Clean Power 2040

Powering the future

Integrated Resource Plan—Indigenous Input

Name of Indigenous Nation:

DISCLAIMER Personal information provided on this form is collected as part of BC Hydro's consultation for its Integrated Resource Plan and is authorized by section 26(c) of the Freedom of Information and Protection of Privacy Act. If you have any questions regarding the collection of this information, please contact the Integrated Resource Plan Indigenous Nations Consultation Project Manager at 1.877.461.0161 extension 3, or email BC Hydro Indigenous Relations at CP2O40.Indigenous@bchydro.com

Introduction

Clean Power 2040 is BC Hydro's province-wide, long-term resource planning process. BC Hydro's Integrated Resource Plan is a long-term (20 year) plan for the power system to ensure future customer electricity needs are met with clean, reliable and affordable power. The plan is expected to be submitted to the British Columbia Utilities Commission in late 2021.

We've been carefully studying B.C.'s electricity outlook for the next 20 years and coming up with various options to meet our customers' changing needs.

We want to hear what matters to you and hear your input on what we should be prioritizing as we develop our plan.

We expect to have enough power to meet our needs for at least the next 10 years, which means our immediate focus is on whether to continue with or make changes to our Power Smart programs and whether to renew electricity purchase agreements with Independent Power Producers as they expire, as well as what to do with some of our smaller hydroelectric facilities that are reaching end-of-life.

In the later 10 years of our plan, we may need additional electricity. Acquiring or building new resources, expanding our existing infrastructure, and introducing optional time-varying rates are some of options we're considering.

What's in this workbook

We want to hear from you and have developed this workbook for you to use, to help us find out what matters to you. The workbook is comprised of four sections:

- Planning objectives
- Planning for the next 10 years 2020 to 2030
- Planning for the next 20 years 2030 to 2040
- Thank you, and closing question

Each section contains questions for you to answer about our planning choices. We want to know what matters to you about these planning topics. We'll consider your answers alongside the results of our technical analysis and input from the public and stakeholders as we prepare a draft plan. A summary of what we heard will be released in the new year. In the spring of 2021, we'll come back to you seeking feedback on our draft plan.

Please provide your responses to the questions in this workbook by February 1, 2021 so they can inform the development of a draft plan. Your responses can be provided either by filling out the online survey sent via email link or by emailing a completed survey to **CP2040.Indigenous@bchydro.com.**

We welcome any further input or questions by writing to us at the same email address or calling us at **1 877 461 O161** (extension 3).

Please tell us what region are you from.

- Northwest
- Northeast
- Central Interior
- Southern Interior
- □ Lower Mainland / Fraser Valley
- □ Vancouver Island / Gulf Islands

Key concepts in planning: energy and capacity

As we think about the future of our system and continuing to meet the electricity needs of B.C., we must consider both the demand for energy and the capacity of our system.

To understand the concepts of energy and capacity and the role they play, it's helpful to think of our electricity system as a 10-lane freeway. The number of lanes on the freeway determine how much space is available for cars at any time. This is capacity. The number of cars on the highway over a period of time is energy. While not all lanes are needed all the time, they're needed during the morning and evening rush hours.

Like that 10-lane freeway, the capacity of our system is limited by the amount of electricity our system can generate and transmit at one time. While we don't need to operate at full capacity all the time, we must ensure we have enough capacity to meet our customers' needs when demand is highest – like during cold, dark evenings in the winter months.

Load forecasting and how we plan for uncertainties

Our Integrated Resource Plan will be developed around our 20-year load forecast, which will provide us with an idea of how much energy and capacity we expect to need to meet the needs of our customers.

Our load forecast is developed by estimating the amount of electricity our residential, commercial and industrial customers will use over the next 20 years. As it's difficult to predict future trends, this long-term forecasting is inherently uncertain, which is why we develop our forecast with various scenarios.

While the COVID-19 pandemic has reduced overall electricity demand in the province in the short term, electricity demand is expected to recover over time. Additional increases could come from B.C.'s efforts to reduce its greenhouse gas emissions by encouraging fuel switching through future electrification of the transportation, home heating, and the industries dependent on fossil fuels.

We'll be updating our long-term demand forecast in the new year, which will include a re-evaluation of the impacts of COVID-19 over the short and long term. Our draft actions for our Integrated Resource Plan we'll be developed based on this updated load forecast, which will then share with you for input this spring.

OPTIONS TO CONSIDER

While we expect to have enough supply in our system to meet demand for at least the next 10 years, we need to prepare now to ensure we can meet increased demand over the longer-term and in case that demand comes sooner than we expect. We're considering many options to ensure enough supply is in our system over the next 20 years to meet our capacity and energy needs:

Our energy efficiency programs:

Our Power smart programs can help our residential, business and industrial customers reduce their electricity use and save on their bills, while also being an effective way defer the need for new supply. We can continue with our programs as they currently are, reduce or discontinue our offers, or add new options and increase incentives to achieve more savings.

Introducing voluntary time-varying rates:

Many utilities outside B.C. use time-varying rates to help shift electricity use away from peak demand times by offering a lower rate for using power at off-peak times, and a higher rate for electricity used during peak times. This can be an effective way to reduce the need for costly new projects.

Implementing voluntary electricity demand response programs:

New technology can manage space and water heating and electric vehicle charging on your behalf, which can help shift your electricity use to off-peak times. An example of demand response could be shifting the heating of a hot water tank to earlier in the day or later in the evening. Demand response can be encouraged through a program designed to support customers' ability to reduce or shift the use of electricity and usually involves either an incentive or a specific rate.

Contracts with Independent Power Producers:

Around 25% of our generation is purchased from Independent **Power Producers** in the province, which provide us with additional clean, renewable energy. A number of these contracts are expiring in the next few years and we must decide if we should renew them. When making these decisions we must consider a number of factors, including cost, the location of the facility, and its ability to generate electricity during peak demand periods.

The future of our small hydro plants reaching end of life:

Five of our small hydro plants built 50 to 70 years ago are reaching end of life and we must decide what to do with each of them. This could include redeveloping, temporarily or permanently shutting down the facility, or selling the facility. When deciding what to do with each, we'll take into account a number of factors, including cost, safety, environmental impacts, and system reliability.

New power sources:

To meet customer needs beyond the next ten years, we'll need to add to our power supply and fill the expected capacity and energy gaps. To help with this, we're analyzing options, which could include:

- Looking at ways that new technology, such as utility-scale batteries and pumped storage could help to store electricity for when customers need it.
- Upgrading our existing system, including expanding some of our larger facilities, like adding an additional generating unit at the Revelstoke Generating Station, and upgrading our power lines to help meet demand from customers.

The plan will have a 20-year outlook and include potential projects and the timing of those projects, which will each have separate consultation and approval processes.

SECTION 1 – PLANNING OBJECTIVES

Building upon clean and reliable power

We're fortunate in B.C. to have a large hydroelectric system that provides clean power to homes and businesses in the province. Continuing to provide clean, reliable power is a key priority for us as we plan for the future. As we plan, we look at the lowest cost options to meet new demand and also consider other planning priorities to make choices on how to best meet future need.

Question:

As we plan our clean electricity future, which of our planning priorities are most important to you?

Rank the following by how important each priority is to you. Number 1 being the highest priority.

- ___ Keeping costs down for customers
- ____ Reducing greenhouse gas emissions through clean electricity
- Limiting land and water impacts
- ____ Supporting reconciliation with Indigenous Nations
- ____ Supporting the growth of B.C.'s economy

Tell us why you ranked them the way you did.

