where was this used in this IRP? Monte Carlo simulations were used to estimate 13 

the dispersion of outcomes around a sum of uncertain variables in a number of 14 

instances for this IRP, including:  15 

 DSM savings 16 

 Load forecast uncertainty 17 

 IPP attrition 18 

 Effective load carrying capability (ELCC) values for wind 19 

4 Portfolio Effects When Aggregating Estimates 20 

When examining the spread of uncertainty around a sum of uncertain variables, 21 

some care must be taken. The spread of the uncertainty around the mean can be 22 

affected significantly by the relationship among the uncertain variables being 23 

summed. 24 



 2013 integrated Resource Plan 
Appendix 4A - Methods for Quantifying Uncertainty 

 
 

 

 

Page 4A-5  
August 2013 

Formally, given two variables that are estimated with uncertainty (A, B), the variance 1 

of their sum can be found in the following way: 2 

Variance(A+B) = Variance(A) + Variance(B) + 2 * Covariance(A, B), 3 

where the last term refers to the relationship between these two variables. If these 4 

two variables are independent, then their covariance is zero and the spread of 5 

uncertainty of their sum is equal to the sum of each of their individual variances. 6 

However, if a relationship exists among these variables, then ignoring the 7 

relationship can lead to misleading results about the spread of uncertainty. 8 

As an example, if A tends to be high when B is high (i.e., they have a positive 9 

covariance), then seeing extreme results where both these variables are high will 10 

tend to be more likely than if they were independent. Ignoring this interrelationship 11 

will give a total distribution that is too narrow in range, and will under-represent more 12 

extreme outcomes. 13 

This result can be thought of as a “portfolio effect” – the spread of uncertainty 14 

around a sum of uncertain variables depends on the type of relationships among 15 

these variables. For example, if the total amount of energy savings is the sum of 16 

many individual projects, then the estimated spread of uncertainty of the estimated 17 

energy savings will be influenced by whether or not these projects’ outcomes are 18 

independent. If these projects truly are uncertain but independent, then seeing a 19 

total sum that is very low will be unlikely; while one or two projects may not work out, 20 

it will be highly unlikely that all the projects will perform worse than expected (and 21 

some may even perform better than expected). This “portfolio effect” means that the 22 

spread of uncertainty for an aggregated sum will be narrow when the individual 23 

components of that sum are not positively correlated. 24 

However, the portfolio effect may be an artefact. If there is a common driver that 25 

forces individual projects’ outcomes to move together, then the total spread of 26 
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uncertainty could be large since projects would tend to underperform or over perform 1 

together. Ignoring these interrelationships will lead to an underestimate of the total 2 

spread of uncertainty. 3 

While ignoring the interrelationships among uncertain variables can lead to 4 

misleading results, estimating these uncertain relationships is not easy, particularly 5 

when it is done through the elicitation of these probabilities from experts. Morgan 6 

and Henrion (1990) note that humans are notoriously poor at understanding the 7 

concept of correlations, spotting them in real life, and estimating them. While the use 8 

of structured conversations, visual aids, and knowledge of these weaknesses can 9 

help, subjective judgements are not precise. 10 

This estimation of uncertainty relied on experts’ judgements of correlations amongst 11 

variables. Visual examples of levels of correlated data, examples of correlations 12 

drawn from everyday life, and explicit discussion of these judgements were used to 13 

try to improve the quality of these assessments. 14 

Where was this used in the IRP? – Correlations amongst uncertain variables were 15 

used in estimating DSM savings and in estimating the range of uncertainty in the 16 

load forecast. 17 

5 Deriving Discrete Distributions from Continuous Ones 18 

The continuous distribution of outcomes around an expected value is an excellent 19 

visual guide to uncertainty in estimates. However, the portfolio modelling in the IRP 20 

required that parameters be assigned specific values so that they could be used as 21 

inputs into portfolio modelling.1 This required that the specific outcomes be selected 22 

