2021 Integrated Resource Plan (IRP) Technical Advisory Committee (TAC) Meeting #5
Welcome & meeting context

Basil Stumborg, BC Hydro
Agenda overview

Meeting purpose – to continue the review of modelling inputs before summer analysis begins

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>START</td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>CLOSE</td>
<td></td>
</tr>
</tbody>
</table>

- Welcome & Meeting Context
- IRP Work Plan
- Key IRP Questions
- IRP Objectives & Key IRP Uncertainties
- Generation Resource Options
- Distributed Generation
- Next Steps

Basil Stumborg
Kathy Lee
Kathy Lee
Basil Stumborg
Alex Tu
Alex Tu
Basil Stumborg
Virtual meeting etiquette

These principles should make our meetings more effective

• As with in-person meetings, continue to have members participate and alternates observe
• Keep the conversation respectful by focusing on ideas, not the person
• Stay curious about new ideas
• Share the air time – to ensure everyone gets heard
• To minimize distractions – keep yourself on mute
• We’ll use the chat box to seek input and ask questions
• We’ll not be recording these sessions, and ask for others not to record
Cisco Webex reminders

We’ll be using a few basic tools, which you can find if you hover your mouse over the bottom of the screen.

- Mute/unmute your mic & turn your video on/off
- View the participant list
- Open the chat panel:
 - to ask questions
 - to provide feedback
- Audio connection trouble?
 See the alternative options here
IRP workplan

Kathy Lee, BC Hydro
IRP work plan update

Highlighting opportunities for TAC member review and comments

• Following slide is a view of timelines and potential TAC meeting options

• Considerations when developing the IRP workplan and TAC meetings
 o An updated load forecast (December 2020)
 o Two rounds of consultation (fall, spring)
 o Consideration of consultation input
 o Application writing
 o A filing date of September 2021

• Workplan shows when TAC members will review inputs and analysis outputs

• Time slots are broadly set
 o Amount of meeting time is variable, roughly one day a month (+/- 50%)
IRP 2021 updated schedule

Critical path for a September 2021 filing

<table>
<thead>
<tr>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>. . . Jan</td>
<td>. . . Jan</td>
</tr>
<tr>
<td>. . . Feb</td>
<td>. . . Feb</td>
</tr>
<tr>
<td>. . . Mar</td>
<td>. . . Mar</td>
</tr>
<tr>
<td>. . . Apr</td>
<td>. . . Apr</td>
</tr>
<tr>
<td>. . . May</td>
<td>. . . May</td>
</tr>
<tr>
<td>. . . Jul</td>
<td>. . . Jul</td>
</tr>
<tr>
<td>. . . Aug</td>
<td>. . . Aug</td>
</tr>
<tr>
<td>. . . Sep</td>
<td>. . . Sep</td>
</tr>
<tr>
<td>. . . Oct</td>
<td>. . . Oct</td>
</tr>
<tr>
<td>. . . Nov</td>
<td>. . . Nov</td>
</tr>
<tr>
<td>. . . Dec</td>
<td>. . . Dec</td>
</tr>
<tr>
<td>. . . Jan</td>
<td>. . . Jan</td>
</tr>
<tr>
<td>. . . Feb</td>
<td>. . . Feb</td>
</tr>
<tr>
<td>. . . Mar</td>
<td>. . . Mar</td>
</tr>
<tr>
<td>. . . Apr</td>
<td>. . . Apr</td>
</tr>
<tr>
<td>. . . May</td>
<td>. . . May</td>
</tr>
<tr>
<td>. . . Jul</td>
<td>. . . Jul</td>
</tr>
<tr>
<td>. . . Aug</td>
<td>. . . Aug</td>
</tr>
<tr>
<td>. . . Sep</td>
<td>. . . Sep</td>
</tr>
</tbody>
</table>

PHASE I
Technical inputs

- Complete technical inputs, incl Mar/Apr 2020 Load Forecast
- Portfolio Analysis
- Indigenous Nations and Public Engagement – Input to Plan
- Load Forecast Dec 2020
- Plan Development
- Indigenous Nations and Public Engagement – Feedback on Plan
- Finalize Plan

PHASE II
Analysis & drafting plan

PHASE III
Review & finalize plan

TAC MEETINGS

- #1 Context
- #2 Inputs
- #3 Analysis results and planning discussions
- #4 Draft actions
- #5
- #6
- #7
- #8
- #9
- #10
- #11
Mapping planning inputs with IRP steps

Phase 1 included gathering inputs and reviewing with TAC members

Reviewed with TAC in first 5 meetings
* Being reviewed today
To be reviewed in early September
IRP work plan update

What the IRP team is looking for from TAC members

At the end of today, we will check in with you about the:

• Volume of meetings?
 o 1.5 days/month using Webex – is this a productive use of time?
• Balance of pre-read material to presentation of details?
• Right method and level of getting your feedback?
Key IRP questions

Kathy Lee, BC Hydro
High-level IRP questions

Answers to these questions will be the key elements in our IRP

- How much DSM to pursue – energy efficiency, what is the role of demand response and rate options?
- What’s the approach for renewing existing Electricity Purchase Agreements (EPAs)?
- Any exceptions to the default approach of sustaining our generation assets?
- What and when is the need for next new resources?
 - Generation (capacity)
 - Generation (energy)
 - Transmission
 - Imports in long term planning?
Biggest planning challenge is uncertainty

A successful IRP will accommodate a broad range of uncertainty

What’s needed and when?

COVID recession

Electrification

Low load growth

LNG?