Is there another priority that is important to you that is not listed here?

SECTION 2 – PLANNING FOR THE NEXT 10 YEARS: 2020 TO 2030

We have enough resources to meet B.C.'s energy needs for many years. However, we have to prepare to meet future changes in the need for electricity.

Planning for the next 10 years: 2020 to 2030

We have enough resources to meet B.C.'s energy needs for the next 10 years. We'll be managing resources over the next 10 years and will be analyzing our choices for new power supply to fill the gap in the following 10 years.

Saving energy and money with energy conservation programs

For more than 30 years, our energy conservation programs have played a key role in helping British Columbians reduce their energy use through energy efficiency education, providing customers with tools and support to manage their energy use and providing incentives for purchasing energy–efficient products.

When you try to be energy-efficient at home by doing things like turning off lights, washing your clothes in cold water and installing energy-efficient products, you reduce your electricity use and keep your bills down.

In addition to helping you save, our energy conservation programs have also proven to be an effective way to reduce demand on our power system, helping to avoid or postpone the cost of new infrastructure and resources and their associated impacts on the environment.

These programs can help to reduce our overall costs; however, when we have enough power to meet our needs, higher cost initiatives may need to be scaled back for the programs to remain cost effective.

We expect to have enough power to meet demand for at least the next 10 years. We're exploring whether to maintain or reduce our program offers during this time and we want your input.

Question 1:

When thinking about the future of our energy conservation programs, choose up to three priorities that are important to you?

- Reducing some program offers until we need the electricity savings
- Continuing to provide education and incentives for customers to reduce their energy use, and costs
- Ensuring there's flexibility to ramp up programs as demand for power increases in the future
- □ Supporting industry by promoting conservation opportunities for some of the biggest energy users
- Providing targeted opportunities to customers who need it most
- Avoiding or deferring the need to build new infrastructure

Question 2:

How much do you support our energy conservation programs? (Please select)

- No support
- Little support
- Neutral
- Some support
- □ Strong support

Question 3:

Is there anything else you'd like to add about what's important to you?

Managing your costs, shifting power demand with time varying rates (e.g. time of use)

Time varying rates are an effective way to shift electricity use patterns by charging customers a lower rate for electricity used during 'off-peak' times of day and a higher rate for electricity used during 'peak' times of day. We don't currently have time varying rates in B.C. but they're common among other utilities in North America.

For example, in B.C. we often see the highest demand for power on weekday evenings as British Columbians are cooking dinner, watching T.V. and running their dishwasher. By charging a lower rate for electricity during other times of the day, we can encourage British Columbians to shift some of their energy–consuming activities, such as doing laundry or charging their electric vehicle away from peak demand periods.

By reducing the demand on our power system during peak periods, we can help to defer or avoid the need for new or upgraded infrastructure and resources, resulting in lower costs for customers.

Time varying rates can be optional (where you have to opt-in), default (where you have the option to opt-out) or mandatory. Mandatory rates are not common. At this time, we are exploring the future use of optional and default time varying rates and we want your input.

	Optional: anyone can sign up for the rate	Default: anyone can choose to opt out
Performance	Limited ability to shift electricity use away from peak demand times due to lower participation.	Much greater ability to shift electricity use away from peak demand times as it's assumed most customers will participate.
Infrastructure	May delay new costly infrastructure.	Greater ability to delay new costly infrastructure.

Question 1:

When thinking about the time varying rates, choose up to three priorities that are important to you:

- □ Have the choice to opt-in (or to opt-out)
- □ Keep costs as low as possible
- □ Accumulate peak demand reductions quickly
- Avoiding or deferring the need to build new infrastructure
- Offer rates that suit my lifestyle needs

Question 2:

How much do you support time varying rates? (Please select)

- No support
- Little support
- Neutral
- Some support
- □ Strong support

Question 3:

Is there anything else you'd like to add about what's important to you as we build our plan?

Using smart home technology to reduce electricity demand

Many utilities in North America work with customers directly to help them reduce their electricity use at peak times (when power use is the highest) by using devices to control when electricity is used. This is known as demand response and is enabled through home automation, commonly known as 'smart home' technology. You may be familiar with smart home tools, such as connected programmable thermostats, control switches or automated timers that can be managed through a device (e.g. a smartphone).

Introducing this type of home automation would also allow us to provide you with more personalized advice, incentives and tips to help you reduce your electricity use, while also optimizing our electricity grid.

By reducing electricity use and optimizing our electricity grid, we can help to avoid the need for new or upgraded infrastructure and resources, resulting in lower costs for customers.

As a customer, demand response programs may be operated in different ways to help you save. Devices can be managed by you or managed by BC Hydro to optimize your electricity use and bill savings.

Question 1:

When thinking about introducing demand response in B.C., rank the following by how important each aspect is to you:

- ____ Adding new smart technology into my home
- ____ Saving money on my electricity bills
- ___ Convenience of managing my electricity use through a device (e.g. a smartphone)
- ____ Reducing BC Hydro's costs by avoiding or deferring the need to build new infrastructure

Question 2:

How much do you support introducing demand response technology to help you manage your electricity use? (Please select)

- No support
- Little support
- Neutral
- Some support
- Strong support

Question 3:

Is there anything else you'd like to add about what's important to you as we build our plan?

Expiring Electricity Purchase Agreements with Independent Power Producers

We have agreements with around 13O Independent Power Producers (IPPs), many of which also generate clean power to help meet our customers' needs. These producers generate about 25% of our electricity today. About 4O of these electricity purchase agreements expire over the next 1O years and another 3O expire in the following 1O years. These facilities vary by the type of generating resource (e.g., wind, run of river hydro, biomass, solar), the energy and capacity they provide, and their location within the province.

BC Hydro electricity supply

Question 1:

When thinking about whether BC Hydro should renew electricity purchase agreements, rank the following by how important each aspect is to you:

- Keep costs as low as possible
- ____ Maintain those contracts that supports reconciliation and support economic opportunities with Indigenous Nations
- Maintain those contracts to have flexibility to respond to future needs
- ___ Continues to foster a private energy sector in the province

Question 2:

Is there anything else you'd like to add about what's important to you?

Small BC Hydro plants reaching end of life

We have several smaller hydroelectric facilities in the province. This includes some that are more than 70-years old that are still generating power today. As you can imagine, many of these are at or approaching their end of life. Examples of these plants include Shuswap and Spillimacheen along the Columbia, Walter Hardman near Revelstoke, and Elko near Fernie.

Together, these facilities generate less than 1% of our average energy on a yearly basis and are much smaller, in aggregate, compared to our expiring electricity purchase agreements. As you can imagine, just like an old car, maintaining these plants requires ongoing investment, and redeveloping or upgrading these plants could be more costly than developing new alternative sources. Decommissioning these facilities could avoid these costs and restore environmental habitat. However, this would also mean these facilities aren't available to generate electricity in the future.

As part of our plan, we need to consider what to do with these smaller plants.

Question 1:

When thinking about these small hydro plants that are at, or reaching end of life, rank the following by how important each aspect is to you:

- Continue pursuing opportunities that support reconciliation with Indigenous Nations
- ____ Decommission facilities and restore the environmental habitat
- ____ Maintain the option to use power from these facilities even if it is more costly than new supply
- ___ Keep costs as low as possible

Question 2:

Is there anything else you'd like to add about what's important to you?

