Integrated Resource Plan

Appendix 3A-30

2013 Resource Options Report Update

Lower Mainland / Vancouver Island
Pumped Storage Report
and
North Coast Pumped Storage Report

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT

BC Hydro 333 Dunsmuir Street Vancouver, BC V6B 5R3

PREPARED BY

Knight Piésold Ltd. Suite 1400 – 750 West Pender Street Vancouver, BC V6C 2T8

Knight Piésold

VA103-313/1-1 Rev 0 November 30, 2010

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

Rev	Description	Date	Approved
0	Issued in Final	November 30, 2010	SRM

Knight Piésold Ltd.

Suite 1400

750 West Pender Street

Vancouver, British Columbia Canada V6C 2T8

Telephone: (604) 685-0543 Facsimile: (604) 685-0147 www.knightpiesold.com

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

EXECUTIVE SUMMARY

BC Hydro requested the services of Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the Lower Mainland and Vancouver Island region of southwest British Columbia.

The focusing question of this study is: "Are there potentially viable greenfield pumped storage hydroelectric sites in the Lower Mainland and Vancouver Island region of southwest British Columbia that are economically viable?"

The answer to this question is YES, there are numerous potential pumped storage sites that meet the basic criteria established for this study. The results of this study are summarized below, with each numbered paragraph below being a summary of the corresponding section of this report:

- 1. BC Hydro has conducted three previous assessments of pumped storage hydro potential in the Lower Mainland and Vancouver Island dating back to 1977. These studies have included site identification, costing and environmental consideration.
- 2. Freshwater pumped storage is the most prevalent form of pumped storage that has been developed worldwide to date, with approximately 127,000 MW in operation as of 2009. Only one conventional saltwater pumped storage facility is in operation worldwide (the 30 MW Okinawa Pumped Storage Facility in Japan), and there are no known operating underground pumped storage plants (i.e. with an underground reservoir). Each type of pumped storage facility is subject to permitting, financial and schedule risks, however saltwater and underground pumped storage have additional technical, environmental, permitting and schedule risks due to the lack of worldwide experience.
- 3. The screening assessment was limited to the area south of latitude 51°N and west of longitude 121°W. The following screening constraints were also applied:
 - a. Terrestrial parks were excluded from the assessment, but all other land use types were considered, such as marine parks, private land, and Indian reserves
 - b. Known salmon bearing rivers were excluded from the study (Chinook, Sockeye, Chum, Coho, Pink and/or Steelhead); however, salmon bearing lakes were considered in the assessment
 - c. Drinking water reservoirs and BC Hydro reservoirs were also considered in the assessment
 - d. The capacity threshold for the assessment was limited to 1,000 MW in the Lower Mainland and 500 MW on Vancouver Island
 - e. A minimum storage requirement was set at 6,000 MWh for 1,000 MW sites, and 3,000 MWh for 500 MW sites, equivalent to the water required for full plant generation output for 6 hrs; and

f. A loaded capital cost threshold at plant gate (no site access, transmission or interconnection costs were assessed in this study) of \$200/kW-yr was set for the assessment, based on a design life of 70 years and a discount rate of 6%.

194 sites in the Lower Mainland and Vancouver were identified using a combination of a GIS-based assessment tool and visual assessment. As anticipated, freshwater pumped storage was generally the most economical form of pumped storage, followed by saltwater and underground pumped storage. Compared to the most attractive freshwater and saltwater alternatives identified in this study, underground pumped storage is not cost competitive in BC. The identified sites fit into the following levelized cost ranges:

- Freshwater Pumped Storage
 - 45 projects were identified less than \$100 /kW-yr
 - o 54 projects were identified between \$100 \$125 /kW-yr
 - o 9 projects were identified between \$125 \$150 /kW-yr
 - o 9 projects were identified between \$150 \$175 /kW-yr, and
 - 4 projects were identified greater than \$175 /kW-yr.
- Saltwater Pumped Storage
 - 6 projects were identified less than \$100 /kW-yr
 - o 31 projects were identified between \$100 \$125 /kW-yr
 - o 27 projects were identified between \$125 \$150 /kW-yr
 - o 7 projects were identified between \$150 \$175 /kW-yr, and
 - 2 projects were identified greater than \$175 /kW-yr.
- Underground Pumped Storage
 - o A 'typical' underground pumped storage project is anticipated to cost in the range of \$230/kW-yr.

This study was limited in its scope based on the tight timeline associated with the deliverables, with the entire study being completed in less than 6 weeks. The level of detail and screening criteria used for this assessment can easily be updated, as the key components of the GIS assessment tool have now been developed. If this study is to be expanded upon, the following items are recommended. KPL is aware that some of these items are already underway as a follow-up to this study.

- Estimate the costs of transmission, interconnection and access to each alternative identified above in order to meaningfully be able to compare each identified site
- Conduct a system-wide study of the BC Hydro grid to determine the benefits/impacts of integrating pumped storage
- Determine the 'ideal' characteristics of a pumped storage facility, in terms of providing the maximum benefits to the BC Hydro system, improving export opportunities and firming of renewable (especially wind power) sources
- Conduct a screening assessment for the remaining portions of the province, especially where there is
 a high resource potential of intermittent renewable energy sources such as wind, run-of-river hydro,
 tidal and/or wave energy, and
- Conduct a more detailed assessment of the most favourable sites identified in this assessment.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

TABLE OF CONTENTS

		P/	AGE
EXECUTIV	E SUMI	MARY	1
TABLE OF	CONTE	:NTS	i
SECTION	1 O - INIT	RODUCTION AND BACKGROUND	1
1.1		DUCTION	
1.2		OUS STUDIES	
1.2	1.2.1	Pumped Storage in British Columbia – Preliminary Engineering Assessment, 197	
	1.2.2	Resource Smart - Pumped Storage in British Columbia, 1993	
	1.2.3	Vancouver Island Green Energy Study – Review of Pumped Storage and Tidal	
		Barrage Energy Generation, 2001	2
SECTION :	2.0 - TE	CHNOLOGY REVIEW	4
2.1	BACK	GROUND	4
2.2	FRESH	HWATER PUMPED STORAGE	4
	2.2.1	General Concept	4
	2.2.2	Worldwide Development Status	4
	2.2.3	Development Risks	5
2.3	SALTV	VATER PUMPED STORAGE	5
	2.3.1	General Concept	
	2.3.2	Worldwide Development Status	5
	2.3.3	Development Risks	
2.4	UNDE	RGROUND PUMPED STORAGE	
	2.4.1	General Concept	
	2.4.2	Worldwide Development Status	
	2.4.3	Development Risks	
2.5		ED STORAGE IN BRITISH COLUMBIA	
2.6		OPMENT SCHEDULE	
2.7	CLOSE	ED VERSUS OPEN SYSTEMS	7
SECTION	3 N - SC	REENING ASSESSMENT	a
		ENING CONSTRAINTS	
5.1	3.1.1	Spatial Limitations	
	3.1.2	Limitations on Generation Capacity	
	3.1.3	Minimum Storage Requirements	
	3.1.4	Environmental Limitations	
	3.1.5	Technical Constraints	

	3.1.6	Other Limitations and Constraints	11
3.2	SCREE	ENING ASSESSMENT RESULTS1	1
	3.2.1	Freshwater Site Identification	
	3.2.2	Saltwater Site Identification1	
	3.2.3	Underground Site Identification1	12
	3.2.4	Site Characterisation and Costing1	
3.3	PHOTO	DS AND SCHEMATICS OF TYPICAL PUMP STORAGE PROJECTS	4
SECTION	4.0 - CO	NCLUSIONS AND RECOMMENDATIONS1	16
SECTION	5.0 - RE	FERENCES1	17
SECTION	6.0 - CE	RTIFICATION1	18
		TABLES	
Table 2.1 F	Rev 0	Summary of Freshwater Pumped Storage Site > 1,000 MW Worldwide	
Table 3.1 Rev 0		Summary of Freshwater Pumped Storage Sites	
Table 3.2 F	Rev 0	Summary of Saltwater Pumped Storage Sites	
Table 3.3 F	Underground Mines in the Project Area		
Table 3.4 F	Rev 0	Development Cost Distribution by Pumped Storage Type	
		FIGURES	
Figure 2.1	Rev 0	Conceptual Development Schedule	
Figure 3.1	Rev 0	Study Area	
Figure 3.2	Rev 0	Salmon Bearing Lakes and Rivers in the Project Area	
Figure 3.3	Rev 0	Freshwater Pumped Storage Sites	
Figure 3.4		Saltwater Pumped Storage Sites	
Figure 3.5		Underground Mines in the Project Area	
Figure 3.6	Rev 0	Summary of Pumped Storage Potential	
		PHOTOS	
Photo 1		Schematic of Pumped Storage Scheme.	
Photo 2		Schematic of Single-Stage vs. Multistage Reversible Pump Turbines.	
Photo 3		Schematic of Pelton Unit Combined with Multistage Pump.	
Photo 4		Schematic of 3D Model of Underground Powerhouse.	
Photo 5		Spirit of Ireland Project – Artistic Rendition of Saltwater Pumped Storage Scheme.	
Photo 6		Okinawa Saltwater Pumped Storage Plant – Cutaway Model of Plant.	
Photo 7		Ingula Pumped Storage Scheme – CFRD Dam.	
Photo 8		Ingula Pumped Storage Scheme – Intake Tower Under Construction.	
Photo 9		Ingula Pumped Storage Scheme – Machine Hall Under Construction.	
Photo 10		Ingula Pumped Storage Scheme – Outlet Structure Under Construction.	

ii of iii

Photo 11	Example of "Crow's Nest" Upper Reservoir – Taum Sauk Facility, USA.
Photo 12	Example of "Crow's Nest" Upper Reservoir – Seneca Facility, USA.
Photo 13	Example of "Crow's Nest" Upper Reservoir - Dlouhé Stráně Facility, Czech Republic.
Photo 14	Aerial View of Okinawa Saltwater Pumped Storage Plant, Japan,

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

SECTION 1.0 - INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

BC Hydro requested the services of Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the Lower Mainland and Vancouver Island region of southwest British Columbia. This report discusses the results of the assessment.