IRP

IRP actions Implementation

Power smart
Determining need for planned resources

IRP determines the need for resources beyond what is existing and committed

Already in the resource stack:

- Existing resources, e.g. Heritage assets, existing EPAs until their expiry date
- Committed resources, e.g. Site C

Examples of resources beyond existing/committed that might be in our IRP:

- DSM programs
- Future EPA renewals
- Revelstoke 6
Need for planned resources

Observation based on June 2019 LRB – to be updated in September 2020

Reference case

• System: near term surplus; no pressing need for energy and capacity
• Regional: earlier need (capacity) for Lower Mainland/Vancouver Island (LM/VI)

Lower load

• System and regional needs further deferred

Higher load

• System and LM/VI needs advanced
• North Coast, Peace Region, Vancouver Island
New in 2021 IRP: Planning for Load Reductions?

What should BCH do from a power system planning perspective?

• COVID-19 has caused significant reductions in load
• BC Hydro is considering, for the first time, load reduction scenarios
• This raises numerous issues beyond power system planning (i.e. financial and operational issues)
• Nevertheless, some tools to address these reductions in load are power system planning options:
 o Level of DSM investment
 o Level of EPA renewals
 o Some discrete sustaining capital investment opportunities
Key questions

Interrelated questions solved simultaneously but four buckets for discussions

<table>
<thead>
<tr>
<th>System (energy & capacity)</th>
<th>Reference case – near term</th>
<th>Higher load OR Reference case longer term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach for:</td>
<td></td>
<td>Plus: New resources?</td>
</tr>
<tr>
<td>Demand side options, EPA renewals, Assets (by exceptions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater focus in Lower Mainland Vancouver Island Region Plus: New resources later?</td>
<td></td>
<td>More?</td>
</tr>
<tr>
<td>Greater focus in North Coast, Peace Region Plus: New resources?</td>
<td></td>
<td>More?</td>
</tr>
<tr>
<td>Regional (capacity)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BC Hydro Power smart
System – Reference Case – Near Term

The early planning horizon has us looking at choices with customer involvement options, EPA renewals and our existing heritage assets

- DSM energy efficiency
- Capacity focused DSM programs, e.g. load curtailment, demand response
- Rate options, e.g. time of use rate
- Net metering program
- EPA renewals
- Generation heritage assets:
 - Small plants strategy
 - Out of service plants
Considerations given sufficient resources in the first part of the planning horizon and load uncertainties:

• Insurance against rapid load growth?
• Lost opportunity to take advantage of low-cost resources?
• Now or never? Will the option disappear in the future if we decline today?
• Flexibility? Can our commitment to the option grow or wane in response to new conditions?

System – Reference Case – Near Term

Approach must balance near-term cost with the value of keeping options open
Regional – Reference Case – Near Term

Choices to serve Lower Mainland/Vancouver Island

In the near term:
Primarily a capacity question with greater regional focus? (e.g. more demand response in Lower Mainland?)

Then later…
Local generation (e.g. assets, batteries, pumped storage in Lower Mainland?)

OR
Remote generation with transmission (e.g. Rev 6, transmission requirement from interior to Lower Mainland?)
Regional – Reference Case – Near Term

Key tradeoffs between local and remote options

Considerations:

• The amount of peak shifting possible considering the load shape
• Ability to secure transmission right of way
• Long lead time for transmission
• Future cost decline for batteries and the land requirement
• Pumped storage permitting and integration feasibility
• Rev 6 environmental assessment certificate
• Others?
Regional – Higher Load or Longer Term

North Coast & Peace Region also need special attention

North Coast & Peace Region: uncertain potential large ‘lumpy’ loads

A question of transmission strategy:
 - Proactive - build ahead to prepare but risk stranded assets
 - Reactive – respond to customer requests

Options and considerations:
 - What options can prepare us to serve but also minimize regrets? (imports, shorten lead time, risk sharing?)
 - How proactive is prudent?
 - Others?
System – Higher Load or Longer Term

Approach should consider increased ability to serve while minimize regrets

• How much more of the “system – near term” approach is cost effective?
• Imports as bridging options to manage load uncertainty or resource delays?
• What new resources do we need and when do we pull the trigger?
 o What role does customer generation play?
 o Wind, solar, redevelopment of aging assets, Rev 6, batteries, pumped storage?
• Any additional preparation on the grid? e.g. distribution system supporting electric vehicles, technology to support demand response
IRP objectives

Basil Stumborg, BC Hydro
IRP objectives

Roadmap to this topic

- Quick review and recap
- Link to modelling
- Preliminary list – work in progress
 - Some examples to make this concrete
- How will this list be used?
- Next steps
- Discussion
Comparing options across multiple objectives

The “best” solution may depend on a balance of competing objectives

TAC was introduced briefly to the IRP decision framework in March 2020

• BC Hydro must consider multiple objectives when developing its IRP
• Some of these objectives may be in tension with others
• Some of these impacts are forecast with more certainty than others
• IRP analysis will estimate how different solutions make progress towards or away from these objectives
Comparing options across multiple objectives

Each portfolio will be a possible solution to system needs, characterized by these multiple objectives.

- Current resources
- Resource options
- Load
- Market conditions

SYSTEM MODELS
(mixed integer optimization)

- Economic
- Environmental
- Social
Comparing options across multiple objectives

“Decision objectives” are used for the comparison of options

Not all objectives are relevant for comparing options:

• Some objectives will be held as constraints
 o e.g. safety, reliability

• Some objectives are more about process
 o e.g. earlier and deeper consultation with Indigenous Nations

• Some objectives will factor into implementation

“Decision Objectives” for BC Hydro, are the ‘things that matter’ when comparing options
Draft objectives – for comparing options within the IRP