SECTION 3 – PLANNING FOR THE NEXT 20 YEARS: 2030 TO 2040

As shown in Section 2: Planning for the next 10 years: 2020 to 2030, we have enough resources to meet B.C.'s energy needs for the next 10 years. We will be analyzing our choices to prepare for new power supply to fill the gap in the following 10 years, from 2030 to 2040.

Continuing to power the future with clean electricity

When we think about the future of the province's power system, there are many things to consider.

Ten to twenty years from now, we may see a gap between how much electricity we can generate with our existing clean electricity resources and how much electricity we're going to need to meet the needs of our customers. To ensure we can continue to provide clean, reliable power to our customers, we are planning for this possibility now.

We're fortunate in B.C. to have a large hydroelectric system that is powered by water that we can ramp up or ramp down almost instantaneously in response to changes in the demand for power from our customers. Our large reservoirs also allow us to store water for when demand is the highest, like in the colder, darker winter months.

Looking ahead, we want to ensure we continue to rely on clean, renewable resources and look at other options beyond hydroelectricity, such as wind or solar. However, the challenge with this type of generation is that it's intermittent, meaning it only generates when the sun is shining, or the wind is blowing.

Below are three different options for meeting new demand. While the long-term plan may be some combination of these, we've grouped similar options together to find out what's most important to you.

Giving more power to you through greater conservation and customer involvement

What this could look like.

Customers will have more options to reduce their electricity use, which would help limit the need for new energy and capacity supply. This could include options like further expanding time varying rates, smart home technology, and energy efficiency programs.

This would also include opportunities for customers to provide additional supply to our system through generating their own electricity, such as with rooftop solar panels.

		Things to consider
\$	Cost	Investment would be required to expand our energy efficiency programs, however this would likely be less than building new infrastructure. Expanding these programs could help avoid or delay the need to build new electricity infrastructure.
B	Environmental	Avoids or delays any environmental impacts.
	Socio-economic	New job opportunities could be created throughout the province through energy efficiency and home automation programs.

Question 1:

How much do you support introducing more conservation initiatives and opportunities for customer involvement? (Please select)

- No support
- □ Little support
- Neutral
- Some support
- □ Strong support

Question 2:

Tell us why you chose this level of support.

Introducing new local power sources

What this could look like.

As technology advances, it opens the doors for us to explore new ways to meet the need for new capacity supply. Two of these areas are utility-scale battery storage and pumped hydro storage. Both of these provide new options to store electricity for when customers need it, and they can be located closer to our major customer load centres.

Utility-scale batteries operate just like the battery you use in your car but at a much larger scale. These batteries connect directly to our system and are used to meet short-term power demand. When demand from customers is low, like overnight, they're able to charge up and store power to be used when customer demand is high.

Pumped hydro storage is another option to store power at the utility level. When customer demand is low, it pumps water from one reservoir into another reservoir that is at a higher elevation. When demand from

		Things to consider		
		Battery storage with renewables	Pumped storage with renewables	
	Cost	 Currently very expensive, however, may be on par with pumped storage by 2030 Shorter lead time to deploy, and may provide added local reliability benefits Local renewables may be more expensive but may avoid power line upgrade costs to bring electricity from other parts of the province 	 Currently more cost effective than batteries Longer lead times to build Local renewables may be more expensive but may avoid power line upgrade costs to bring electricity from other parts of the province 	
7	Environment	 Battery storage has a small environmental footprint, however, there are concerns over battery creation and disposal Renewables will have some environmental impacts 	 Environmental footprint and impacts to aquatic habitat as water is pumped up to a higher elevation and stored in a reservoir Renewables will have some environmental impacts 	
	Socio–economic	 The construction of a battery storage facility would create construction jobs Renewable energy projects would create construction jobs and could provide opportunities that support reconciliation with Indigenous Nations 	 The construction of a pumped storage facility would create construction jobs Renewable energy projects would create construction jobs and could provide opportunities that support reconciliation with Indigenous Nations 	

customers increases, this water can then be released from that reservoir and travel through a turbine to the lower reservoir to generate power.

Along with these capacity resources, we could acquire local renewable power, like wind and solar, close to customer load, to meet the need for new energy supply.

Question 1:

How much do you support: (Please select)

Batteries

- No support
- Little support
- Neutral
- Some support
- Strong support

Pumped storage

- No support
- Little support
- Neutral
- Some support
- □ Strong support

Question 2:

Tell us why you chose these levels of support.

Upgrading our system

What this could look like.

The main option we're exploring to upgrade our system and increase the capacity we have to meet our customers' needs is adding a sixth generating unit to the Revelstoke Generating Station.

This would add an additional 500 megawatts of capacity to our system and provide a significant amount of electricity when our customers need it most – during dark, cold winter days when demand for power is the highest.

Along with this new capacity, renewable energy sources could be acquired from around the province, with upgrades to the transmission system to bring that energy from where its generated to where its needed.

		• Adding a sixth generating unit to the Revelstoke Generating Station is likely the lowest cost option for new capacity.
3	Cost	 If power line upgrades are required, this would increase the cost, but this option could remain cost effective. Any upgrades may take a number of years for permitting and consultation.
•		• Acquiring new renewable energy supply from around the province is likely more cost effective than only acquiring supply that is close to load; however, power line upgrades to get this energy where it needs to be could make this option more expensive.
B	Environment	 The Revelstoke Generating Station is already designed to accommodate six units. Renewable energy resources and the associated transmission upgrades required to get the power from where its generated to where it's needed would have some environmental impacts.
Ð	Socio–economic	 Provides economic development opportunities through the construction phase of the upgrades. Renewable energy projects would create construction jobs and could provide opportunities that support reconciliation with Indigenous Nations.

Things to consider

In addition to this new energy and capacity supply, we'd upgrade our transmission system so that power can get from where its generated to our major load centres in the Lower Mainland and Vancouver Island.

Question 1:

How much do you support upgrading the existing BC Hydro system? (Please select)

- No support
- □ Little support
- Neutral
- Some support
- □ Strong support

Question 2:

Tell us why you chose this level of support.

Planning for uncertainties: What if demand is lower or higher?

In the future, demand could be lower than expected. For example, if the economy takes a long time to recover from the COVID-19 pandemic, we would need to manage costs and the need for new supply would be pushed out further into the future. In this future, we may consider:

- Reducing energy efficiency programs
- Not moving forward with home automation or time varying rates
- O Not renewing electricity purchase agreements with Independent Power Producers that are expiring

Question 1:

If demand is lower and BC Hydro has less revenue, choose up to three priorities that are important to you:

- ___ Continue to invest in technology for the future like home automation
- ___ Continue to provide customers with choices like time varying rates
- ___ Reduce costs as much as possible
- Continue pursuing opportunities that support reconciliation with Indigenous Nations
- ___ Continue to foster a private energy sector in the province
- ___ Maintain a base level of energy efficiency programs

Question 2:

Is there anything you'd like to add about what's important to you as we prepare for lower demand?

In the future, demand could also be higher than expected.

We've included known measures to reduce greenhouse gas emissions by replacing fossil fuels with clean electricity in our reference electricity demand forecast. If additional actions are taken to fight climate change, there could be even more need for electricity. This may mean acquiring additional electricity.

If industry in the north of the province makes the switch from fossil fuels to clean electricity, additional upgrades or new power lines to deliver clean electricity could be needed in the first 10 years of our plan.

If we make early investments now to be ready to supply industry, we could secure additional revenues to help take pressure off electricity rates in the future and could avoid greenhouse gas emissions. However, if we spend money and the electricity service is never requested, existing customers will have to cover the additional costs.