1.2 PREVIOUS STUDIES

BC Hydro has commissioned three screening level studies of pumped storage hydroelectric potential in southwest British Columbia since 1977. A brief discussion of the findings of each study is presented in the following subsections.

1.2.1 Pumped Storage in British Columbia – Preliminary Engineering Assessment, 1977

In December 1977, BC Hydro and Power Authority completed a preliminary assessment of pumped storage hydroelectric potential in the Lower Mainland and Vancouver Island. The study was bound by the following constraints:

- The lower Mainland area was limited to approximately 150 km from Vancouver
- 2. Only sites capable of generating 500 MW or higher were considered, and
- 3. Both lower and upper reservoirs were required to have sufficient storage to operate on a weekly cycle.

The report identified approximately 80 sites that were deemed suitable for pumped storage development. Of these 80 sites, eight sites were selected (four on Vancouver Island and four in the Lower Mainland) based on their ability to generate 500 MW for 10 hours of continuous operation, the conduit length to head ratio and other considerations, such as interfering with park boundaries.

Overall design concepts were prepared on 1:50,000 scale mapping of the eight shortlisted sites. A helicopter reconnaissance and overview geological assessment was conducted for each site in order to identify the top two preferred sites on each of Vancouver Island and the Lower Mainland. The most attractive pumped storage sites were identified to be:

- 1. Lower Mainland Stave River Thomas Lake 1000 MW Development
- 2. Lower Mainland Harrison lake Slollicum Lake 1000 MW Development
- 3. Vancouver Island Buttle Lake Beadnell Lake 1000 MW Development, and
- 4. Vancouver island Great Central Lake Doran Lake 1000 MW Development.

Cost estimates of each development were generated, and ranged from \$249 million to \$326 million dollars (1977). This corresponds to an approximate development cost ranging from \$249/kW to \$324/kW.

It was noted in the study that "When it became apparent that there were a large number of good sites, the potential in the more remote areas of the Lower Mainland and north-western part of Vancouver Island was not pursued in detail."

1.2.2 Resource Smart - Pumped Storage in British Columbia, 1993

In March 1993, the Hydroelectric Engineering Division of BC Hydro re-evaluated the economics associated with the pumped storage alternatives that were identified in the 1977 study. The main objectives of the study were to:

- 1. Update the costs of the 1977 study
- 2. Obtain equipment costs from manufactures
- 3. Determine any significant change to pumped storage technology and costs, and
- 4. Conduct environmental assessments of the four sites identified in the 1977 study.

The results of the study indicated the following main findings:

- Development costs had increased from a range of \$249/kW \$324/kW to a range of \$635/kW \$773/kW.
- 2. The updated costs were similar to inflated 1977 costs.
- 3. Sites located in areas where increased peak capacity is required, would be most beneficial.
- 4. Advances in technology between 1977 and 1993 increased single unit capacities to approximately 300-330 MW. For single-stage reversible pump turbines, the maximum allowable head increased from 600 m in 1977 to approximately 900 m in 1993.
- 5. Pumped storage could be incorporated into existing BC Hydro facilities, such as Ash River, Wahleach, Bridge River and Cheakamus.
- 6. Peak vs. off-peak energy pricing should be included in future analyses.

1.2.3 <u>Vancouver Island Green Energy Study – Review of Pumped Storage and Tidal Barrage Energy</u> Generation, 2001

In September 2001, Klohn Crippen Consultants Ltd. completed a review of the pumped storage sites identified in the 1977 study. The purpose of the assessment was to identify the most cost effective development that would add a combined capacity of 200 MW to Vancouver Island. Sites in the Lower Mainland were not considered in the study.

Potential pumped storage sites identified in the 1977 study that were situated in parks were not considered in the assessment. An initial screening was completed, resulting in the selection of the seven most attractive sites for development. From these seven alternatives, the two best sites were chosen for a more detailed assessment and costing. The redevelopment of the Strathcona generating site was also considered in the detailed assessment and costing. The results of the study indicate the following main findings:

Shawnigan Site – 200 MW – Development cost of \$1200 /kW

- 2. Comox Site 200 MW Development cost of \$1270 /kW, and
- 3. Strathcona Redevelopment 200 MW Development cost of \$1230 / kW.

Environmental considerations were also described for each development alternative listed above.

SECTION 2.0 - TECHNOLOGY REVIEW

2.1 BACKGROUND

The concept of pumped storage is the generation of electricity by capturing the energy of water being transferred from a higher elevation upper reservoir, through turbine/generator units, into a lower elevation reservoir. The system is then reversed and the water from the lower reservoir is pumped back to the upper reservoir. Though the system is a net consumer of energy, it can be advantageous to developers/utilities by:

- Providing additional capacity during high-load hours when the cost of energy is greatest
- Increasing profitability by using low-value base load energy to pump water to the upper reservoir during low-load hours
- Providing grid stability by reducing the generation differential between high-load and low-load periods,
- Relieving constrained transmission components
- Providing voltage regulation, especially at the end of long transmission systems (i.e. the Peace River to Lower Mainland transmission network)
- Providing storage for intermittent renewable energy sources that cannot be dispatched on demand
- Providing backup capacity in the event of a planned or unplanned outage of another significant generation source connected to the grid, and/or
- Providing capacity for export.

The following subsections discuss some of the types of pumped storage, including their general concepts, development status and development risks. Comments on the state of pump-turbine technology are discussed as well as closed vs. open systems.

2.2 FRESHWATER PUMPED STORAGE

2.2.1 General Concept

Freshwater pumped storage simply refers to a pumped storage hydroelectric project where the upper and lower reservoirs impound only fresh water. Nearly all pumped storage development to date worldwide has primarily consisted of freshwater pumped storage.

2.2.2 <u>Worldwide Development Status</u>

Freshwater pumped storage is by far the most prevalent form of pumped storage that has been developed to date worldwide. Construction of freshwater pumped storage dates back to the early 1900s, when the first pumped storage plants came into operation in Italy and Switzerland. Since then, pumped storage development has increased with rising energy demand, and the increased need for peaking capacity.

The last thirty years has seen the largest growth of pumped storage development. Table 2.1 shows a list of operating projects greater than 1,000 MW in capacity that are known to be operating to date.

As of 2009, it was estimated that more than 127,000 MW of pumped storage capacity was operating worldwide, with some experts predicting future growth to be up to 60 percent over the next four years.

2.2.3 Development Risks

There are very few technical risks unique to freshwater pumped storage development that cannot be addressed through diligent planning and design. Freshwater pumped storage is a proven technology with projects operating worldwide, and as such, the predominant risks in development are similar to those of conventional hydropower development, or any large infrastructure project. Some of these risks include:

- Permitting risks Social acceptance and environmental impact
- Geotechnical risks
- Financial risks, and
- Schedule risks.

2.3 SALTWATER PUMPED STORAGE

2.3.1 General Concept

The concept of saltwater pumped storage is the same to that of freshwater pumped storage, with the exception that seawater is exchanged between the ocean and an upper reservoir instead of freshwater. The advantage of saltwater pumped storage over freshwater pumped storage is that construction of only one reservoir is needed. This allows for potential development of sites closer to load centres, where freshwater pumped storage may not be feasible due to unsuitable terrain or other constraints.

2.3.2 Worldwide Development Status

Only one "conventional" saltwater pumped storage plant exists worldwide: the Okinawa Pumped Storage Plant on the coast of Japan. The 30 MW plant was constructed as a demonstration project and consists of a lined upper reservoir that transfers water via a tunnel and fibre-reinforced plastic penstock through an underground powerhouse to the Pacific Ocean. The project, which commenced operation in 1999, has a net head of approximately 136 m, and consists of a single 30 MW reversible pump-turbine.