This is a preliminary list and is open for discussion

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Sub-objectives</th>
<th>Measures</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize cost</td>
<td>Minimize cost to BC Hydro</td>
<td>NPV</td>
<td>For all comparisons</td>
</tr>
<tr>
<td></td>
<td>Minimize cost at risk to BC Hydro</td>
<td>NPV</td>
<td>For valuing optionality</td>
</tr>
<tr>
<td></td>
<td>Minimize rate impact</td>
<td>Relative %</td>
<td>For a few portfolios, including Base Resource Plan</td>
</tr>
<tr>
<td></td>
<td>Minimize cost impact to customer type X</td>
<td>%</td>
<td>For ‘DSM during surplus’ considerations</td>
</tr>
<tr>
<td>Minimize environmental impacts</td>
<td>Minimize footprint</td>
<td>Ha</td>
<td>For options requiring new infrastructure</td>
</tr>
<tr>
<td></td>
<td>Minimize footprint of type X</td>
<td>Ha (?)</td>
<td>Possible layers to identify cumulative impact considerations for post IRP implementation</td>
</tr>
<tr>
<td></td>
<td>Maximize GHG avoided in B.C.</td>
<td>t CO2e</td>
<td>For electrification analysis</td>
</tr>
<tr>
<td>Maximize economic development</td>
<td>Provincial GDP growth</td>
<td>Incremental change</td>
<td>For electrification analysis</td>
</tr>
<tr>
<td></td>
<td>Maximize employment creation</td>
<td>FTEs</td>
<td>For ‘IPP renewal during surplus’ considerations and for electrification analysis</td>
</tr>
<tr>
<td></td>
<td>Maximize rural employment creation</td>
<td>Regional FTEs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximize Indigenous employment creation</td>
<td>Sub-regional FTEs</td>
<td></td>
</tr>
</tbody>
</table>
Objectives in the IRP

What are the next steps?

• This is a draft list of decision objectives
 o Based on BC Hydro’s past IRP experiences
 o Also based on the key questions in this IRP
• Depending on the question, this list may be smaller
• This list is also a preliminary one
• BC Hydro will consult on ‘what matters’ when comparing options
 o With Indigenous Nations
 o With the general public
• Will consider feedback on these objectives.
• In the fall, when portfolio modelling results are brought back to TAC, comparisons based on (subsets of these) multiple objectives will be presented.
Objectives in the IRP

To support multiple the comparisons of options

- Are there any questions from TAC at this point?
- Is there anything that BC Hydro has missed on this topic?
- Is there anything additional that BC Hydro needs to consider?
Key IRP uncertainties

Basil Stumborg, BC Hydro
Key IRP uncertainties

Roadmap for this topic

• Recap / review

• Load uncertainties – examples
 o How will options be created and assessed?

• Other uncertainties – examples
 o How will these uncertainties be explored?

• Discussion
Types of uncertainties

Rough sketch of the interrelated uncertainties that impact this IRP

- DSM
 - Energy efficiency
 - Capacity focused
 - Rates

- Electrification
 - Industrial processes
 - Heating
 - Transportation
 - Mining

- Distributed generation

- Load
 - 4 regions x 3 customer classes

- Supply

- New industry

- Population growth

- Cost of new resources (tech change)

- Storage cost

- Transmission additions, timing

- Market Reliance
 - Removal of self-sufficiency
 - Imports from U.S.

- External power markets

- Impacts of meeting system needs
 - Social
 - Environmental
 - Financial
 - Cost
 - Revenue
 - Rates

IRP “Decision Objectives” to compare options

IRP variables that drive uncertainty
How will uncertainty be treated in this IRP?

Uncertainty can be treated in a number of ways

1. Think broadly – to counteract overconfidence
2. Include good estimates of uncertainty in forecasts
3. Take a cautious approach when setting standards (fixed value + margin for safety)
4. Create better (flexible) options
5. Carry out sensitivity analyses
6. Incorporate uncertainty into the consideration of tradeoffs
7. Monitor and react

• Following slides will focus on the following elements from this list:
 o #1 and #4 – for load sensitivities
 o #5 for other uncertainties
Potential Lower Load Sensitivities

BC Hydro will consider loads falling below its Reference Load Forecast

<table>
<thead>
<tr>
<th>Load Sensitivity</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Distributed Generation Defection** | • COVID-19 triggers a long-lasting depression resulting multi-year GDP declines and load declines over the near-term forecast horizon.
• Significant load declines across all sectors continue over the medium term with no recovery over the 20-year horizon. Rising BC Hydro rates, tech advances in solar and battery storage coupled with time-of-use rates and local retail access lead to substantial loss of load as BC Hydro customers (and FortisBC customers) turn to self generation. |
| **COVID-19 Restructuring** | • COVID-19 triggers a long-lasting depression resulting multi-year GDP declines and load declines over the near to medium term forecast horizon.
• Long-term structural shifts occur between the commercial sector and residential sector, and the deep COVID-19 recession accelerates and deepens downward trajectory of forestry sector, leading to further load shrinkage in the medium to long term. |
| **June 2020 COVID-19 Adjusted Low Sensitivity** | • COVID-19 triggers short, sharp decline in system load in the near term. Load stays mostly flat over the moderate to long term with a number of large industrial customers closing permanently. Anemic economic growth and structural changes that further weaken the relationship between economic activity and electricity consumption keeps overall system load below pre-COVID-19 levels over the full forecast horizon. |

Also to test robustness of Base Resource Plans
To prepare Contingency Plans for lower loads
How will load sensitivities be used?

Different techniques for exploring load sensitivities

- System Optimizer will model portfolios of resources to meet system needs
- Comparing across loads gives insight into:
 - Volume
 - Timing
 - Additional considerations
- Currently, the IRP does not have a lot of ‘levers’ to address lower loads
 - Less DSM
 - Fewer EPA renewals
- Consequently, lower load sensitivities will not be a focus of the analysis
 - But will be pulled in when considering downside of ‘preparing for higher loads’ below
Lower load sensitivities in the IRP

To support thinking broadly about load uncertainties

• Are there any questions from TAC at this point?
• Is there anything that BC Hydro has missed on this topic?
• Is there anything additional that BC Hydro needs to consider?
Potential Higher Load Sensitivities

The analysis will consider loads higher than the reference load forecast.