Question 1:

Choose the priority that is important to you:

- Make early investments (design, planning, consultation, permitting, land acquisition) before electricity service is requested in order to be ready,
- ____ Focus on keeping costs low now by waiting even if it means not being fully ready to electrify rapid industrial development

Question 2:

Is there anything you'd like to add about what's important to you as we prepare for higher demand?

SECTION 4 – THANK YOU AND CLOSING QUESTION

Thank you for your interest in BC Hydro's Integrated Resource Plan (IRP) and for taking the time to answer the questions in this Consultation Workbook. The input of Indigenous Nations is important to us. We want to hear what matters to you with respect to the IRP.

Question:

Is there anything else you'd like to share that you think is important for us to consider as we build our plan?

Your input and ideas will help shape our plan. We look forward to sharing a draft of the plan with you in Spring 2021 for your feedback.

Clean Power 2040

Powering the future

Additional information package

The following information sheets provide additional context about our future demand supply outlook and options to meet future power system needs.

- 1. Charting an uncertain electricity future: our electricity supply and demand outlook
- 2. Tools we can use to meet our electricity needs: improving energy efficiency and reducing peak demand
- 3. Looking at potential resource options: expiring Electricity Purchase Agreements with Independent Power Producers
- 4. Small BC Hydro hydroelectric plants at, or reaching, end of life
- 5. Generation resource options: new electricity supply choices

Charting an uncertain electricity future Our electricity supply and demand outlook

Clean Power 2040 is about making choices on how to best meet our customers' future need for electricity. Through this process, we'll look at the scenarios for how much electricity we might need in the future, and then make choices to prepare future electricity supply options that we should advance to meet any gaps.

This is called our supply-demand outlook or our load resource balance (LRB), and it is the foundation for our planning. It estimates how much new supply may be needed and when. It provides an overview of our LRB, options we have to address gaps, if any, and how we are addressing uncertainties inherent in trying to project into the future.

The difference between energy and capacity

We have two aspects of electricity supply to consider – **energy** and **capacity**. You learned about the difference between energy and capacity in the Consultation Workbook. To understand the concepts of energy and capacity and the role they play in BC Hydro's future planning, it's helpful to think of B.C.'s electricity system as a 10-lane freeway. The number of lanes on the freeway determines how much space is available for cars at any time - this is capacity. The number of cars on the highway at a specific time is demand. While not all lanes are needed all the time, they are needed during the morning and evening rush hour. Like that 10-lane freeway, the capacity of B.C.'s electricity system is limited by the amount of power BC Hydro's facilities can generate at one time. Even as it meets predicted day-to-day electricity demand, we also need to ensure our system has enough capacity to meet the province's demand for power during peak periods. BC Hydro's infrastructure - generating stations, substations and power lines - must be able to support that additional demand. As demand for energy grows, the systems' capacity must grow with it.

Another important consideration when thinking about capacity is the ability to deliver electricity in a given moment from where it is generated to where it is needed. This is the purpose of our transmission and distribution systems. While both systems are important, the long distance nature of the transmission system – our fast highway for electricity - can be a limiting factor on a peak day. That's why meeting capacity needs are considered from both province-wide and regional perspectives - so we can make sure each region has enough local generation or transmission system capacity to meet electricity demand at peak times.

We have more than one forecast

To start the process, we look at how much electricity customers will need on an expected date. This is our **reference** outlook. Several factors are important when forecasting future demand for electricity, from population and economic growth, through the evolution of technologies and on to government policy. The reference case includes announced policies to reduce GHG emissions in response to climate change. For example, the reference case includes the provincial government's zero emission vehicle regulation which requires 25 per cent of all new vehicle sales to be electric by 2025.

Clean Power 2040 information sheet Learn more about <u>Clean Power 2040</u>. Join us as we plan for the future. Above and below the reference case for electricity demand, we have a high and low case to show uncertainties. For example, we know that the demand for power can change if population and economic growth is higher or lower than expected. We also know that new technologies like electric vehicles and new policies aimed at reducing British Columbians' greenhouse gas emissions can have an impact. We update our forecast regularly with a new one planned for the end of 2020. This is why is it unusually high, especially in the first few years, when compared to the reference and the low case, which were updated in the early weeks of the pandemic to adjust for the potential impact from COVID-19.

When will we need new supply?

Energy

Placing our reference case up against our current supply resources and projects we have committed to, we see a need for new energy supply starting around 2030. The energy from existing and committed resources decreases over the years. This is due to some of our existing Electricity Purchase Agreements expiring, where no decision has yet been made about renewing them. If demand is lower than expected, we may not need new energy supply until later, or, if at all, in a less optimistic scenario. However, if demand is higher than expected, we could need new energy supply earlier than shown.

Capacity

Performing a similar comparison between supply and demand for capacity under the reference case, we foresee a need for additional capacity starting in about 2032. Like energy resources, the capacity from existing and committed resources decreases over the years, in part, due to the expiration of some of our existing Electricity Purchase Agreements. In addition, there is a decrease from about 2028 to 2032, reflecting our undertaking upgrades to some of our existing hydroelectric facilities.

Clean Power 2040 information sheet

Learn more about Clean Power 2040. Join us as we plan for the future.

A look at the scenarios we're testing

The graph below shows the broad range of scenarios we are considering. This range of scenarios allows us to test different options against a range of outcomes. It also provides the opportunity to consider whether to advance options that provide benefits across a greater range of potential future states.

The graph below includes our reference outlook, as well as our bookend low and high forecast bands (denoted as the highest line and the lowest line). Above the reference case we also have three 'electrification' scenarios.

Electrification and BC Hydro's role

BC Hydro has a broad and important role to play in the electrification of British Columbia's economy and the reduction of greenhouse gas (GHG) emissions.

The term 'electrification' is used to refer to switching from using fossil fuels to using clean and renewable energy to power activities. This reduces GHG emissions that are associated with fossil fuel burning and the negative impacts of climate change.

CleanBC is the Government of British Columbia's plan to meet the challenge of climate change. It sets out a strategy to reduce GHG emissions by shifting away from fossil fuels and towards clean and renewable energy – like clean electricity from BC Hydro. The focus of CleanPower 2040 is to ensure clean electricity is available along with the infrastructure to get that electricity to customers when and where they need it.

The electrification scenarios are a way to explore what our electricity demand could look like. While these scenarios set out potential levels of electrification, they do not specify the particular roles of BC Hydro, the Government of B.C. or any other parties in achieving those levels:

- General electrification scenario: which sees stronger policies increasing electricity demand in the transportation sector, building electrification and the oil and gas industry in the northeast. The increase in demand under this scenario is primarily in the second half of the planning horizon.
- A Liquified Natural Gas (LNG) and mining scenario: which sees increased electricity demand as LNG facilities and mining operations request electricity service in the Northwest. This scenario would result in new power needs in the first half of the planning horizon, and
- A combination of general electrification and LNG and mining scenarios.

Where and when could demand from electrification occur

The map highlights the three areas where we may see additional demand if electrification increases and the potential drivers of increased load.

We have regional capacity supply needs to think about

We are focused on the potential capacity needs of four regions or sub-regions where we may see transmission constraints develop over our planning horizon:

- Lower Mainland Vancouver Island region
- Vancouver Island sub-region
- North Coast region
- Northeast region

Vancouver Island is examined on its own and as part of the Lower Mainland because it is subject to two constraints: transmission capacity into the Lower Mainland from the rest of the province, and then the capacity on transmission paths inbetween the Lower Mainland and Vancouver Island itself.