2.3.3 Development Risks

Due to the unique high corrosion environment of saltwater pumped storage projects, as well as the lack of worldwide experience in saltwater pumped storage, there are higher development risks than conventional freshwater pumped storage.

Some of these risks include:

- Corrosion protection of components exposed to sea water that are susceptible to rust
- Potential saltwater contamination of groundwater

- Prevention of marine growth in project waterways
- Potential requirement to line upper reservoir and install costly drainage collection system to prevent saltwater seepage into groundwater
- Potentially longer permitting timeline
- · Higher operating costs, and
- Higher equipment costs.

Initial feedback from some pump/turbine manufacturers indicates that corrosion protection of high head projects (gross head > 400 m) represents a much higher risk than low head projects (gross head < 400 m) due to the current technology of corrosion resistant austenitic stainless steel having a lower strength than traditional martensitic stainless steel. Further, these manufacturers believe that currently available coatings (including ceramic coatings traditionally used for abrasion protection) are not suitable for use in saltwater pump-turbines due to their brittle nature as well as low resistance to cavitation.

2.4 <u>UNDERGROUND PUMPED STORAGE</u>

2.4.1 General Concept

The concept of underground pumped storage is the same as conventional pumped storage, with the exception that one or both of the reservoirs are located underground in either natural or manmade caverns.

The concept of underground pumped storage has advanced in recent decades as the number of viable surface configurations have been reduced with development, as well as the increased environmental and social sensitivity associated with the disturbance caused by the construction of a conventional pumped storage scheme above ground.

2.4.2 Worldwide Development Status

To date there are no known operating "Underground Pumped Storage" projects (i.e. with the lower reservoir located underground). Concepts for such developments have been presented in both Canada and the USA, but none have proceeded to the construction phase to date.

Studies to date have considered the use of abandoned mines for reservoir storage, and others have considered excavation of a cavity large enough to meet reservoir requirements. In order to make the alternative more cost effective, abandoned mines or natural cavities could be used to meet the reservoir requirements.

Though conceptually feasible, the increased cost and higher technical risk of underground pumped storage development is much higher than other more economical energy alternatives. Prohibitive costs and underground geotechnical risks are the primary detractors from advancing underground pumped storage beyond feasibility study and into construction and operation.

2.4.3 <u>Development Risks</u>

Sources of technical risk for underground pumped storage development include:

- Higher volume and cost of excavation of underground reservoirs.
- Longer (more expensive) access tunnels and shafts.
- Longer (more expensive) and more complex ventilation requirements.
- Higher geotechnical risks, including:
 - Structural adequacy of the rock mass
 - o Permeability of the rock mass
 - Mineral content and contamination of the water supply, and
 - o Groundwater contamination.
- Disposal of large amount of excavated material (large spoil areas required).

2.5 <u>PUMPED STORAGE IN BRITISH COLUMBIA</u>

To date, there are no operating pump-storage generation stations in the province of British Columbia, or are there any under construction. Recently, some private companies have applied for water licenses in support of future pumped storage developments.

2.6 <u>DEVELOPMENT SCHEDULE</u>

Conceptual development schedules were prepared for each pumped storage type, and are shown on Figure 2.1. It should be noted that the development schedule for each particular pumped-storage alternative can be expected to vary significantly. The schedules shown on Figure 2.1 aim to show the differences in development timelines between the different pumped-storage types, and are not applicable to any particular site.

Some of the key differences in development schedules between the three pumped storage types are:

- Saltwater pumped storage may have longer lead time on equipment and materials due to anticorrosion requirements, permitting period extended since no projects have been completed to date in Canada or the USA; and
- Underground pumped storage has a longer timeline due to increased geotechnical investigations, longer construction timeline, potential challenges in permitting, and longer technical studies due to lack of worldwide experience (i.e. no reference projects built to date, and therefore likely extended due diligence requirements by financiers).

2.7 CLOSED VERSUS OPEN SYSTEMS

A "closed" pumped storage project refers to a design where the water used for generation and pumping is in a hydraulically closed loop. There are no (or minimal) inflows or discharges from either the upper or lower reservoir beyond seepage, evaporation, sublimation and direct rainfall.

An "open" pumped storage project refers to a design where a portion of the water used in generation or pumping comes from either natural runoff, or sources beyond the storage of the upper and lower reservoirs. Some of the following scenarios can be considered "open" systems:

- A pumped-storage plant that is integrated into an existing traditional hydroelectric plant
- A pumped-storage plant where either reservoir receives a significant portion of inflow from natural basin runoff, and
- A pumped-storage plant where either reservoir draws from or discharges to a natural lake or an existing river system.

Some "open" pumped storage projects can be converted to "closed" systems by constructing diversions around both the upper and lower reservoirs, similar to those used in tailings ponds in the mining industry. This hydraulically isolates each reservoir, and thus "closes" the system by eliminating external inflows.

SECTION 3.0 - SCREENING ASSESSMENT

3.1 SCREENING CONSTRAINTS

3.1.1 Spatial Limitations

The study area was limited to the Lower Mainland and Vancouver Island, defined as the area south of latitude 51°N and west of longitude 121°W. Within this study area, the following spatial limitations apply:

- Terrestrial parks and reserve areas will be EXCLUDED from the study area
- Marine parks will be INCLUDED in the study area
- Private land will be INCLUDED in the study area, and
- Indian Reserves will be INCLUDED in the study area.

A summary of the study area is shown on Figure 3.1.

3.1.2 <u>Limitations on Generation Capacity</u>

The original project terms of reference called for the identification of projects capable of generating a peak capacity of at least 100 MW. Due to the suspected large number of potential sites, this generating capacity threshold was increased to 1,000 MW for the Lower Mainland, and 500 MW for Vancouver Island, with the idea that should inadequate sites be found, the generation capacity threshold criteria would be lowered.

3.1.3 Minimum Storage Requirements

The minimum storage requirements for each pumped-storage facility was set at 6,000 MWh (the amount of water required for 6 hours of generation at 1000 MW capacity) for the Lower Mainland, and 3,000 MWh (the equivalent storage of 6 hours of generation at 500 MW capacity) for the 500 MW sites on Vancouver Island. The volume of water required to store this amount of energy varies by project, depending on the available head.

3.1.4 Environmental Limitations

Salmon bearing rivers were excluded from the study. The Fish Information Summary System (FISS) from the BC Ministry of Environment was used as the basis for known fish distribution data. Rivers with historical observances of Chinook, Sockeye, Chum, Coho, Pink and/or Steelhead were not considered in the screening assessment.

It should be noted that lakes and rivers with historical observations of Kokanee Salmon were not excluded from the study area, as several existing BC Hydro reservoirs contain this salmon species. Historical observances of any other fish species other than those listed above were ignored in the assessment.

Existing lakes with historical observances of Salmon were included in the assessment. However, these lakes were labelled as being salmon bearing in the assessment results. A summary of the fish distribution data for the salmon species mentioned above are shown on Figure 3.2.

For the saltwater pumped storage screening assessment this constraint was ignored.

3.1.5 Technical Constraints

As per the terms of reference, projects with a maximum real levelized cost greater than \$200/kW-year were to be excluded from the assessment. Since a cost estimate could not be completed until a potential site had been identified, additional constraints were necessary to eliminate unattractive sites prior to completing project capital cost estimates.

In order to determine the real levelized cost (\$/kW-year), the following was assumed:

- Design Life = 70 years, and
- Discount Rate = 6%.

Freshwater Lake-to-Lake Sites

The abundance of small lakes in combination with the steep topography, give south-western British Columbia a high potential for freshwater pumped-storage development. Due to this large potential, sites with the most attractive characteristics were targeted. These characteristics included:

- Existing lakes within a 5 km horizontal distance that could be used as an upper and lower reservoir respectively (i.e. waterway length is limited to approximately 5 km or less). In some instances, lakes with horizontal distances greater than 5 km were considered.
- Existing lakes with the capability of storing 6,000 MWh (or 3,000 MWh for the 500 MW sites on Vancouver Island) by constructing a maximum dam height of 20 m. In some instances, maximum dam heights exceeding 20 m were considered. Since no bathymetry data was obtained for the lakes in the study area, the depth-area-capacity curve for each lake could not be determined. As such, all storage was assumed to be constructed above the natural lake water level, with the following exceptions:
 - For BC Hydro reservoirs, lake drawdown was accepted, since existing operations draw down most reservoirs
 - For drinking water reservoirs, lake drawdown was accepted, since existing operations draw down most reservoirs, and
 - For large existing lakes, where the draw down would be minimal, draw down was accepted.

Freshwater "Crow's Nest" Sites

As historical developments have shown, existing lakes or reservoirs are not a pre-requisite for a successful pumped-storage development. Some reservoirs are created through the construction of a dam in an incised valley, or even by constructing perimeter dams on flat ground or around

natural depressions (i.e. "Crow's nest" sites). Since the combinations of dam locations and geometries are limitless, it was necessary to apply some screening constraints.