<table>
<thead>
<tr>
<th>Load sensitivity</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navius 1 Electrification Scenario:</td>
<td>• Electrification and other policy measures (e.g. renewable natural gas usage) ramped up to meet B.C. GHG reduction targets 2030 – 2050</td>
</tr>
<tr>
<td>Meeting BC GHG 2050 targets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Navius 2 Electrification Scenario:</td>
<td>• Same as Navius 1 above, plus an assumption that battery costs decline at a faster rate than expected</td>
</tr>
<tr>
<td>meeting B.C. GHG targets</td>
<td></td>
</tr>
<tr>
<td>(lower battery cost sensitivity)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Navius 3 Electrification Scenario:</td>
<td>• Same as Navius 1 above, plus alternative clean fuels (such as renewable natural gas and biodiesel) have limited availability and are higher cost</td>
</tr>
<tr>
<td>Meeting BC GHG targets</td>
<td></td>
</tr>
<tr>
<td>(limited availability of biofuels)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining + LNG 1 (North Coast)</td>
<td>• One (?) additional LNG facility and one (?) new mine</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining & LNG 2 (North Coast)</td>
<td>• Incremental LNG and mining activity to LNG 1 (above)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenarios combining Navius Electrification &</td>
<td>• A few combined scenarios will be evaluated</td>
</tr>
<tr>
<td>North Coast scenarios</td>
<td></td>
</tr>
</tbody>
</table>

Also to test robustness of Base Resource Plans
To prepare Contingency Plans for higher loads
How will load sensitivities be used?

Different techniques for exploring load sensitivities

- System Optimizer will model portfolios of resources to meet system needs
- Comparing across loads gives insight into:
 - Volume
 - Timing
 - Additional considerations
- But the above comparison misses out on the role of uncertainty
- Following slide shows how to create and value options
 - How to consider ‘regret’ of choosing incorrectly
How to prepare for larger loads

…but avoid making investments we will regret

• Considering options will be a key part of this IRP
 o Considering their benefits (capturing upside)
 o But also their costs

• Likelihoods (probabilities) also important
 o This will be applied to transmission projects
 o But maybe to other topics as well

• This approach is time consuming
 o Can only be applied in a limited number of cases
Valuing Options in the IRP

Decision trees will play a role here

* Example, and NPVs, are illustrative

If our T schedules can’t match customer timelines, then build in advance of need is not the only option.
Valuing Options in the IRP

Decision trees will play a role here

If our T schedules can’t match customer timelines, then build in advance of need is not the only option.

BCH can peel off “cheap” but lengthy planning/consultation/permitting sections.

* Example, and NPVs, are illustrative
Valuing options in the IRP

Decision trees will play a role here

- Probabilities will be important, but problematic
- But there are ways to work around this, and search for solutions that are robust across a wide range of likelihoods
Higher load sensitivities in the IRP

To support thinking broadly about load uncertainty in the IRP

- Are there any questions from TAC at this point?
- Is there anything that BC Hydro has missed on this topic?
- Is there anything additional that BC Hydro needs to consider?
Additional parameter sensitivities

Selected where these may be a key assumption underlying a particular solution

<table>
<thead>
<tr>
<th>Key Uncertainty</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumped storage availability</td>
<td>Modelling can assess how cost, project schedule, or even feasibility would impact IRP actions.</td>
</tr>
<tr>
<td>Battery costs</td>
<td>Considered in the DG Defection load sensitivity, but may also play a part when looking at Non-Wires Alternatives, e.g. Rev6+ILM vs local storage or Vancouver Island Transmission upgrades vs. local generation and storage.</td>
</tr>
<tr>
<td>Cost of renewable generation</td>
<td>Can be considered when assessing Non-Wires Alternatives, e.g. Vancouver Island Transmission upgrades vs. local generation and storage.</td>
</tr>
<tr>
<td>Export market prices</td>
<td>Can be part of any assessment that will leave BC Hydro more exposed to export markets, e.g. level of market reliance, role of ICG, ILM2 and PGTC upgrades, etc.</td>
</tr>
<tr>
<td>DSM deliverability uncertainty</td>
<td>The level of reliance on DSM (including rates) energy and capacity savings, and the consequence of it not being available, can be assessed to see if BC Hydro is comfortable with the cost-effective level of DSM selected by least cost solution.</td>
</tr>
<tr>
<td>Transmission project cost and delivery</td>
<td>These parameters can be varied to see whether BC Hydro needs to change solutions or build in a mitigation strategy to avoid or reduce the impacts of these uncertainties.</td>
</tr>
<tr>
<td>Climate change impacts</td>
<td>BC Hydro will look at the potential impacts of climate change across all parts of its planning system (supply and demand) to see whether additional actions in the IRP need to be taken to mitigate these impacts.</td>
</tr>
<tr>
<td>Cost of capital differential</td>
<td>The relative difference between IPP and BC Hydro cost of capital can be a key uncertainty that tips a portfolio between BC Hydro funded elements and those provided by the private sector.</td>
</tr>
</tbody>
</table>

To test robustness of Base Resource Plans
To prepare Contingency Plans if warranted
Additional parameter sensitivities

How will these be addressed in the IRP?

These additional uncertainties will be dealt with in one of two ways:

• It will be possible to re-run system optimization with different parameter values to see how this impacts to selected portfolio
 o e.g. how does the ‘wires vs non-wires’ solution differ as battery costs vary?

• It will also be possible to match these parameters with load sensitivities, where this can add additional insight
 o e.g. perhaps a low load sensitivity with ramped up DG could be paired with low export market costs (as DG costs in the U.S. drive market prices lower)
Additional sensitivities in the IRP

To support thinking broadly about uncertainties

• Are there any questions from TAC at this point?
• Is there anything that BC Hydro has missed on this topic?
• Is there anything additional that BC Hydro needs to consider?
How will uncertainty be treated in this IRP?