The line in each graph shows the expected outlook while the shaded area shows the uncertainty range.

For the Lower Mainland and Vancouver Island, we are showing capacity needs under our reference case, and these regions also show increased demand under our electrification scenarios. The North Coast and Northeast regions see transmission constraints under our electrification scenarios.

Lower Mainland / Vancouver Island and Vancouver Island

Under our expected forecast with only existing resources and committed resources, we currently see a need for new capacity supply in the Lower Mainland – Vancouver Island region starting in about 2025. There is upside risk for the load in this region that is primarily driven by potential passenger electric vehicle uptake.

In the Lower Mainland and Vancouver Island, under our electrification scenarios we could see additional demand from the electrification of space and water heating in buildings and from heavy duty electric vehicles. The amount of demand in these areas depends primarily on government policy.

For the Vancouver Island sub-region, under the current expected outlook, the need for additional capacity supply is expected to start around 2029. Like the Lower Mainland, under our electrification scenarios we could see additional demand from the electrification of space and water heating in buildings and or from heavy duty electric vehicles.

Under our expected forecast with only existing resources and committed resources, we currently see a need for new capacity supply in the Lower Mainland – Vancouver Island region starting in about 2025. There is upside risk for the load in this region that is primarily driven by potential passenger electric vehicle uptake.

In the Lower Mainland and Vancouver Island, under our electrification scenarios we could see additional demand from the electrification of space and water heating in buildings and from heavy duty electric vehicles. The amount of demand in these areas depends primarily on government policy.

For the Vancouver Island sub-region, under the current expected outlook, the need for additional capacity supply is expected to start around 2029. Like the Lower Mainland, under our electrification scenarios we could see additional demand from the electrification of space and water heating in buildings and from heavy duty electric vehicles.

North Coast and Northeast regions

2000

1800 1600 1400 1200 itv (MW) 1000 800 600 400 200 F2021 F2022 F2023 F2024 F2025 F2026 F2027 F2028 F2029 F2030 F2031 F2032 F2033 F2034 F2035 F2036 F2037 F2038 F2039 F2040 Existing & Committed Resources - NC LNG & Mining Uncertainty Band on Capability Reference Case

For the North Coast and Northeast regions, we expect there will be enough capacity supply under the reference case. However, if demand is higher as with our electrification scenarios, we could see a need for additional capacity supply.

The North Coast region is served by one long single transmission line and there are limited local generation sources. Potential new LNG facilities could significantly increase the demand for electricity in this region, if they proceed and if they decide to use clean electricity to power all or part of their operations. If this happens, new transmission infrastructure (upgrades to the existing line or a new power line), could be required and new generation sources would need to be developed.

In the Northeast region – specifically, the Dawson-Groundbirch and North Montney areas – demand for electricity is growing faster than in any other part of British Columbia. This is largely due to natural gas exploration and development in the Montney area. BC Hydro has already added the Dawson Creek / Chetwynd Area Transmission Project, which doubled electricity capacity to the area and allowed natural gas activities to be powered by clean electricity, avoiding significant GHG emissions. We're currently advancing the Peace Region Electricity Supply Project to further increase capacity, which is the step change you are seeing in the first year of the Dawson-Groundbirch chart.

Meeting British Columbia's GHG emission reduction targets could require even more capacity in the Northeast area so that if additional natural gas activities are undertaken, they could be powered by clean electricity.

Other regions: In the Southeast region, a key question is whether and when to proceed with the installation of a new 6thturbine at Revelstoke Generation facility (Revelstoke 6). Unlike other regions being addressed in this IRP, there is no foreseeable capacity constraints limiting the supply of electricity to customers in the Southeast as the region produces more than enough electricity for its own needs. However, capacity constraints may need to be addressed in the future if new generation from the Southeast or North is used to supply the Lower Mainland where the electricity is expected to be needed (for example, upgrades to or a potential new transmission line from the interior to the Lower Mainland).

Clean Power 2040 information sheet

Learn more about Clean Power 2040. Join us as we plan for the future.

Tools we can use to meet our electricity needs Improving energy efficiency and reducing peak demand

Clean Power 2040 is looking to how you and the rest of British Columbia will use electricity 10 or 20 years from now. We are asking what will be needed and how will it be supplied. One way to meet the need for new electricity is to avoid consuming it in the first place or to shift our consumption so that we consume less during peak times. This is called Demand-Side Management (DSM). Energy efficiency programs, demand response programs and time-varying rates are all examples of DSM and can help to postpone the need for new resources.

Energy efficiency programs

What is energy efficiency?

In general terms, **energy efficiency** is when the energy consumption of equipment is improved by replacing it with something more efficient (For example, replacing an old light bulb with an LED) or using the equipment more efficiently (For example, turning off the lights when not in use). Energy efficiency provides both energy and capacity savings (For example, when you install an LED light, you lower the wattage and get both energy and capacity savings).

Energy efficiency program options

We are considering two different energy efficiency program options to help reduce energy consumption, with add-ons to create additional savings, if needed.

The first program option includes current BC Hydro initiatives and financial incentives for residential, commercial and industrial customers to help enable energy efficiency projects, operational or behaviour savings, or improve energy management.

The second program option includes increasing our incentive levels as well as marketing and awareness efforts to achieve higher levels of savings at a higher cost.

The following add-on could be applied to either of the two program options described above, but would require additional funding: **a construction program** that would provide incentives for new construction projects to build buildings to a higher level of energy efficiency in the residential and commercial sectors, than the building code requires.

Demand response program options

We are considering three voluntary demand response program options.

- **Direct load control (for example, home automation)** is when BC Hydro provides the customer with an incentive, and sometimes the technology, that then allows BC Hydro to control some of their electricity-consuming equipment such as space heating, water heating, or electric vehicle charging. Customers would have the ability to opt out of the event if desired. When the BC Hydro system needs the capacity during a peak event, we turn off or turn down any participating equipment. Oftentimes, the customer would not notice their equipment is being controlled (for example, their hot water tank was filled with enough hot water to last through the peak event).
- Load curtailment is when large commercial or industrial customers sign a contract with BC Hydro to reduce their electricity consumption when requested by BC Hydro in exchange for an incentive. BC Hydro would give advanced notice of such a request during a peak event. The customer could perform this reduction in any way they chose, such as reducing lighting or HVAC usage for commercial customers, or shifting process loads for industrial customers.
- **Peak saver** is an option, like load curtailment, but for residential customers. After signing up, participants would be notified the day before a peak event and would be compensated financially if they reduced their consumption during the event. They could reduce their demand by shifting their electricity use in any way, such as using their appliances later in the evening.

While each of these options have costs associated with them, they have the potential to defer or eliminate the need for what may be costlier upgrades to the BC Hydro system.

Time Varying Rates

What is a time-varying rate?

Time-varying rates send price signals to encourage customers to shift electricity use from times of high use to time of lower use period. Like demand response programs, time-varying rates could curtail electricity use at peak times and help utilities to avoid building new infrastructure across the system. An example of a time varying rate is a time-of-use (TOU) rate.

Time-varying rate options

We are considering three voluntary time-varying rates options to shift demand at peak times to non-peak time. All timevarying rate options would require the advance approval of the BC Utilities Commission in follow-on processes to the IRP.