The same constraints were used for the identification of freshwater "Crow's nest" sites, including the 5 km maximum waterway length, the ability to store either 6,000 MWh (1000 MW sites) or 3,000 MWh (500 MW sites) by constructing a maximum embankment height of 20 m. In some instances, these constraints were exceeded. The same drawdown constraints were also applied.

Saltwater Pumped Storage Sites

The same constraints for the freshwater "Crow's nest" sites were applied to the screening assessment of saltwater pumped storage sites. Additionally, freshwater lakes were not considered as upstream reservoirs, due to the high environmental impact of pumping saltwater into a freshwater ecosystem. In some instances, upstream reservoirs were proposed in areas that contained either wetland or small ponds. Since it is difficult to determine at what size threshold this may not be permissible, a certain amount of judgement was required to satisfy this constraint.

<u>Underground Pumped-Storage Sites</u>

Due to the potentially smaller surface footprint of an underground pumped storage project, potential sites could potentially be located anywhere (though proximity to load centres, geological conditions and available spoil areas may drive site selection). To make the sites economically competitive however, they would potentially need to utilize existing underground caverns (such as those in abandoned underground mines) to save the costly expense of excavating a large cavern. Site identification was therefore limited to searches of active and abandoned underground mines in the study area.

3.1.6 Other Limitations and Constraints

- Existing BC Hydro reservoirs were INCLUDED in the study area, and
- Drinking water reservoirs were INCLUDED in the study area.

The potential impact of a potential pumped storage project on existing BC Hydro reservoirs and drinking water reservoirs was considered beyond the scope of this study.

3.2 <u>SCREENING ASSESSMENT RESULTS</u>

3.2.1 Freshwater Site Identification

Freshwater pumped-storage sites were identified using a combination of an automated GIS search, and a visual assessment. For the automated GIS search, KPL developed a pumped-storage assessment tool, which identified existing lakes that could be developed into pumped storage projects while meeting the constraints listed in Section 3.1. These constraints could be varied in order to identify projects of different characteristics. The tool analyzes a pair of existing

lakes by extracting their elevation, area and proximity. It then calculated whether their head differential and surface area were sufficient to meet the characteristics of the constraints mentioned in Section 3.1.

As mentioned in Section 3.1, sites were also identified by visual assessment of the areas in the vicinity of the largest existing lakes and BC Hydro reservoirs. The visual assessment was conducted by examining digital TRIM and NTS mapping for incised valleys or plateaus surrounding largest freshwater lakes in the study area. Sites were flagged and then characterised in the same manner as the sites identified using the automated GIS search (discussed in Section 3.2.4). A summary of the results are shown in Table 3.1. Similarly, the identified sites can be seen on Figure 3.3.

The sites listed in the above tables are considered the most attractive sites in the study area, and range in gross head from 42 m to 1590 m. Many of the identified sites in the Lower Mainland area are clustered around existing lakes and BC Hydro reservoirs, as the larger lower reservoir in many cases eliminated the need for construction of a lower impoundment, thus making the projects more economically viable. Further, the large lower reservoir provides adequate storage for projects of ranging gross head.

3.2.2 Saltwater Site Identification

Saltwater pumped-storage sites were identified through a visual assessment of the coastline for high-elevation depressions, incised valleys and/or plateaus. Utilizing existing lakes as upper reservoirs was not deemed suitable for site identification, since the environmental impacts of pumping saltwater into an existing freshwater lake were deemed too great.

The potential saltwater sites identified ranges in gross head from 180 m to 1670 m. The majority of the saltwater pumped storage sites are located in the Lower Mainland, since coastal Vancouver Island contains numerous coastal parks on the west coast, and lacks steep topography near the coastline on a large portion of the east coast.

The identified saltwater pumped storage sites are shown in Table 3.2 and Figure 3.4.

3.2.3 <u>Underground Site Identification</u>

Table 3.3 shows a list of current and historical underground mines in the project area. These sites are shown on Figure 3.5. The assessment of the feasibility of underground pumped storage at these active/abandoned underground mines is considered beyond the scope of this assessment.

In order to determine the cost competitiveness of a greenfield underground pumped storage project, KPL completed a cost estimate of a "generic" underground pumped storage plant with the following characteristics:

• The upper reservoir would consist of an existing lake with adequate storage (6,000 MWh), therefore eliminating the requirement to construct a reservoir

12 of 18

- New underground lower reservoir (no existing underground cavern or abandoned underground mine considered) corresponding to a volume of 6,000 MWh of storage, and
- Gross head = 750 m. This gross head was selected because it is approximately equal to the highest achievable gross head of single-stage reversible pump turbines.

The estimated cost of such a "generic" development, which was considered to have very favourable characteristics, was approximately 230 \$/kW-yr. Compared to the most attractive freshwater and saltwater alternatives identified in this study, underground pumped storage is not cost competitive in BC.

3.2.4 Site Characterisation and Costing

Each site was characterised in order to determine the project properties, which were then used as the basis of the cost estimate for each alternative. The main parameters of the characterisation include overall project parameters (gross head, design flow, capacity) reservoir parameters (required storage volume, reservoir area, embankment height and length, embankment volume), and waterway parameters (length, diameter, lining requirements). A summary of the parameters for each site is shown in Tables 3.1 and 3.2.

Cost estimates were prepared for each identified pumped storage alternative by developing a cost template of unit rates for project components. The unit rates used in the costing were based on experience from other recent projects, as well as budget quote information from pump/turbine suppliers. All costs are in 2010 dollars. The capital cost esimates do not include transmission, interconnection or access to the site. BC Hydro indicated to KPL that these costs would be determined by others, and should not be considered in this assessment.

The costs for each site are presented as loaded capital costs (based on the schedules presented in Figure 2.1, a discount rate of 6%, and a cost distribution as presented in Table 3.4). Cost per MW installed, cost per MWh stored, and levelized capital cost (\$/kW-yr) were also determined. The costs for each site are summarized in Tables 3.1 and 3.2. As indicated, costs range from \$77/kW-yr (\$1.3 billion loaded capital cost) to \$213/kW-yr (\$3.3 billion loaded capital cost) for 1000 MW facilities. This is in the range of \$1,300 to \$3,300 per kW installed. A breakdown of the cost ranges is shown below:

Freshwater Pumped Storage

- 45 projects were identified less than \$100 /kW-yr
- 54 projects were identified between \$100 \$125 /kW-yr
- 9 projects were identified between \$125 \$150 /kW-yr
- o 9 projects were identified between \$150 \$175 /kW-yr, and
- 4 projects were identified greater than \$175 /kW-yr.

Saltwater Pumped Storage

- 6 projects were identified less than \$100 /kW-yr
- o 31 projects were identified between \$100 \$125 /kW-vr
- o 27 projects were identified between \$125 \$150 /kW-yr
- o 7 projects were identified between \$150 \$175 /kW-yr, and

- o 2 projects were identified greater than \$175 /kW-yr.
- Underground Pumped Storage
 - A favourable pumped storage project is anticipated to cost in the range of \$230/kW-yr.

As mentioned previously, the costs above do not include transmission, interconnection or access to the site. As such, it would not be prudent to compare the above sites purely on a cost basis until these additional costs have been determined. Ultimately, the cost of transmission, interconnection and access will favour those sites closer to the load centres or major transmission lines in the Lower Mainland and Vancouver Island.

The cost breakdown varied by each project, but is summarized below as average percentages of the total estimated capital cost.

- Freshwater pumped storage
 - o 17% Mob, Demob, Insurance, Bonds, Overhead, Contractor's Profits
 - o 6% Permitting and Design
 - o 24% Generation equipment and switchyard (this ranged from 14%-30%, depending on the project)
 - o 31% Construction costs (this ranged from 25%-41%, depending on the project), and
 - o 22% Contingency.
- Saltwater Sites:
 - o 17% Mob, Demob, Insurance, Bonds, Overhead, Contractor's Profits
 - o 6% Permitting and Design
 - o 27% Generation equipment and switchyard (this ranged from 15%-32%, depending on the project)
 - o 28% Construction costs (this ranged from 23%-40%, depending on the project), and
 - o 22% Contingency.

Operation and maintenance costs were also estimated for each site. These costs were described as a percentage of the total estimated capital cost (2010 dollars) as follows:

- Freshwater pumped storage sites, 1000 MW 1.0%
- Freshwater pumped storage sites, 500 MW 1.5%, and
- Saltwater pumped storage sites, 1000 MW 2.0 %.

PHOTOS AND SCHEMATICS OF TYPICAL PUMP STORAGE PROJECTS 3.3

Attached with this report are several schematics and photos of 'typical' developments as well as photos from recent KPL experience. A description of the photos/schematics and the applicability to this study are below.

Photo 1 is a schematic of a typical pumped storage scheme. The schematic could apply to both freshwater and saltwater pumped storage projects.

Photo 2 is a schematic of single-stage and multistage pump turbines. The single-stage pump turbine is applicable to the sites identified in this study that have a gross head approximately less than or equal to 750 m. The multistage pump turbine is applicable to sites with a gross head greater than 750 m.