                                            
1
  A key difference between BC Hydro’s IRP analysis and that of other utilities is the IRP’s use of a relatively 

small number of portfolios. A common approach used elsewhere is to run thousands of portfolios by 
repeatedly sampling from continuous distributions using a Monte Carlo process. BC Hydro uses HYSIM and 
its System Optimizer to capture the complex nature of resource optimization in a hydroelectric system. 
However, these models take a long time to calibrate and run, limiting the total number of simulations possible. 
BC Hydro’s analysis was limited to less than 200 portfolios in total – not nearly enough to generate an 
efficient frontier in risk/return space for each question examined. 
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out of the whole distribution of possible outcomes. In order to be useful in the 1 

quantitative part of the planning and analysis framework, these values also need a 2 

likelihood attached to them. This section explains how this was achieved. 3 

Figure 1 demonstrates this using an asymmetric distribution as an example. In this 4 

case, distribution is a continuous one with a mean of 20 and a standard deviation 5 

of 14, but is noticeably skewed to the left. A way to reduce this to specific outcomes 6 

and their associated probabilities is to divide the continuous distribution into three 7 

regions (hi, mid, and low), assign the probability of being in each of these regions, 8 

and then derive the value of being in each of these regions. 9 

In this example, the upper part of the three-part distribution was created by taking 10 

the upper 20 per cent of the distribution, which extends from roughly 30 (on the 11 

x axis) onwards. The value 30 is the 80th percentile cut-off as it has 80 per cent of 12 

the curve to the left of this point and 20 per cent of the curve to the right. The value 13 

assigned to this upper portion is the expected value of curve beyond the 14 

80th percentile cut-off. This works out to roughly 39.6. The key point here is that the 15 

80th percentile cut-off value of 30 is well below the value assigned to the upper tail. 16 

Following a similar process for the lower tail yields a 20th percentile cut-off value 17 

of 8.2, and the expected value of the lower tail being 5.4. Again, the cut-off value 18 

and the value assigned to the tail are not the same. Finally, given that each of the 19 

extreme options was designed to have a 20 per cent probability, the middle portion 20 

of this curve will have the remaining 60 per cent of the probability assigned to it. The 21 

expected value of being in this middle portion in this example is roughly 16. Note 22 

that this is different from the mean of the overall distribution, which is 20. In general, 23 

the value of the middle section and the mean will diverge when the distribution is 24 

asymmetric. 25 
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Figure 1 Examples of Tail and Cut-off Values 1 

 

It is important to note that in reducing a continuous distribution to a discrete, 2 

three-point distribution, some information is lost. In particular, the mean and the 3 

standard deviation of the two distributions will likely not be the same. The benefits, 4 

however, are that the use of a “hi/mid/low” display of uncertainty will allow the role of 5 

uncertainty and the probability of different outcomes to be made explicit in the 6 

portfolio modelling.  7 

Where was this used in the IRP? – Continuous distributions were reduced to 8 

discrete distributions for the DSM savings estimates and load growth forecasts. 9 

How these discrete distributions were then used is covered in the following section. 10 
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6 Combining Scenarios using Probability Trees 1 

In a number of instances in this IRP, scenarios were created by combining discrete 2 

probability distributions (e.g., High, Mid, Low). These discrete probability 3 

distributions might have been discrete forecasts, or they might have been derived by 4 

segmenting a continuous distribution (as discussed above in section 5). This section 5 

will explore how the forecast DSM savings and the load forecast were used to create 6 

net demand, a key step in deriving the High, Mid and Low Gap scenarios. 7 

A useful way to depict the scenarios derived from section 5 is in a probability tree. 8 

Figure 2 below shows how a simple probability tree can be constructed to show 9 

three discrete outcomes for load growth. By construction, the continuous distribution 10 

from the Monte Carlo analysis has been segmented into a discrete, three part 11 

distribution with the probabilities shown in Figure 2. 12 

Figure 2 Simple Probability Tree 13 

 

A probability tree is read from left to right. The (red) circle is a chance node where 14 

proceeding down one path (to the exclusion of the others) is treated as a chance 15 

event. The probabilities of going down one path or another are given in the figure. 16 

Here, the chance of seeing Low load growth is 20 per cent. 17 

The advantage to using probability trees is that they can be used to combine any 18 

number of scenarios together, as long as probabilities are assigned to the scenarios. 19 

And in combining scenarios, a probability tree allows the probability assessments to 20 

be aggregated in a logical and consistent way that is transparent to the reader. 21 
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There is no real alternative in analysis when dealing with multiple scenarios. Not 1 

using a probability tree would mean trying to incorporate multiple scenarios with no 2 

guidance or structure to combining the various combinations of possibilities. 3 

To build on the example, DSM success can then also be considered. This is shown 4 

in the following diagram where DSM forecasts have been segmented also into high, 5 

mid, and low outcomes. 6 

Figure 3 Combining Load Growth and DSM 7 

Uncertainty 8 

 

Again, Figure 3 is read from left to right. Tracing along the top path, there is a 9 

20 per cent chance of seeing Low growth, and 20 per cent chance of seeing High 10 

DSM savings, giving a joint probability of 4 per cent of seeing both Low growth and 11 