- **Time of use (TOU) rate** is a rate that BC Hydro customers would pay according to the time of day electricity is used. TOU rates fluctuate to reflect the fact that the cost to provide electricity changes throughout the day according to BC Hydro's supply and demand. For example, TOU can put a higher price on electricity during peak times that are more expensive for BC Hydro to serve, such as 4 to 9 p.m. evening, and a lower price at other times, such as overnight.
- Critical peak pricing (CPP) would offer a discount on winter electricity rates in exchange for higher prices during CPP event days called by BC Hydro, occurring between 4 and 8p.m on the critical system peak in coldest winter days. The CPP option we are considering would allow up to 5 CPP events per year.
- **Time of use plus critical peak price** would amplify the price signals by combining both TOU and CPP rates. It will encourage BC Hydro customers to shift their usage from peak hour to non-peak hour not only on daily base but also on five critical system peak days during Winter season.

Looking at potential resource options Expiring Electricity Purchase Agreements (EPAs) with Independent Power Producers (IPPs)

Clean Power 2040 is about making choices on how to best meet the future need for electricity. Through this process, we'll determine the future supply options that we should advance to meet any gaps between future demand and existing supply. One option is to renew Electricity Purchase Agreements with Independent Power Producers (IPPs).

Who are Independent Power Producers

We've been acquiring power from IPPs since the mid 1980s to help meet B.C.'s electricity needs. These IPPs develop and operate generation facilities, many of them clean and renewable, to provide energy to BC Hydro under Electricity Purchase Agreements or EPAs. Typically, the term of an EPA ranges between 20-40 years. Many of these existing EPAs will be expiring over the IRP's 20-year time horizon. At expiry, BC Hydro has no further obligation to purchase electricity from the IPP, nor does the IPP have any further obligation to sell electricity to BC Hydro. Each expiring EPA provides an opportunity for BC Hydro to renew the contract at lower prices and/or more beneficial terms to BC Hydro and our customers.

Current prices for the energy from existing electricity purchase agreements are significantly higher than the cost of generation from BC Hydro's heritage assets – like the W.A.C. Bennett Dam – as well as projected domestic and export market price forecasts. In addition, run-of-river projects are the most common in B.C. – with over 70 projects selling power to BC Hydro. Most of these can only be relied on during the spring freshet. The freshet is the snowmelt period from May to July. BC Hydro has historically had an oversupply of power during these months, which has resulted in the excess energy being sold on the market at very low prices.

BC Hydro's forecast increases to its cost of energy are primarily driven by increasing IPP energy costs under existing agreements, the terms of which are fixed. BC Hydro has been pursuing the renewal of expiring electricity purchase agreements where it has been cost-effective to do so. BC Hydro is committed to ensure that energy prices for IPPs are cost-effective and in the best interest of our customers.

BC Hydro does not have any active programs for the procurement of new energy resources from IPPs. Other than EPA renewals, the only expected new agreements are for a small number of new First Nations energy projects.

EPAs expiring over the next 20 years

Approximately 40 EPAs will expire in the next ten years, and another 30 EPAs expire in the following ten years. Associated with these expiring EPAs, there is roughly 10,000 GWh/yr of annual energy and 1,400 MW of peak capacity.

BC Hydro electricity supply

Considerations for renewing EPAs

Many factors come in to play when considering whether to renew an individual EPA. These include :

Cost Effectiveness	IPPs with expiring contracts are expected to be able to renew EPAs at prices less than what was paid under the original agreements recognizing that they have typically recovered their initial capital investment over the original contract term.	
BC Hydro's need for additional energy and capacity	BC Hydro's need for additional energy and capacity is determined by its Load Resource Balance. Further, an IPP facility's energy profile can be relevant – for example, some facilities may be able to provide more energy during the winter peak period when our need is greater, as compared to the freshet season when our need is less.	
Dependable Capacity	EPAs with certain resource types (for example, storage hydro, biomass, natural gas) can also be a source of dependable capacity to help ensure the reliability of the BC Hydro system, especially during winter peak periods.	
Clean or renewable resources	The majority of expiring EPAs are from clean or renewable resources, generating electricity within B.C.	
Location	 IPP facilities are located all around the province. Some IPP facilities provide valuable local grid services to support the reliability of the BC Hydro system. IPP facilities located in the Lower Mainland and Vancouver Island can increase the resilience of the region by lowering the dependence on electricity delivered through the Transmission system. 	
Term of Renewed EPA	BC Hydro and IPPs consider both short and long term agreements in the context of system need, remaining asset life, and the cost and availability of alternative resources or opportunities.	
Environmental Impacts	EPA renewals will likely not result in new or incremental environmental impacts as the site for the generation facilities has already been constructed and developed. However, some IPPs may have ongoing environmental impacts that would need to be taken into consideration in the renewal of an EPA.	
Indigenous interests	Some IPPs may be an important economic opportunity for Indigenous Nations.	

This infosheet is sharing potential options for future supply.

Clean Power 2040 information sheet

Learn more about <u>Clean Power 2040</u>. Join us as we plan for the future.

Clean Power 2040 Powering the future

Small BC Hydro hydroelectric plants at, or reaching, end of life

BC Hydro has 30 heritage hydroelectric facilities. These facilities are comprised of civil assets (i.e. dams and associated structures) and long-life generation components. The life span of these civil assets can be upwards of 100 years. They also range in size where the largest seven facilities produce 90 per cent of BC Hydro's average annual energy while our seven smallest plants produce less than one per cent of our average annual energy.

We manage and maximize the lifecycle value of BC Hydro's assets through a mix of maintenance and capital investment. However, as several small facilities are now approaching end of life or are no longer operating, plans for these facilities are being developed on a case-by-case basis. These plans take into consideration factors including safety, environmental, and financial risks, in addition to the interests of Indigenous Nations and community stakeholders. In some cases, major re-investment may not provide cost-effective energy and alternative end of life options, such as decommissioning, are warranted for consideration. In other cases (for example, Alouette and Falls River), where considerable value may be derived due to their location close to where electricity is needed, refurbishment or redevelopment may be appropriate options.

As a strategy for the integrated power system, the IRP will not be making decisions on any of these plants specifically, but will examine the principles we should consider when decisions are needed. Decisions for each plant will be subject to its own decisions making - and possibly regulatory - process.

Plants that are at or approaching their end of life

Clean Power 2040 information sheet Learn more about <u>Clean Power 2040</u>. Join us as we plan for the future.

Shuswap

The Shuswap River facility was originally built in 1929 and is located 35 km east of Vernon on the Shuswap River. Unit 1 has been out of service since 2013. It should be noted that in the case of Shuswap, BC Hydro is further along in the planning process and a project to assess long term facility options is already ongoing.

Spillimacheen

The Spillimacheen facility was originally built in 1955 and is located 55 km south of Golden on the Spillimacheen River. The facility has been out of service since 2019.

Walter Hardman

The Walter Hardman facility was originally built in 1960 and is located 25 km south of Revelstoke in the Cranberry Creek watershed.

Elko

The Elko facility was originally built in 1924 and is located 70 km southeast of Cranbrook on the Elk River. The facility has been out of service since 2014.

Alouette

The Alouette facility was originally built in 1928 and is located 67 km east of Vancouver on the Alouette river. The facility has been out of service since 2010.

Falls River

The Falls River facility was originally built in 1930 and is located 50 km southeast of Prince Rupert on Big Falls River.