14 of 18

Photo 3 is a schematic of a powerhouse where the pelton turbine is combined with a submersible pump. They are connected such that the two can be run simultaneously in order to be dispatched nearly instantaneously, such as for spinning reserve. Though not applicable to any particular project identified in this study, pumped storage facilities can be designed with this concept.

Photo 4 is a rendition of a three dimensional computer model of the underground works of a pumpedstorage powerhouse. The schematic includes the powerhouse cavern, inlet valve hall, waterway tunnels, transformer gallery, surge chambers (pump mode) and access tunnels. This schematic is applicable to all sites identified in this study.

Photos 5 and 6 are applicable to all saltwater pumped storage projects. Photo 5 is an artistic rendition of the Spirit of Ireland Project, which KPL has been recently involved. Photo 6 is a photo of a physical model of the Okinawa Pumped Storage Plant in Japan. The cutaway shows the reservoir, tunnel, underground powerhouse and access shaft.

Photos 7 - 10 are from the Ingula Pumped Storage Scheme in South Africa, which KPL has been a part of the design team. The photos show the upper dam, intake tower, underground works and outlet structure during construction. This 1,334 MW project is similar in scale to a potential 1000 MW development in south western BC.

Photos 11 – 14 show different "Crow's Nest" reservoirs from various projects around the world (USA, Japan and Czech Republic). These are applicable to the "Crow's Nest" reservoirs that have been identified in this study.

SECTION 4.0 - CONCLUSIONS AND RECOMMENDATIONS

South-western British Columbia has a high technical potential for freshwater and saltwater pumped storage development, due to the steep topography and existence of hundreds of large natural lakes and man-made reservoirs. The vast coastline also yields a high potential for numerous saltwater pumped storage sites, especially near the Lower Mainland.

Approximately 194 sites were identified in the Lower Mainland and Vancouver Island, ranging from 500 MW to 1,000 MW in installed capacity as shown on Figure 3.6. Each site has the capability of storing the equivalent of 6 hrs at full output (3,000 MWh for a 500 MW site, and 6,000 MWh for a 1,000 MW site). Cost estimates were prepared for sites (at the plant gate, not including transmission, interconnection or access to the site), which ranged from \$77/kW-year to \$213/kW-yr. Within that range, projects were divided into the following levelized capital cost brackets:

Freshwater Pumped Storage

- 45 projects were identified less than \$100 /kW-yr
- 54 projects were identified between \$100 \$125 /kW-yr
- 9 projects were identified between \$125 \$150 /kW-yr
- 9 projects were identified between \$150 \$175 /kW-yr, and
- 4 projects were identified greater than \$175 /kW-yr.

Saltwater Pumped Storage

- 6 projects were identified less than \$100 /kW-yr
- 31 projects were identified between \$100 \$125 /kW-yr
- 27 projects were identified between \$125 \$150 /kW-yr
- 7 projects were identified between \$150 \$175 /kW-yr, and
- 2 projects were identified greater than \$175 /kW-yr.

Underground Pumped Storage

A 'typical' underground pumped storage project is anticipated to cost in the range of \$230/kW-yr.

Should BC Hydro wish to pursue further pumped storage potential in BC, KPL recommends the items below. KPL is aware that some of these items are already underway as a follow-up to this study.

- Estimate the costs of transmission, interconnection and access to each alternative identified above in order to meaningfully be able to compare each identified site
- Conduct a system-wide study to determine the benefits/impacts of integrating pumped storage into the BC Hydro grid
- Determine the 'ideal' characteristics of a pumped storage facility, in terms of providing the maximum benefits to the BC Hydro system, improving export opportunities and firming of renewable (especially wind power)
- Conduct a screening assessment for the remaining portions of the province, especially where there is
 a high resource potential of intermittent renewable energy sources such as wind, run-of-river hydro,
 solar, tidal and/or wave energy, and
- Conduct a more detailed assessment of the most favourable sites identified in this assessment.

SECTION 5.0 - REFERENCES

American Society of Civil Engineers. 1989. *Civil engineering guidelines for planning and designing hydroelectric developments.* Volume 5, Pumped Storage and Tidal Power. New York, NY: American Society of Civil Engineers.

American Society of Civil Engineers. 1993. *Compendium of Pumped Storage Plants in the United States*. New York, NY: American Society of Civil Engineers.

BC Hydro and Power Authority. 1977. Pumped storage in British Columbia preliminary engineering assessment.

BC Hydro. 1993. Pumped storage in British Columbia.

Deane, J.P., Ó Gallachóir, B.P. & McKeogh, E.J. (2010). Techno-economic review of existing and new pumped hydro energy storage plant. *Renewable and Sustainable Energy Reviews*, 14, 1293-1302.

Elizabeth A. Ingram. 2010. Worldwide pumped storage activity. Retrieved September 21, 2010, from www.hydroworld.com.

Klohn Crippen Consultants Ltd. 2001. Review of Pumped Storage and Tidal Barrage Energy Generation.

Task Committee on Pumped Storage. *Hydroelectric pumped storage technology international experience*. New York, NY: American Society of Civil Engineers.

SECTION 6.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

Prepared: Nov 30, 2010

Tom Furst, P.Eng. Project Engineer

Reviewed:

Sam Mottram, P.Eng. Specialist Hydropower Engineer

Approved:

Jeremy Haile, P.Eng. President

This report was prepared by Knight Piésold Ltd. for the account of BC Hydro. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

18 of 18

VA103-313/1-1 Rev 0 November 30, 2010

TABLE 2.1

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SUMMARY OF FRESHWATER PUMPED STORAGE SITES > 1000 MW WORLDWIDE

Print: 11/30/2010 10:25

_	I	ı		rint: 11/30/2010 10:25
ID	Station	Country	Location	Capacity (MW)
	FRESHWATER PUMPED STORAGE			
	Operating Projects			
1	Tumut-3	Australia		1,500
2	Coo Hydroelectric Power Station(fr)	Belgium	50°23'12" N 5°51'26" E	1,164
3	Sir Adam Beck Hydroelectric Power Stations	Canada	43°08'51" N 79°02'42" W	1,600
4	Bailianhe Hydroelectric Station	China		1,224
5	Baoquan Pumped Hydroelectric Station	China		1,200
6	Guangdong Pumped Storage Power Station	China	23°45'52" N 113°57'12" E	2,400
7	Heimifeng Pumped Storage Power Station	China		1,200
8	Huhhot Dam	China		1,200
9	Liyang Hydroelectric Power Station	China		1,000
10	Pushihe Pumped Storage Power Station	China		1,200
11	Taian Pumped Storage Power Station	China		1,000
12	Tianhuangping Pumped Storage Power Station	China		1,800
13	Tongbai Pumped Storage Station	China		1,200
14	Xiangshuijian Pumped Storage Station	China		1,000
15	Xianyou Pumped-storage Power Station	China		1,200
16	Xilongchi Pumped Storage Power Station	China		1,200
17	Yixing Pumped Storage Power Station	China		1,000
18	Zhanghewan Pumped Storage Station	China		1,000
19	Zhuhai Pumped Storage Station	China		1,800
20	Grand Maison Dam	France		1,070
21	Goldisthal Hydroelectric Power Station	Germany		1,060
	Markersbach Dam Tehri Pumped Storage Power Station	Germany India	30°22'40" N 78°28'50" E	1,050 1,000
23	Siah Bisheh Dam	India	30 22 40 19 /0 20 30 E	1,000
25	Chiotas Dam	Iran Italy		1,140
26	Lago Delio Hydroelectric Station	Italy		1,040
27	Piastra Edolo Pumped Storage Station	Italy		1,040
28	Presenzano Pumped Storage Power Station	Italy		1,000
29	Imaichi Dam	Japan		1,050
30	Kazunogawa Dam	Japan		1,600
31	Matanoagawa Pumped Storage Station	Japan		1,200
32	Ohkawachi Pumped Storage Power Station	Japan		1,280
33	Okukiyotsu Pumped Storage Power Station	Japan		1,040
34	Okumino Pumped Storage Power Station	Japan		1,036
35	Okutataragi Pumped Storage Power Station	Japan		1,932
36	Okuyoshino Pumped Storage Power Station	Japan		1,206
37	Shimogo Pumped Storage Power Station	Japan		1,040
38	Shin Takasegawa Pumped Storage Station	Japan		1,280
39	Shintoyone Dam	Japan	35°07'33" N 137°45'38" E	1,125
40	Tamahara Pumped Storage Power Station	Japan		1,200
41	Kruonis Pumped Storage Plant	Lithuania	54°47'56" N 24°14'51" E	1,600
42	Vianden Pumped Storage Plant	Luxembourg		1,100
43	Kaishador Pumped Storage Station	Russia		1,600
44	Zagorsk Pumped Storage Station	Russia		1,200/1,320
45	Drakensberg Pumped Storage Scheme	South Africa	28°34'23" S 29°05'13" E	1,000
46	Ingula Pumped Storage Scheme	South Africa		1,332
47	Yangyang Pumped Storage Power Station	South Korea		1,000
48	Grande Dixence Dam	Switzerland	46°04'50" N 07°24'14" E	2,069
49	Minghu Dam	Taiwan		1,000
50	Mingtan Dam	Taiwan		1,602
51	Tashlyk Hydro-Accumulating Power Station	Ukraine	5000710711 11	1,494
52	Dinorwig Power Station	United Kingdom	53°07'07" N 04°06'50" W	1,728
53	Bad Creek Hydroelectric Station	United States	35°0'40" N 83°0'52" W	1,065
54	Bath County Pumped Storage Station	United States	38°12'32" N 79°48'00" W	2,772
55	Blenheim-Gilboa Hydroelectric Power Station	United States	42°27'18" N 74°27'29" W	1,057
56	Castaic Dam	United States	34°31'09" N 118°36'25" W	1,566
57	Helms Pumped Storage Project	United States	420E2127" N 06006142" W	1,200
58 59	Ludington Pumped Storage Power Plant	United States United States	43°53'37" N 86°26'43" W	1,872
	Mount Elbert		20°49'20" N 76°47'54" \\	1,412 1,071
60	Muddy Run Pumped Storage Facility Northfield Mountain	United States United States	39°48'29" N 76°17'54" W 42°36'36" N 72°26'50" W	1,071
62	Pyramid Lake	United States United States	34°38'39" N 118°45'51" W	1,080
63	Raccoon Mountain Pumped-Storage Plant	United States United States	35°02'55" N 85°23'48" W	1,495
64	Rocky Mountain Hydroelectric Plant	United States United States	34°20'41" N 85°18'14" W	1,046
- 04	roomy mountain riguroelectric Flant	Office States	04 20 41 14 00 10 14 W	1,040
 	Projects Under Construction	1		
1	Lima	South Africa		1,470
2	Dniester Pumped Storage Power Station U/C	Ukraine		2,268
3	Huizhou Pumped Storage Power Station U/C	China	23°16'07" N 114°18'50" E	2,400
4	Kannagawa Hydropower Plant U/C	Japan	36°00'18" N 138°39'09" E	2,820
5	Limmern Pumped Storage Project U/C	Switzerland	20 00 10 11 100 00 00 E	1,000
6	Jixi Pumped Storage Project	China		1,800
Ť		J		1,000
	SALTWATER PUMPED STORAGE			
1	Okinawa Seawater Pumped Storage Power Station	Japan		30
	03\00313\01\A\Data\Task 100 - Technology Review\[Table		Sites greater 1000MW view19ho	
141. / 1 //	20,000.00 Translation 100 - reciliology heriew (rabit	i umpeuotorage	Choc_groutor_roodivivv.hiskjolle	···