Note: detailed slide with additional information

Uncertainty can be treated in a number of ways

- Think broadly – to counteract overconfidence
 - This leans heavily on creative scenarios to give us:
 - Wide ranging LFs and load sensitivities
 - Wide ranging parameter values
- Include good estimates of uncertainty in forecasts
 - Means eliciting subjective probability distributions, to capture professional ‘beliefs’ on ranges of uncertainty
- Take a cautious approach when setting standards (fixed value + margin for safety)
 - When we feel uncomfortable to properly tackle uncertainty and also uncomfortable measuring benefits of reducing uncertainty
- Create better options
 - Even if these are inflexible, they can de-risk outcomes (at some cost)
 - Create flexible options – to allow us to wait and react
- Carry out sensitivity analyses
 - Tornado diagrams to discover uncertainties that ‘move the needle’
 - Hi/Low ranges to test if decisions are robust to key uncertainties
- Incorporate uncertainty into the consideration of tradeoffs:
 - Risk
 - Option value and expected cost
 - Risk preferences (aversion)
- Monitor and react
 - Identify signposts and conditional actions
 - Trigger points, trigger values
 - On-ramps and off-ramps
Generation resource options

Alex Tu, BC Hydro
Purpose and outline

We will summarize the draft findings of our generation resource options update

This presentation includes:

• Scope and approach of the generation options update
• Findings from technical engagement workstreams to update evolving resources
• Findings from the targeted updates of existing database resources
• Summary of draft results
• Summary of feedback to date
• Summary of Resource Smart options
• Approach to EPA Renewals as a generation resource option
• Discussion questions
Resource options inventory

This presentation reports the update to Supply-Side Generation resources.
Characterizing resources

Attributes of resources at this stage are high-level and indicative

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Technical</th>
<th>Financial</th>
<th>Environmental</th>
<th>Economic development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Installed Capacity (MW AC),</td>
<td>• Unit Energy Cost ($/MWh)</td>
<td>• Footprint (hectares)</td>
<td>• Direct jobs (person-years)</td>
</tr>
<tr>
<td></td>
<td>• Average Annual Energy (GWh/yr)</td>
<td>• Unit Capacity Cost ($/kw-yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dependable Capacity (MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Financial measures at this stage represent the costs from the point of view of the developer, rather than the value from the point of view of the utility.
- These crude financial measures are a necessary input into Portfolio Analysis stage, where utility point of view on the relative value of resources will be developed.
Generation Resource Update - Approach

Focus on options that have evolved and watch out for new technologies

- Building on existing knowledge
- Focusing efforts on resource options that have seen the most changes and developments (e.g. wind, solar, batteries, etc.)
- Keeping watch on new technologies
- Collaborating with FortisBC on the update of generation supply-side options in the province
Scope of Generation Resource Update

Our efforts focus on resources that have seen recent material changes (evolving) and ensure a breadth of coverage of resource options (emerging).

<table>
<thead>
<tr>
<th>Evolving</th>
<th>Existing database</th>
<th>Emerging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Solar**
 - Utility & community scale
 - Customer scale

- **Wind**

- **Batteries**
 - Utility scale
 - Customer scale

- **Geothermal**
- **Run-of-river hydro**
- **Biomass**
- **Municipal solid waste**
- **Pumped storage**
- **Natural gas**

Next generation:
- New forms of Solar or Storage
- Pre-commercial Renewable Technologies e.g. Marine
- Emerging Customer distributed generation e.g. vehicle to grid
Solar Resources – Utility Scale

Technical resource limited by land use designation and distance from transmission

Unconstrained – exclude only water, parks and built areas

Less than 5% slope, not heavy forest

At least 15 MW, and within 25km of transmission
Solar Resources – Utility Scale

The quality of the solar resource varies across the province

<table>
<thead>
<tr>
<th>kWh/kW</th>
<th>500-600</th>
<th>700-800</th>
<th>900-1000</th>
<th>1200-1300</th>
<th>1400+</th>
</tr>
</thead>
</table>
Solar Resources – Utility Scale

The lowest cost 30 solar resources based are clustered around Price George and Kelowna regions – not in the areas of the strongest solar resource.
Solar Resources – Utility Scale

Abundant utility-scale solar resources (>20,000 GWh), most of which is available at between $95 – 120 / MWh if developed in 2020
Solar Resources – Utility Scale

Summary of Feedback and considerations

• Not sufficient transparency into the Unit Energy Cost (UEC) calculation to follow the logic
 e.g. lifetime of system, financing assumptions, capacity factor etc.
• BC Hydro estimates of capital costs ($1,900 – 2,100 / kW AC) appear high relative to other jurisdictions, even after accounting for a premium for B.C.-based projects
• In general, utility scale estimates of UEC (as low as $93 / MWh) are reasonable
Solar Resources – Distributed Scale

Distributed solar resources are first screened based on available urban land and then based on carrying capacity of local distribution network.
Solar Resources – Distributed Scale

Limited distributed scale resources (<700 GWh), most of which is available at a cost between $115 – 140 / MWh if developed in 2020
Solar Resources – Distributed Scale

Summary of feedback and considerations

• These results are at-odds with distribution scale projects in Alberta in development today with costs between $45 to 70 / MWh
• Need more detail on how Distribution Connected Sites were identified
• How are customer-owned, behind the meter resources accounted for in the resource analysis?
Solar Resources – Financial Inputs

The key inputs below, and an assumed WACC of 6%, are the primary determinants of UEC