The potential future of small plants reaching or at the end of their useful life

In general, the future of the above listed plants will be considered on a case-by-case basis. High level alternatives that may be considered in order to establish a leading alternative include:

- **Redevelop**: new dams and generation units replace the old ones to take advantage of existing features of the site. A component by component replacement strategy could also extend the life of the facility.
- Temporary generation shut down retaining option to redevelop: a reduced level of maintenance of civil and mechanical assets continues to mitigate safety or environmental issues. Options may be retained to resume generation if needed in the future.
- A permanent shutdown (decommission): operations of generating facilities are permanently ceased, and all or a portion of the assets are physically removed.
- **Divestiture**: BC Hydro is no longer the owner and/or operator of the facility, nor accountable for the issues or risks at the site.

Financial	These plants provide limited system benefits beyond their energy or capacity contributions. Apart from Falls River and Alouette, these facilities have minimal upstream water storage and are generally operated as run-of-river, producing much of their energy during freshet.	
	At first look and based solely on the value of their energy to BC Hydro, re- investment in these facilities is likely uneconomic at this time relative to other resource options available to BC Hydro. Re-investment in these facilities could provide reliable energy over a 50+ year timeframe, however, the needs and cost of new energy supplies in the future is uncertain.	
Safety and operational risks	As ageing facilities reach their end of life, asset performance declines and the risk of in-service failures increases. In addition, standards and regulations in place at the time of construction may no longer meet today's requirements. Significant re-investment may be required to sustain safe and reliable long-term operations consistent with modern standards, which impact the previously mentioned financial picture.	
Environment	In comparison to new sources of energy, these plants are at sites already developed and are likely to have minimal incremental environmental impact if their operations were to continue. However, there may be opportunities to restore habitats or realize other environmental benefits by discontinuing operations of these facilities.	
Regulatory/Legal	As designated Heritage Assets, BC Hydro's generating facilities are regulated by the B.C. Utilities Commission Act, the Clean Energy Act and the Water Sustainability Act. In addition, Water Licenses and Water Use Plans for each facility govern how and where we use and store water resources. Working within these frameworks may constrain the choices available in order to comply with these regulatory or legal obligations.	
Indigenous interests	Indigenous Nations in the area may have an interest in the small plant facility. These interests could include economic development opportunities associated with redevelopment, the environmental benefits of decommissioning or some other combination of interests. We want to hear from affected Nations what their interests are. We recognize that interest may vary depending on the facility or the Indigenous Nation.	

Generation resource options New electricity supply choices

Clean Power 2040 is looking to how you and the rest of British Columbia will use electricity 10 or 20 years from now. We're asking what will be needed and how will it be supplied.

BC Hydro maintains an inventory of potential resource options that could be used in the future to meet the needs of our customers – either on the demand side to decrease load, or on the supply side to increase generation. This note will focus exclusively on new generation resource options, which consists of new (greenfield) generation facilities as well as options to expand BC Hydro's existing generation facilities.

Our inventory describes the costs and availability of potential generation resource options, at a high level. This inventory doesn't represent the generation options that BC Hydro will necessarily develop or acquire; instead, it represents options to choose from that can inform our planning decisions.

The work to update the 2020 Generation Resource Options was segmented into three categories:

- Evolving Resources: technical working groups consisting of external experts were formed to build an understanding of the cost and performance of generation resource options that have experienced significant technology and market developments (for example, battery resources, wind and solar). The costs of these options were updated based on input from developers and suppliers as well as technical experts.
- **Existing Resources**: the resource options from the 2015 Resource Options Update, with some updates to reflect recent research and literature reviews, is sufficient for existing resources that have not experienced significant technology and market developments, such as run-of-river hydro.
- **Emerging Resources**: these generation resource options are not sufficiently mature to be analyzed on a quantitative basis but have been characterized on a qualitative basis so that they can be considered, as required, going forward. Initial options included in this category are hydrogen and fuel cells, emerging solar (including floating solar), emerging storage (for example, flow batteries), emerging customer-side generation (for example, vehicle to grid) and emerging renewable resources (e.g. wave and tidal resources).

Generation resource options				
Existing	Evolving	Emerging		
 BC Hydro asset upgrades (Resource Smart) Biomass Geothermal Municipal Solid Waste Natural gas Pumped storage Run-of-river hydro 	Solar Distributed scale Utility Scale Wind Batteries Utility scale 	 Hydrogen and fuel cells Emerging Customer Generation Emerging Renewables Emerging Solar Emerging Storage 		

To learn more about the process of updating this inventory, click here.

Generation resource options by resource type

Different generation options bring different benefits. Some increase our energy supply – the amount of electricity available to consume in a given year. Some increase our capacity – the maximum amount of electricity we can generate at any given moment. Some options are intermittent – which means they can only generate electricity at certain times, like when the sun is shining or the wind is blowing. Other options are dependable like our hydroelectric facilities which means they're always available and some options are flexible also like our hydroelectric facilities, which means we can increase or decrease their generation according to customer needs at any given time. The location of generation options also matters – if electricity is generated close to where it is consumed, then the infrastructure to get it where it needs to be is more limited. However, if there is a large distance between where the electricity is generated and where it is consumed, then additional system upgrades may be required to deliver it.

In our resource options inventory, we characterize each individual resource option in terms of its financial, technical, environmental and economic development attributes. In order to compare different generation resource options, we present here a simplified view of the cost-effectiveness of the different resources in terms of their Unit Energy Cost (UEC) or Unit Capacity Cost (UCC)

- A UEC expressed in \$/MWh is a measure of cost-effectiveness for resources that primarily produce energy rather than capacity. It does not provide a perfect apples-to-apples comparison of different energy resources. Rather, it represents the potential bid price of the energy delivered to the grid. Although this allows some comparability between resources, UECs don't reflect system wide benefits (like firmness of energy) that some resources provide that others do not. Further analysis on this and other elements will take place as part of the decision framework and portfolio analysis component of the IRP to characterize the costs and benefits of energy resources from a utility perspective.
- The UCC at POI metric (expressed in \$/kW-yr) also does not provide a perfect apples-to-apples comparison of capacity-focused resources and should be considered to be a preliminary indication of relative cost. Similar to UECs, UCCs provide some ability to compare, but miss out on the system benefits provided by a subset of these resources and also do not include the price of carbon for natural gas at this level. Carbon taxes are included in later in the analysis as well. Further analysis of capacity resources that considers the costs and benefits from the point of view of the utility, occurs in the Decision Framework and Portfolio Analysis component of the IRP.

The table below provides an overview of different generation options along with some other considerations. Other attributes and potential system benefits (such as contributions to grid stability and dependability) are examined when we undertake modeling and options analysis work, later in our planning process.

Generation Resource Type	Generation Resource Description	Indicative Cost (at Point of Interconnect to the grid) if built in 2020 Note: additional costs may be required to deliver electricity to the customer	Availability and other attributes
ENERGY RESOL	JRCES		
Biomass	Combustion of surplus biomass (i.e., saw mill residues, logging w astes or standing timber that is in excess of the needs of the forestry industry) to drive turbines for the production of electricity. Provides dependable pow er	\$125 – 446/MWh, depending primarily on the type of biomass used as fuel	The low est cost biomass resources depend on saw mill w ood w astes and roadside logging w oodw astes, which are primarily located in the BC Coast and West Kootenay regions. The generation potential from these low -cost resources is less than 150 MW in total. Higher cost resources that depend on standing timber are more plentiful (more than 300 MW) and are primarily found in the coastal mountain areas.
Geothermal	Deep geothermal wells draw hot fluids to the surface, where the heat is converted to electricity using conventional thermal generation. Provides dependable pow er	As low as ~\$90/MWh for high temperature resources, but >\$140/MWh for moderate and low temperature resources.	There are no utility-scale geothermal resources producing electricity in BC today. Significant efforts to advance geothermal in the 1980s and again in the early 2000s failed to confirm geothermal resources sufficient for large-scale electricity production. Economically viable geothermal resources in BC have not yet been proven, but there are indications of several geothermal resources in the province, some of w hich (~200 MW) are located close to the Low er Mainland. Geothermal facilities can also provide high quality heat for local users. Generation is reliable and consistent, providing capacity as w ell as energy throughout the year. Development of geothermal resources requires confirmation drilling to prove sufficient heat and fluid flow to support long-term electricity generation. Confirmation drilling is expensive (~\$5M per w ell) with significant risk of failure. There are therefore no guarantees as to the overall cost and development timeline for prospective geothermal resources.