| 0 | 25NOV10 | ISSUED WITH REPORT VAL03:133/1-1 | TMF | SRM | JPH | REV | DATE | DESCRIPTION | PREPD | CHKD | APPD

Knight Piésold

TABLE 3.1

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SUMMARY OF FRESHWATER PUMPED STORAGE SITES

Name	Latitude Longitude Latitude Longitude Capacity	Location Salt/Fresh Pure/Mix	FISS - Drinking Upper Upper Reservo Salmon Water Type Reservoir Rase Flevation	r Upper Reservoir Upper Upper Reservoir Approx Crest Length Catchment Area Run		Lower Reservoir Base Elevation Dam Crest Length Lower Reservoir Drawdown (if no	Lower Storage Storage Reservoir Requirement Requirement	2D Waterway Length Gross Head H/L Ratio Design Flow (Generation)	Design Flow Pumping Generatio (Pumping), 70% of Pump/Turbine Duration at Duration a	on Development and at Construction Capital Cost Cost (Loa	Estimated Upper Lower Staging/Lay Spoil Road: aded Capital Stored Energy Cost Operating Reservoir Footprint Footprint Jown Footprint Footprint Footprint Footprint Stored Energy Cost Operating Reservoir Footprint Foot
Hame	dd mm ss.s dd mm ss.s dd.dddd dd.dddd MW	LM/VI	Bearing Reservoir Area Y/N Y/N ha masl	Height Salesiment Area Kan	Inflow ha	masl m m	n) Dam Height Requirement Requirement m m3 MWh	m m % m3/s	Generation Flow Type Peak Output Peak Output m3/s hrs hrs	out Time Cost Cost Cost Cost Cost Cost Cost Cost	st/Capacity) Cost Footprint Footprin
Alouette-Stave Antimony - John George	N49 22 55.1 W122 18 13.8 49.38196 122.30383 1000 N50 07 50.5 W121 50 56.9 50.1307 121.84914 1000	LM Fresh Mixed	d N N Lake to Lake 1650.0 126 d N N Lake to Lake 20.4 1867	0 6.2 202 97 350 20.9 2.2 50	0.6% 5640 0.1% 23.5	84 0 1.22 1120 400	0.0 68,528,941 6,000 18.4 3,853,033 6,000	1400 42 3% 3173 4400 747 17% 178	2221 Single-Stage 8.6 6 125 Multi-Stage 8.6 6	8 2,659,319,370 3,022,162,689 3 8 1,287,477,562 1,463,143,800 1	3,022,163 503,694 184.5 26,593,194 12.0 0.0 6.5 0.0 6.0 9.0 2.1 1,463,144 243,857 89.3 12,874,776 6.5 1.5 6.0 1.5 6.0 6.5 7.5
Appleton Battle - Fraser	N49 57 00.2 W124 32 56.8 49.95005 124.54912 1000 N50 41 30.6 W126 19 38.0 50.69183 126.32722 1000	LM Fresh Pure LM Fresh Mixed	N Y Man Made 30.0 440 Y N Lake to Lake 115.0 319	1700 27.0 0.3 33 500 12.9 6.2 67	0.0% 12445 0.1% 94	56 0 0.06 89 400	0.0 7,495,353 6,000 15.3 12,513,980 6,000	500 384 77% 347 3600 230 6% 579	243 Single-Stage 8.6 6 406 Single-Stage 8.6 6	8 1,708,452,145 1,941,557,071 1 8 1,669,431,377 1,897,212,225 1	1,941,557 323,593 118.5 17,084,521 10.5 9.1 0.5 0.0 6.0 4.6 3.8 1,897,212 316,202 115.8 16,694,314 8.4 1.4 9.4 1.3 6.0 6.5 5.4
Battle - Loose Beavertail - Campbell	N50 45 00.9 W126 22 45.9 50.75025 126.37943 1000 N50 00 42.9 W125 31 14.7 50.01191 125.52074 500	VI Fresh Mixed	1 Y N Lake to Lake 115.0 319 1 N Y Lake to Lake 105.4 274	500 11.1 6.2 67 2300 16 6.4 49	0.1% 283 0.0% 2435.9	179 0 0.62	5.7 10,466,238 6,000 3 15,148,503 3,000	2800 275 10% 485 3000 95 3% 701	339 Single-Stage 8.6 6 491 Single-Stage 8.6 6	8 1,514,326,226 1,720,9444,189 8 1,532,625,828 1,741,740,629 3	1,720,944 286,824 105.0 15,143,262 7.0 1.3 4.4 0.5 6.0 6.0 4.2 3,483,481 580,580 212.6 22,989,387 10.7 8.0 2.2 0.0 6.0 6.4 4.5
Berkeley - Heydon Berkely - Glendale Blinch - Stave	N50 33 21.7 W125 38 29.7 50.55603 125.64157 1000 N50 36 57.4 W125 38 15.1 50.61594 125.63753 1000 N49 26 18.7 W122 13 36.5 49.43853 122.22681 1000	LM Fresh Mixed	1 Y N Lake to Lake 93.9 798 1 Y N Lake to Lake 93.9 798	200 6.2 3.3 33 200 6.2 3.5 33	0.1% 813 0.1% 122	73 1200	5.3 3,969,952 6,000	4400 762 17% 175 4100 725 18% 184	122 Multi-Stage 8.6 6 129 Multi-Stage 8.6 6	8 1,530,735,876 1,739,592,808 8 1,241,851,041 1,411,291,898 4 1,731,417,019 1,332,044,370	1,739,593 289,932 106.2 15,307,359 2.8 0.3 0.9 0.0 6.0 6.5 7.6 1,411,292 235,215 86.1 12,418,510 2.9 0.3 2.6 1.9 6.0 6.3 7.3 1,233,044 233,007 24.3 14.731,470 2.0 1.7 0.4 0.0 6.0 6.2 6.0
Bookhout - Great Central Bookhout 2	N49 19 48.4 W125 06 14.6 49.3301 125.10405 1000 N49 19 36 2 W125 03 33 1 49.32673 125.05919 1000	VI Fresh Pure	Y N Lake to Man Made 20.0 960	1585 18.6 0.2 13.	2 0.0% 5301 2 0.0% 5301	95 0 0.06	0.0 4,195,649 6,000 0.0 3,327,417 6,000	1900 865 46% 154	136 Sitigle-Glage 0.6 6 108 Multi-Stage 8.6 6	8 1,482,621,375 1,684,913,460 1	1,535,044 222,007 81.3 11,721,179 3.9 1.7 0.4 0.0 6.0 6.2 6.9 1,684,913 280,819 102.8 14,826,214 20.0 6.2 0.3 0.0 6.0 5.1 8.7 1,411,709 235,285 86.2 12,422,181 20.0 7.2 0.4 0.0 6.0 4.8 7.1
Booknout 2 Boomerang - Hibbard Bradburn - Forbes1	N51 02 04.3 W127 01 51.0 51.03452 127.03084 1000 N50 15 31.3 W124 28 37.6 50.2587 124.47712 1000	LM Fresh Mixed	N N Lake to Man Made 20.0 600 N N Lake to Lake 124.1 131	325 25.2 6.6 75 550 46.4 2.0 86	0.0% 5301	31 700	13.3 28,782,155 6,000	2700 100 4% 1333	933 Single-Stage 8.6 6	8 1,242,216,115 1,411,709,056 8 2,116,492,164 2,405,270,588 2	1,411,709 233,285 86.2 12,422,181 20.0 7.2 0.4 0.0 6.0 4.8 7.1 2,405,271 400,878 146.8 21,164,922 19.0 1.6 12.9 2.1 6.0 7.1 4.1 4.98 010 247,893 00.7 43,093,407 7.4 4.0 4.4 0.4 6.0 5.6 4.1