<table>
<thead>
<tr>
<th>Scale</th>
<th>Capital Cost ($/kW)</th>
<th>OMA Cost ($/kW-yr)</th>
<th>Capacity Factor</th>
<th>Lifetime (years)</th>
<th>UEC @ POI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
<td>$1900 - $2100</td>
<td>$36</td>
<td>17 - 22%</td>
<td>30</td>
<td>$94 - 233</td>
</tr>
<tr>
<td>Distributed</td>
<td>$2590</td>
<td>$36</td>
<td>15 - 20%</td>
<td>30</td>
<td>$114 - 544</td>
</tr>
<tr>
<td>Customer (Com)</td>
<td>$3,000</td>
<td>$9</td>
<td>15%</td>
<td>15</td>
<td>$195</td>
</tr>
<tr>
<td>Customer (Res)</td>
<td>$3,400</td>
<td>$20</td>
<td>15%</td>
<td>15</td>
<td>$215</td>
</tr>
</tbody>
</table>
Wind – Onshore

Turbine costs and performance were updated

Methodology
• Analysis based on potential projects identified in the 2009 BC Hydro Wind Data Study and the 2009 BC Hydro Wind Data Study Update
• Installed capacity for each project was left unchanged, but average annual energy for each site was updated by developing generic power curves for leading edge turbines based on information from multiple turbine manufacturers

Key Assumptions
• In general, wind projects will utilize a series of 5 MW turbines with a 110 m hub height
• Capital and OMA cost information updated from 2015 based on
 o 2018 Hatch review of 2015 cost study
 o 2019 Wind Technology Market Report
Wind – Onshore

Abundant wind resources, but somewhat limited volume of low cost resources (<5000 GWh at less than $60/MWh) before climbing the cost curve
Wind – Onshore

Summary of feedback and considerations

- Not all the best sites for wind development were identified because analysis is based on wind data from 2009 and outdated turbine technologies
- Were environmental considerations related to caribou protected areas taken into account?
Wind Resources – Financial Inputs

The key inputs below, and an assumed WACC of 6%, are the primary determinants of UEC

<table>
<thead>
<tr>
<th>Type</th>
<th>Capital Cost ($/kW)</th>
<th>OMA Cost ($/kW-yr)</th>
<th>Capacity Factor</th>
<th>Lifetime (years)</th>
<th>UEC @ POI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore</td>
<td>$1,960 - 2,830</td>
<td>$60</td>
<td>26 - 54%</td>
<td>25</td>
<td>$55 - 301</td>
</tr>
<tr>
<td>Offshore</td>
<td>$3,800 - 4,760</td>
<td>$144</td>
<td>38 - 49%</td>
<td>25</td>
<td>$125 - 445</td>
</tr>
</tbody>
</table>
Future Costs of Wind and Solar

The future cost of solar has a wider uncertainty range, with the potential for larger cost reductions, than does wind.
Battery Energy Storage

Batteries are generically defined as having a four-hour peak duration, and capable of providing dependable supply capacity during winter peak

- Relevant battery systems would most likely be located in one of these three grid locations:
 - Transmission connected at existing transmission substation infrastructure
 - Co-located with new transmission-connected renewable generation
 - Distribution connected at existing distribution substation infrastructure

- Both flow battery and lithium ion technology are viable alternatives, although lithium ion is currently more cost competitive

- Compressed air energy storage (CAES) has not yet been appropriately investigated for viability in the B.C. context
Battery Energy Storage

Co-located, Transmission-connected and Distributed Battery Storage systems have UCC between $165 - 230 / kW-yr
Battery Resources – Financial Inputs

The key inputs below, and an assumed WACC of 6%, are the primary determinants of UCC

<table>
<thead>
<tr>
<th>Type</th>
<th>Capital Cost ($/kW)</th>
<th>OMA Cost ($/kW-yr)</th>
<th>Peak Duration*</th>
<th>Lifetime (yrs)</th>
<th>UCC @ POI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-located</td>
<td>$1,580</td>
<td>$52</td>
<td>4 hours</td>
<td>20</td>
<td>$166</td>
</tr>
<tr>
<td>Transmission</td>
<td>$1,700</td>
<td>$52</td>
<td>4 hours</td>
<td>20</td>
<td>$178 - 214</td>
</tr>
<tr>
<td>Distribution</td>
<td>$1,900</td>
<td>$55</td>
<td>4 hours</td>
<td>20</td>
<td>$230</td>
</tr>
<tr>
<td>Customer (Com/Ind)</td>
<td>$2,400</td>
<td>$10</td>
<td>2 hours</td>
<td>10</td>
<td>$310</td>
</tr>
<tr>
<td>Customer (Res)</td>
<td>$2,600</td>
<td>$10</td>
<td>2 hours</td>
<td>10</td>
<td>$340</td>
</tr>
</tbody>
</table>
Future costs of Battery Energy Storage

Relative to Pumped Storage, Battery Energy Storage may achieve cost parity based on UCC in the 2030 to 2040 timeframe
Non-financial attributes of additional resources

A quick reminder of multiple objective decision-making in the IRP

- The IRP will consider non-financial attributes when comparing options within the IRP
- This notion was introduced in our first meeting, and will be expanded on today
Economic Development Attributes

Regression analysis and ‘best fit’ real employment data to estimate construction and O&M jobs per MW for each resource type in B.C.