Generation Resource Type	Generation Resource Description	Indicative Cost (at Point of Interconnect to the grid) if built in 2020 Note: additional costs may be required to deliver electricity to the customer	Availability and other attributes
ENERGY RESOL	JRCES		
Municipal Solid Waste	Incineration of collected solid w astes produces heat to drive thermal generators. Provides dependable pow er	~\$450 /MWh, but revenues from electricity sales are typically not the primary driver for these facilities.	New municipal solid wastefacilities can face opposition from local stakeholders due to perceptions about increased local air emissions and odours.
Natural Gas (CCGT)	Combustion of natural gas in highly efficient Combined Cycle Gas Turbine (CCGT) provides reliable energy and capacity all year round Provides dependable pow er	As low as \$76/MWh, after accounting for fuel costs and GHG taxes	Unlike all other resource options, natural gas generation is not considered a clean or renew able resource and is subject to clean energy policy considerations.
Run of River Hydro	Hydroelectric facilities that make use of existing river flows for electricity generation. Provides intermittent pow er	As low as \$85/MWh, to >\$500 / MWh depending on size and location	Run-of-river hydro typically delivers more energy during the freshet season (late spring and early summer w hen snow melt brings higher w ater flow into the rivers), w hen BC Hydro typically has less of a need for energy.
Small Storage Hydro	Hydro-electric facilities that include dams and pondage for limited energy storage (less than 16 hours of peak generation) Provides flexible pow er	\$75 – 150/MWh Costs vary with location, size and duration of energy storage	Number of resources identified (~4,000 GWh / year) based on a minimum 20 MW of capacity.
Solar – distribution scale	Small solar farms or solar gardens in urban areas, covering up to 60 hectares with ground-mounted photovoltaic panels, connected to distribution system. Provides intermittent pow er	\$115 – 140/MWh	Limited resources (<700 GWh / year) based on amount of land available in urban areas where the distribution system is sufficiently robust to manage the increased generation. Energy generating primarily in summer months and exclusively during daylight hours on days w hen the sun is shining. Does not provide generation during system peak electricity use periods.

Generation Resource Type	Generation Resource Description	Indicative Cost (at Point of Interconnect to the grid) if built in 2020 Note: additional costs may be	Availability and other attributes
		customer	
ENERGY RESOL	JRCES		
Solar – rooftop	Photovoltaic panels located on customer rooftops delivering energy directly to the customer to offset their load. Provides intermittent pow er	\$195/MWh – commercial \$215/MWh – residential Costs expected to decline at similar rate to Large Scale Solar.	Theoretically, more than 6,000 GWh / year of energy is available if every technically viable rooftop w ere covered w ith solar panels. Electricity is generated primarily in summer months and exclusively during daylight hours on days w hen the sun is shining. Does not provide generation during system peak periods.
Solar – utility scale	Large solar farms, covering up to 20 square kilometers with ground-mounted photovoltaic panels, delivering energy to the transmission system. Provides intermittent pow er	\$95-120/MWh Costs expected to decline with wide uncertainty bands, could be \$60/MWh in 10 years	Abundant utility-scale solar resources (>20,000 GWh / year). The low est cost solar resources are clustered around Prince George and Kelow na regions Electricity is generated primarily in summer months and exclusively during daylight hours on days when the sun is shining. Does not provide generation during system peak periods.
Wind - offshore	Very large wind turbines anchored to the offshore shelf regions of the Province. Provides intermittent power	\$125-445/MWh Costs expected to decline over time	Abundant resource – more than 50,000 GWh / year of offshore wind energy available offshore of BC. Offshore wind energy in North America remains in the very early stages of deployment.
Wind - onshore	Large wind turbines clustered into wind farms in rural areas Provides intermittent power	\$55 – \$300/MWh	Abundant resource – more than 50,000 GWh / year of onshore wind energy is available in British Columbia. Most of the low est cost wind resources are clustered within the Peace Region. Although there is only generation when the wind is blow ing, wind resources can be relied upon to generate some energy during winter peak periods.

Generation Resource Type	Generation Resource Description	Indicative Cost (at Point of Interconnect to the grid) if built in 2020 Note: additional costs may be required to deliver electricity to the customer	Availability and other attributes
CAPACITY RES	DURCES		
Battery storage	Rechargeable Lithium Ion Battery resources can provide relatively short duration (up to 4 hours) of peak energy generation. Large scale is >50 MW for up to	 \$ 165 – 230/kW-year for large scale and 4-hours of storage The costs of battery storage facilities are projected to fall rapidly over the next decade. 	Battery systems are modular and therefore capable of growing in size over time to match load growth. Battery systems have relatively short lead times due to simple permitting and construction.
	Small scale is several kW deployed at a customer premise.	By 2030, the cost of a four- hour battery storage facility is estimated to be as low as \$113/kW-year.	produce it, with energy efficiency typically around 90%.
Natural Gas (SCGT)	Combustion of natural gas in Single Cycle Gas Turbines (SCGT) on an as-needed basis.	As low as \$67/kW-year, but not including cost of fuel or GHG taxes.	Unlike all other resource options, natural gas generation is not considered a Clean or Renew able Resource and is subject to clean energy policy considerations.
Pumped Storage	Conventional hydroelectric generation facility, but turbine can also function as a pump to fill an upstream reservoir. Upstream reservoir provides stored energy for use during peak periods.	Large-scale (500 to 1000 MW plant) ~ \$100/kW-year Small-scale (100 to 200 MW plant) > \$500/kW-year	 Pumped storage facilities have long lead times due to complex permitting and construction. Duration of energy storage is typically betw een 6 – 8 hours. These facilities consume energy rather than produce it, w ith energy efficiency typically betw een 70-80%.
Upgrades to existing BC Hydro generation	Some of BC Hydro's larger hydroelectric facilities present opportunities to upgrade or expand generation. Addition of a sixth unit to the Revelstoke Generating Station and upgrades to Units 1 through 5 at the GM Shrum Generating Facility would provide 588 MW of additional capacity in total. Some smaller BC Hydro facilities are reaching the end of their life and present a redevelopment opportunity. Redevelopment of Alouette and Falls River would provide 45 MW of capacity in total.	Sixth Unit at Revelstoke: \$57–\$64/kW-year depending on implementation schedule. Units 1 through 5 upgrades at GM Shrum: ~\$47/kW- year. Alouette redevelopment: \$316/kW-yr Falls River redevelopment: \$420/kW-yr	Some upgrades have lead times up to eight years due to permitting and construction, w hile other upgrades, such as turbine replacements, may have lead times as short as one.

Clean Power 2040 information sheet

Learn more about <u>Clean Power 2040</u>. Join us as we plan for the future.

Clean Power 2040

Powering the future

Learn more about <u>Clean Power 2040</u>. Join us as we plan for the future.