Bradburn - Forbes 1 Bradburn - Forbes2 Bradburn - Powell	N50 15 31.3 W124 25 37.8 50.26008 124.47712 1000 N50 15 36.3 W124 27 32.8 50.26008 124.45912 1000 N50 12 10.4 W124 24 15.9 50.2029 124.40441 1000	LM Fresh Mixed	N N Lake to Lake 49.2 1125	550 20.3 2.9 86 550 7.5 2.0 86	0.1% 130.5 0.1% 56.9	806 650 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.9 9,022,619 6,000	3000 319 11% 418 5900 1069 18% 125	292 Single-Stage 8.6 6 87 Multi-Stage 8.6 6	8 1,467,173,266 1,667,357,577 1	1,460,619 247,605 90.7 13,065,107 7.4 1.9 4.4 0.4 0.0 3.6 4.1 1,667,358 277,893 101.8 14,671,733 9.5 2.3 8.8 2.4 6.0 6.0 4.5 1.640,857 273,476 100.1 14.438,540 2.8 1.1 0.2 0.0 6.0 7.2 10.7
Burwell - Seymour Butchart - Goldstream	N49 26 50.7 W122 58 08.1 49.44741 122.96892 1000 N48 30 52.5 W123 37 58.4 48.51458 123.6329 500	LM Fresh Mixed	N Y Lake to Lake 45.2 1123	534 15.2 3.6 98 3000 21 3.2 36	0.2% 12445 0.1% 262.6	364 0 2.32 457 600	0.0 6,085,022 6,000 20 12,735,467 3,000	2000 473 24% 282 2200 113 5% 590	197 Single-Stage 8.6 6	8 1,478,556,673 1,680,204,161	1,337,597 222,933 81.6 11,770,040 6.6 1.8 2.7 0.0 6.0 5.3 4.7 3366,588 560,088 205.1 22.178,350 11.3 12.7 11.1 2.5 6.0 5.8 3.3
Butchart - Sooke Camp Cove	N48 33 59.2 W123 40 37.9 48.56644 123.6772 1000 N49 22 11.3 W121 50 21.9 49.36981 121.83941 1000	VI Fresh Mixed	N Y Lake to Lake 67.8 570	500 13.0 3.2 36 250 17.6 2.3 57	0.0% 593.6 0.0% 32263	183 0 1.25	0.0 7,437,249 6,000	3100 387 12% 344 1100 369 24% 361	241 Single-Stage 8.6 6	8 1,387,278,584 1,576,561,892 1	5,505,652 262,760 96.2 13,872,786 6.6 1.4 2.2 0.0 6.0 5.9 4.7
Camp cove Carpenter - Seton Centre - Lower Eldrid	N50 43 51.3 W122 14 17.8 50.73091 122.23829 1000 N50 09 37.2 W124 08 34.8 50.16033 124.14301 1000	LM Fresh Mixed	Y Y Lake to Lake 4672.0 909	0 2.1 3703 24	44.4% 2504 0.1% 17.9	243 0 0.17 575 523	0.0 4,321,645 6,000	4800 666 14% 200 2000 920 46% 145	140 Single-Stage 8.6 6	8 1,266,011,320 1,438,748,658 1 1 301,533,757 1,581,307,640	1,438,749 239,791 87.8 12,660,113 0.4 0.0 0.6 0.0 6.0 6.7 7.2
Chickwat - Lower Tzoonie Chusan - Daniels	N49 52 44.3 W123 37 17.9 49.87897 123.62164 1000 N50 24 38.7 W124 18 08.0 50.41074 124.30223 1000	LM Fresh Mixed	1 N N Lake to Lake 68.2 1588	600 5.5 2.3 10 575 16.8 2.2 86	5 0.2% 19.3 0.0% 183	369 300 1229 700	14.2 2,361,128 6,000 8.4 11,795,965 6,000	3300 1219 37% 109 1300 244 19% 546	77 Multi-Stage 8.6 6 382 Single-Stage 8.6 6	8 1,350,744,837 1,535,043,401 1	1,535,043 255,841 93.7 13,507,448 2.0 0.9 4.0 0.9 6.0 5.9 12.2 1544,696 257,449 94.3 13,592,383 9.6 2.0 6.2 1.5 6.0 5.3 2.4
Chusan - Upper Powell Clover - Powell	N50 24 37.5 W124 15 23.8 50.41041 124.2566 1000 N50 04 33.0 W124 28 58 5 50.07583 124 48293 1000	LM Fresh Mixed	M N Lake to Lake 79.9 1473	580 18.6 2.2 86 750 63.1 10 33	0.0% 80.3 0.0% 12445	1256 520 56 0 0.30	18.5 13,263,666 6,000 0.0 37,379,422 6,000	3900 217 6% 614 1400 77 6% 1731	430 Single-Stage 8.6 6	8 1,763,961,589 2,004,640,344 2 8 2,315,865,787 2,631,847,552 2	2,004,640 334,107 122.3 17,639,616 10.9 2.3 10.8 2.0 6.0 6.7 5.9 2.631,848 438,641 160.6 23,158,658 38.6 8.7 2.4 0.0 6.0 7.0 2.1
Clowhom 1 Comox 1	N49 42 59.9 W123 32 30.4 49.71663 123.54177 1000 N49 35 16.7 W125 10 24.1 49.58796 125.17337 1000	LM Fresh Pure	N N Lake to Man Made 8.8 841 Y Y Lake to Man Made 20.0 920	915 43.7 1 10 1585 20.3 9.2 85	5 0.1% 748.1 0.5% 2118	57 0 0.49 133 0 0.17	0.0 3,671,193 6,000 0.0 3,671,199 6,000	2600 784 30% 170 2600 787 30% 169	119 Multi-Stage 8.6 6	8 1,629,436,549 1,851,760,415 1 8 1,838,362,374 2,089,192,534	1,851,760 308,627 113.0 16,294,365 8.8 7.6 1.0 0.0 6.0 5.5 7.8 2,089,193 348,199 127.5 18,383,624 20.0 6.6 0.6 0.0 6.0 5.5 7.9
Deserted - Un-named Dodd - Powell	N50 10 07.2 W123 40 08.8 50.16866 123.66911 1000 N50 01 15.1 W124 19 44.0 50.02086 124.3289 1000	LM Fresh Mixed	M N Lake to Lake 45.3 1531	330 8.1 2.9 86 350 5.1 63.6 33	0.2% 14.5 0.2% 554.3	487 225 56 230	21.0 2,756,911 6,000 6.0 22,140,119 6,000	5200 1044 20% 128 4000 130 3% 1025	89 Multi-Stage 8.6 6 718 Single-Stage 8.6 6	8 1,483,681,328 1,686,118,036 1 8 2,059,005,858 2,339,941,095	1,686,118 281,020 102.9 14,836,813 3.0 0.7 5.6 1.0 6.0 6.9 10.4 2.339,941 389,990 142.8 20.590,059 5.9 0.5 6.7 0.4 6.0 7.3 6.0
Dodd-Goat Doran - Great Central	N50 01 28.8 W124 17 47.4 50.02465 124.2965 1000 N49 20 32.5 W125 17 20.4 49.34237 125.289 1000	LM Fresh Mixed	M N Lake to Lake 722.0 186	700 5.1 63.6 33	0.2% 12445	56 0 0.18	0.0 22,140,119 6,000 0.0 4,953,899 6,000	4000 130 3% 1025 2800 581 21% 229	718 Single-Stage 8.6 6	8 2,062,602,461 2,344,028,427 2 8 1,434,677,334 1,630,427,830	2,344,028 390,671 143.1 20,626,025 5.9 1.1 1.4 0.0 6.0 7.3 6.0 1630,428 271,738 99.5 14,346,773 4.3 3.2 0.5 0.0 6.0 5.7 5.8