Solar Development Jobs

Solar O&M Jobs
Environmental Impact Attributes

Each resource options type has a simple footprint measure and direct GHG emissions measure – will be refined after the Portfolio Modelling stage

- **Terrestrial / Riparian footprint (hectares):**
 - Based on plant footprint + new roads or interconnection equipment
 - For hydro resources, also includes intake area and penstock area

- **GHG emissions:**
 - Based only on direct emissions
 - Applicable only to fossil fuel combustion technologies, e.g. natural gas resources
Summary of Energy Resources

Wind, Natural Gas CCGT* and Solar offer the lowest cost resources based on UEC

* Not inclusive of GHG taxes, which would add ~$18 / MWh to costs
Resource Smart

Expansion of existing BC Hydro generation assets is one potential source of additional capacity

• Some large expansions available to serve load growth

<table>
<thead>
<tr>
<th>Resource Smart Option</th>
<th>Dependable Capacity (MW)</th>
<th>UCC ($/kW-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revelstoke Unit 6</td>
<td>488</td>
<td>59</td>
</tr>
<tr>
<td>Revelstoke Unit 6 – deferred 5-year</td>
<td>488</td>
<td>60</td>
</tr>
<tr>
<td>Revelstoke Unit 6 – deferred 8-year</td>
<td>488</td>
<td>66</td>
</tr>
<tr>
<td>GM Shrum Units 1-5 capacity increase</td>
<td>100</td>
<td>49</td>
</tr>
</tbody>
</table>

• Some smaller expansions are a by-product of reliability-focused investments

<table>
<thead>
<tr>
<th>Resource Smart Option</th>
<th>Dependable Capacity (MW)</th>
<th>UCC ($/kW-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alouette redevelopment</td>
<td>21</td>
<td>333</td>
</tr>
<tr>
<td>Falls River redevelopment</td>
<td>24</td>
<td>414</td>
</tr>
<tr>
<td>Seven Mile turbines 1-3 upgrade</td>
<td>48</td>
<td>174</td>
</tr>
<tr>
<td>Wahleach turbine replacement</td>
<td>14</td>
<td>28</td>
</tr>
</tbody>
</table>
Summary of Capacity Resources

Limited amount of Resource Smart, Natural Gas SCGT, Pumped Hydro and Batteries offer lowest cost capacity resources based on UCC
EPA Renewals – Energy Resource Potential

Almost 9,000 GWh of energy related to EPAs due to expire by 2040

Annual Energy - GWh / yr

- Gas Fired Thermal
- Non-Storage Hydro
- Biomass
- Storage Hydro
- Biogas
- ERG
- MSW
- Solar
- Wind
EPA Renewals – Capacity Resource Potential

Over 1,300 MW of dependable peak capacity is related to EPAs due to expire by 2040
EPA Renewal Options – Modelling and Renewal Strategy

Recognize high degree of uncertainty in characterizing options

• Each facility behind an EPA has unique characteristics and circumstances. Broad generalizations based on resource type, age and size of facility are subject to high degree of uncertainty.

• Portfolio modelling of each resource type allows us to gather insights about EPA renewal strategy, but cannot prescribe which specific EPAs to renew.

• Ultimately, an EPA Renewal Strategy will include considerations of financial, technical, Indigenous Nations relations, environmental and economic development.
EPA Renewal Options – Portfolio Modelling

As EPAs expire, BC Hydro may have several options

- Do Not Renew
- Agreement for remaining asset life
- Agreement for a renewed asset life
- Do Not Renew
- Agreement for a renewed asset life

Expiring EPAs

Later Options

- Do Not Renew
- Agreement for a renewed asset life
EPA Renewal Options – Portfolio Modelling

We’ll investigate which options are selected under different scenarios
Non-financial attributes of EPA renewals

Similar to IPP acquisitions in terms of the dimensions of impacts considered

- Not renewing an EPA will have impacts if that IPP ceases production
- Portfolio modelling will estimate and aggregate those implications to add to option comparisons

Tabulate portfolio attributes:
- Financial
- Social
- Environmental

Portfolio
Portfolio
Portfolio
Portfolio
Portfolio

BC Hydro
Power smart
Discussion Questions
Feedback sought from TAC members

• Questions or comments on BC Hydro’s proposed approach?
• Is BC Hydro missing some issues that need to be considered?
• Is there anything else that BC Hydro should be paying attention to when carrying out these analyses?
Distributed generation

Basil Stumborg, BC Hydro
Alex Tu, BC Hydro
Distributed Generation (DG) in the IRP

To present how the topic of DG will be incorporated into the IRP analysis

Roadmap for this topic of discussion:

• Assumptions and methodology about Customer-DG adoption
• Conclusions
• Use in the IRP
 o How is this captured in the Reference Load Forecast?
 o How does this overlap with Demand Side Management (DSM) programs, electrification scenarios?
 o How will this be used in load sensitivities?
Distributed Generation in the IRP

Assumptions and methodology

- Focus of Distributed Generation forecasts:
 - Customer owned rooftop solar

- Key drivers of uncertainty:
 - Solar costs
 - Customer attitudes
 - Economics of self-generation vs grid service

- Model constraints:
 - Net Metering Tariff structure

- For discussion – what has BC Hydro missed, or should look at differently?
Forecast of Customer Solar Adoption

At this time, DG growth is limited to customer solar through Net Metering Program
Forecast of Customer Solar Adoption

Economics of customer-driven solar is improving and driving uptake

Simple Payback (years) for City of Vancouver residential system
Forecast of Customer Solar Adoption

Our best estimate of customer solar would see ~1600 GWh of generation in 2050
Scenarios of Customer Solar Adoption

Adoption rates are sensitive to uncertainty of solar costs

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Economic Assumptions</th>
<th>Customer Assumptions</th>
<th>GWh/yr in 2030*</th>
<th>GWh/yr in 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Case</td>
<td>Solar Costs: moderate decline</td>
<td>Price Sensitivity: same as U.S. average</td>
<td>210 GWh/yr</td>
<td>1,600 GWh/yr</td>
</tr>
<tr>
<td>“Our best estimate growth of solar”</td>
<td>Installed cost for residential customers falls from $2.63/W DC today to $2.03/W DC in 2030</td>
<td>Customer Response to Solar: based on observed customer attitudes in Ontario from NREL survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BC Hydro Rates: 2.5% nominal annual increase until 2050</td>
<td>Net Metering Tariff: same as current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Cost Solar</td>
<td>Solar Costs: steep decline</td>
<td></td>
<td>260 GWh/yr</td>
<td>2,000 GWh/yr</td>
</tr>
<tr>
<td>“Massive growth of solar around the world, with new low-cost solar technology available”</td>
<td>Installed cost for residential customers falls from $2.63/W DC today to $1.50/W DC in 2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Cost Solar</td>
<td>Solar Costs: no decline</td>
<td></td>
<td>100 GWh/yr</td>
<td>250 GWh/yr</td>
</tr>
<tr>
<td>“Solar growth stalls around the world as incentives disappear and barriers to imported solar panels go up”</td>
<td>Installed costs remain at $2.63/W in nominal dollars</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenarios of Customer Solar Adoption