High DSM savings. 12 
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There are some caveats required in the use of probability trees. One difficulty is that 1 

the size of the trees grows exponentially as more layers of uncertainty are added. As 2 

a result, analysis with many elements of uncertainty may either be too large to be 3 

viewed at once, or they may be simplified to focus on the key issues of interest. For 4 

instance, the nine branches of the tree in the above figure could be simplified to 5 

Hi/Mid/Low cases of Net Demand by picking the upper-most, lower-most, and middle 6 

branches. This keeps the analysis simple, easy to explain, and captures both the 7 

range and the mid-point of the spread of outcomes. Scaling the relative likelihoods 8 

up to 100 per cent also allows these to be applied to the reduced tree. This was 9 

done to generate a three-point distribution for Net Demand. Refer to Figure 4 below 10 

for this method and the associated probabilities. 11 

Figure 4 Net Demand – Three Point and Five Point 12 

Distributions
2
 13 

 
                                            
2
  Load – DSM yields Net Demand. Load – DSM – Supply yields Net Gap. The term Net Gap is used here to 

draw this link explicitly to Chapter 4, although additional step of subtracting supply is not shown. 
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A final caveat regarding probability trees is in the logic of their structure. The 1 

example used here assumes that Load Growth and DSM Savings are independent. 2 

However, it may be the case that variables included in the probability tree are related 3 

in some way. If this is true and the model is not adjusted in some way, then the 4 

results will mis-state the range of uncertainty. This happens because the model 5 

mis-estimates the probability of seeing the extreme cases (e.g., High Growth, Low 6 

DSM savings). 7 

Testing for interdependence is a key step for model building of this type. If 8 

interdependence is suspected, then it is possible to adjust the model by estimating 9 

conditional probabilities. This might mean asking experts the probability of seeing 10 

high DSM savings, given that High Load growth has occurred. Such an exercise is 11 

perhaps even more difficult than a simple elicitation of probabilities, and an analyst 12 

must weigh off the relative merits of pursuing this approach against the implications 13 

of not capturing this interdependence in the models. Since every case is different, 14 

the best solution will differ from situation to situation. 15 

Where was this used in the IRP? – Probability trees were used to arrive at: Net 16 

Demand and Net Gap. 17 

7 Showing Variables Used for IRP Portfolio Modelling 18 

Probability trees and decision trees are an excellent modelling tool to track and show 19 

explicitly how different variables fit together. One of their downsides, however, is that 20 

they grow exponentially with each new layer of uncertainty incorporated. This makes 21 

them difficult to use as a communication tool. 22 

For this IRP, modelling diagrams as shown below in Figure 5 were used to highlight 23 

what key variables were used for each set of portfolio runs. Here, the different Gap 24 

sizes (taken from the Figure 4 above) are summarized in the top row. In this 25 

example, three Net Gap levels (an uncertainty) were being used in testing the DSM 26 
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options. As well, the choice variable regarding the level of thermal generation to use 1 

is set at “No Additional Thermal”. 2 

While this visual loses some information about how the combinations are made and 3 

their sequence, it is a compact way to portray which key variables are at play in each 4 

set of portfolio analyses. 5 

Figure 5 Diagram Showing Modelling Variables of 6 

Interest 7 

 

8 Conclusions 8 

Understanding uncertainty and bringing this topic explicitly into the analysis is a key 9 

part of long-term resource planning. A considerable amount of effort and discussion 10 

within the IRP has been devoted to this topic due to its importance and also due to 11 

Modelling Map

Uncertainties/Scenarios

Market Prices

Scenario 2

Low

Scenario 1

Mid

Scenario 3

High

Load Forecast Low Mid High

DSM deliverability Low Mid High

LNG Load Scenarios

Prior to 

Expected LNG 800 GWh 3000 GWh 6600 GWh

Resource choices

Usage of 7% non-clean Yes No

DSM  Options Option 1 Option 2/DSM Target Option 3

Site C (all units in) timing F2024 F2026 No Site C

Modelling Assumptions and Parameters

BCH/IPP Cost of Capital 5/7 5/6

Pumped Storage as Option Yes No

Site C Capital Cost Base Base plus 10%

Wind Integration Cost $5/MWh $10/MWh $15/MWh

shows the modeling assumptions
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the unique nature of tools used to address it. However, it is important to remember 1 

that a number of key uncertainties are not easily quantified and so qualitative 2 

information is also an important part of considering uncertainty and risk. Ultimately, 3 

BC Hydro will apply its professional judgement to balance the quantitative and 4 

qualitative information amongst the competing, multiple objectives in long-term 5 

integrated resource planning. 6 
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