Adoption rates are moderately sensitive to Net Metering surplus energy rates and assumptions about customer attitudes

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Economic Assumptions</th>
<th>Customer Assumptions</th>
<th>GWh/yr in 2030*</th>
<th>GWh/yr in 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Metering Rate Re-Design</td>
<td>Net Metering Tariff: Elimination of under recovery of fixed infrastructure costs through establishment of fixed charge, demand charge or other mechanism</td>
<td></td>
<td>170 GWh/yr</td>
<td>1,100 GWh/yr ~10% of all residential customers have solar</td>
</tr>
<tr>
<td>Enthusiastic Customer Base</td>
<td></td>
<td>Customer Response to Solar: set to same as observed for electric vehicle uptake in Canada</td>
<td>670 GWh/yr</td>
<td>1,900 GWh/yr ~17% of all residential customers have solar</td>
</tr>
</tbody>
</table>

“BC Hydro levels the playing field, charging net metering customers for their use of the grid as a battery to store their surplus generation”

“B.C. population eagerly adopts solar despite the poor economics to demonstrate energy self-sufficiency”
Scenarios of Customer Solar Adoption

Adoption rates are moderately sensitive to Net Metering surplus energy rates and assumptions about customer attitudes

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Economic Assumptions</th>
<th>Customer Assumptions</th>
<th>GWh/yr in 2030*</th>
<th>GWh/yr in 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive Scenario considered by FortisBC</td>
<td>Straight-line annual growth, with 1/3 of residential and 1/2 of commercial customers adopting solar by 2040</td>
<td>Note: this scenario would also include a capacity contribution as storage grows, which has not been quantified</td>
<td>1,300 GWh/yr</td>
<td>~4,000 GWh/yr</td>
</tr>
<tr>
<td>“Combination of Customer Solar + Storage is an economically viable alternative to grid supply”</td>
<td></td>
<td>~40% of all residential customers have solar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Solar Panel On Every Viable Rooftop</td>
<td>Solar Costs: steep declines as described in the low cost solar scenario</td>
<td>Customer Response to Solar: set to same as observed for electric vehicle uptake in Canada</td>
<td>2,000 GWh/yr</td>
<td>7,000 GWh/yr</td>
</tr>
<tr>
<td>This scenario shows the assumptions necessary to achieve 100% adoption of solar by customers with viable roofs by 2050</td>
<td>BC Hydro Customer Rates: doubling by 2030</td>
<td>Every viable rooftop in the province has solar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60% of all residential customers have solar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenarios of Customer Solar Adoption

Reference Case solar growth is in the ‘middle of the pack’
Scenarios of Customer Solar Adoption

High-level conclusions from customer solar forecast

• General takeaways are that:
 o DG growth is likely manageable
 o Range of potential uptake does not warrant system-level concerns/investment in the near term
 o Potentially some local effects could require local investment in grid
 o Opportunities may exist for co-ordination of customer resources – solar, solar + storage, and/or customer demand response – to provide some local system benefits

• Questions / discussion
Distributed Generation in the IRP

How does distributed generation appear in the IRP analyses?

• In the Load Resource Balance
 o Reference Case load impact will be incorporated into the LRB
 o All customer-side resources assumed to have no peak energy contributions – customer-owned small hydro resources assumed negligible in the LRB context

• As a Demand-Side Resource Option
 o A notional customer solar incentive program has been defined to accelerate adoption of solar resources beyond Reference Case
 o This option will be tested as part of the Portfolio Analysis, with no commitment to pursue at this time

• As a strategic considerations
 o Assess the role of Net Metering in Resource Planning
 o Assess viability of DG as a Non-Wire Alternative to conventional distribution infrastructure
 o Assess prudent grid modernization investments to deal with or realize benefits from DG

• Questions / discussion
Distributed Generation in the IRP

How does distributed generation appear in the load sensitivities?

• General push in this IRP to think broadly about future uncertainties
 o DG is one driver that may erode load growth
 o This factor may evolve in surprising ways in the future

• BC Hydro will consider a low load scenario with accelerated and widespread DG uptake as a driver of load erosion
 o Could be in combination with:
 o Extended and deep COVID impacts
 o Flat to negative load trajectory
 o Low market prices (as DG accelerates in our export markets)

• Multiple variations on low load scenarios will not be pursued
Next steps

Basil Stumborg, BC Hydro
Next TAC Meetings

As outlined in the work plan discussion

• The project team will be modelling over the rest of the summer

• Preliminary results will be available in early September
 o The load resource balances will be presented
 o Some final inputs will also be available for discussion (planning criteria, market price forecasts).

• Some modelled portfolio results will be available towards the end of September

• The project team will be reaching out soon to secure dates on your calendar.
Pulse check regarding the work plan

Opportunity for TAC to provide feedback

• Several questions that the BC Hydro IRP team is interested in hearing from you about:
 o Full day meetings vs split up (two half-day meetings)?
 o How to balance information transfer and group discussion:
 o Model 1 – TAC does more pre-reading and meetings jump more quickly to discussions
 o Model 2 – BC Hydro dedicates more meeting time to detailed explanations, which leaves less work for TAC, but gives less time for discussion.
 o Two meetings in September achievable?

• Other comments, questions, or concerns?