Doran Neighbour Elephant - Lois	N49 20 42.0 W125 15 50.5 49.34501 125.26404 1000 N49 50 08.3 W124 14 39.1 49.83565 124.24419 1000	VI Fresh Mixed	Y N Lake to Man Made 15.7 876	1000 25.5 4.4 13. 1663 18.9 0.22 33	2 0.3% 5301	95 0 0.07 133 0 0.15	0.0 3,685,295 6,000 0.0 3,718,625 6,000	2400 781 33% 171 3600 774 22% 172	119 Multi-Stage 8.6 6	8 1,532,982,746 1,742,146,246 1 8 1,621,936,184 1,843,236,684	1,742,146 290,358 106.3 15,329,827 15.7 5.1 0.4 0.0 6.0 5.4 7.8 1.843,237 307,206 112.5 16.219.362 22.0 6.5 0.5 0.0 6.0 7.7
Elsie - Ash Florence - Stave	N49 25 28.1 W125 06 25.0 49.42448 125.10695 500 N49 21 28.6 W122 19 00.9 49.35793 122.31691 1000	VI Fresh Mixed	N N Lake to Lake 645.1 337	1000 4 238 43 2030 33.1 1.1	2.0% 59.7 0.0% 5640.8	206 1400 84 0 0.18	20 10,985,555 3,000 0,0 10,063,691 6,000	3700 131 4% 509 783 286 37% 466	356 Single-Stage 8.6 6 326 Single-Stage 8.6 6	8 1,392,249,316 1,582,210,841 3 8 1,585,100,491 1,801,375,049	3,164,422 527,404 193.1 20,883,740 3.1 1.3 10.5 5.9 6.0 6.4 5.6 1,801,375 300,229 109.9 15,851,005 13.7 13.0 1.0 0.0 6.0 4.9 2.9
Freda Frogpond - Powell	N49 21 28.6 W122 19 00.9 49.35793 122.31991 1000 N49 54 33.9 W124 17 04.0 49.90941 124.28444 1000 N50 01 41.4 W124 24 45.6 50.02816 124.41268 1000	LM Fresh Pure	N N Man Made 100.0 360	2300 16.7 1 33 432 7.3 7.8	0.0% 403.8 0.1% 12445	164 600 56 0 0.05	5.6 14,684,773 6,000 0.0 6,396,034 6,000	1000 196 20% 680 2200 450 20% 206	476 Single-Stage 8.6 6 207 Single-Stage 8.6 6	8 1,618,132,689 1,838,914,232 1 8 1,74,593,365 1,334,857,430	1,838,914 306,486 112.2 16,181,327 10.7 8.2 5.2 1.0 6.0 5.3 2.0 1.334,857 222,476 81.5 11.745,934 4.2 0.8 0.4 0.0 6.0 5.4 4.5
Gibson Goat	N49 16 45.0 W125 11 55.1 49.27915 125.19865 1000 N50 00 03.5 W124 29 25.9 50.00097 124.49053 1000	VI Fresh Mixed	Y N Lake to Man Made 15.0 1040	1373 21.0 0.15 10 1500 14.3 0.4 33	3 0.0% 4238 0.0% 12445	32 0 0.07 56 0 0.04	0.0 2,855,373 6,000 0.0 4,928 451 6,000	5000 1008 20% 132 1500 584 39% 228	93 Multi-Stage 8.6 6 160 Single-Stage 8.6 6	8 1,642,920,261 1,867,083,875 1 8 1,540,626,770 1,750,833,237	1,867,084 311,181 114.0 16,429,203 15.0 5.9 0.3 0.0 6.0 6.8 10.1 1,750,833 291,806 106.9 15,406,268 5.7 4.7 0.3 0.0 6.0 5.0 5.8
Godt Goldstream - Sooke Goldstream - Sooke	N48 31 14.4 W123 41 50.2 48.52066 123.69728 1000 N48 32 10.7 W123 41 50.2 48.5363 123.69728 500	VI Fresh Mixed	1 N Y Lake to Lake 71.5 457	730 16.7 12.7 36 800 9 12.7 36	0.1% 593.6 0.2% 593.6	183 1400 183 500	3.8 10,504,436 6,000 3 5.252,218 3,000	5000 274 5% 486 5900 274 5% 243	340 Single-Stage 8.6 6 170 Single-Stage 8.6 6	8 1,687,352,588 1,917,578,645 1 8 1,171,784,965 1,331,665,855 2	1,750,635
Griffin - Glendale Gun - Downton	N50 36 53.8 W125 37 18.9 50.61495 125.6219 1000 N50 49 58.2 W122 52 25.6 50.83282 122.87378 1000	LM Fresh Mixed	Y N Lake to Lake 45.6 666 N N Lake to Lake 578.2 883	230 12.6 3.5 33 950 5.7 43 28	0.1% 122 0.1% 2242 3	73 1200 747 0 0.94	6.0 4,853,652 6,000 0.0 21,163,349 6,000	3400 593 17% 225 2500 136 5% 980	157 Single-Stage 8.6 6 686 Single-Stage 8.6 6	1,111,101,000	1,448,337 241,389 88.4 12,744,482 5.2 0.7 3.1 2.0 6.0 6.0 5.9 2,033,487 338,915 124.1 17,893,451 6.3 1.5 3.2 0.0 6.0 6.5 3.8
Gun-Carpenter Havnon - Chochiwa	N50 52 40.5 W122 49 37.6 50.87792 122.8271 1000 N50 06 01.0 W121 51 29.1 50.10029 121.85808 1000	LM Fresh Mixed	d Y N Lake to Lake 578.2 883	950 4.3 43 28 400 20.0 2.1 50	0.2% 4672 0.1% 64.1	671 0 0.29 1095 485	0.0 13,576,488 6,000 8.4 4.076,793 6,000	1500 212 14% 629 3400 706 21% 189	440 Single-Stage 8.6 6 132 Multi-Stage 8.6 6	8 1,418,810,078 1,612,395,610 8 1,165,474,388 1,324,494,248	1,612,396 268,733 98.4 14,188,101 4.0 1.3 1.4 0.0 6.0 5.5 2.3 1.324,494 220,749 80.8 11,654,744 6.5 1.7 3.7 1.0 6.0 5.9 7.1
Heather - Cowichan Heather - Kissinger	N48 55 26.3 W124 26 59.0 48.92397 124.44971 1000 N48 55 16.5 W124 28 52.2 48.92124 124.48117 500	VI Fresh Mixed VI Fresh Mixed	1 Y N Lake to Lake 31.8 990 1 N N Lake to Lake 31.8 990	300 13.0 0.9 75 350 8 0.9 75	0.0% 6229 0.1% 12.5	164 0 0.06 192 1000	0.0 3,484,522 6,000 16 1,803,393 3,000	5500 826 15% 161 5300 798 15% 83	113 Multi-Stage 8.6 6 58 Multi-Stage 8.6 6	8 1,686,803,116 1,916,954,202 8 1,162,239,888 1,320,818,427 2	1,916,954 319,492 117.0 16,868,031 4.5 0.9 0.3 0.0 6.0 7.0 8.3 2,641,637 440,273 161.2 17,433,598 2.3 0.7 3.9 3.5 6.0 6.8 8.0
Henderson High Falls - Powell	N49 06 29.2 W125 05 15.5 49.1081 125.08763 1000 N50 09 43.3 W124 21 27.0 50.16204 124.3575 1000	VI Fresh Mixed	1 Y N Lake to Man Made 40.0 560 1 N Y Lake to Lake 40.2 1125	2242 15.7 0.4 13 570 8.7 4.4 86	3 0.0% 1549 0.3% 12445	35 0 0.35 56 0 0.02	0.0 5,482,315 6,000 0.0 2,692,437 6,000	1500 525 35% 254 3100 1069 34% 125	178 Single-Stage 8.6 6 87 Multi-Stage 8.6 6	8 1,304,886,067 1,482,927,560 8 1,334,747,150 1,516,862,955	1,482,928 247,155 90.5 13,048,861 40.0 7.6 1.0 0.0 6.0 5.0 5.3 1,516,863 252,810 92.6 13,347,472 3.1 1.2 0.2 0.0 6.0 5.8 10.7
Holyoak - Holland Irving - Uun-named	N48 56 39.3 W123 51 47.3 48.94424 123.86314 500 N49 37 39.7 W126 19 18.6 49.6277 126.32182 1000	VI Fresh Mixed VI Fresh Mixed	1 N N Lake to Lake 21.1 1055 1 N N Lake to Lake 66.1 626	1130 19 1.2 55 200 9.3 2.7 13	0.0% 43.5 3 0.2% 34.2	657 840 33 150	10 3,615,849 3,000 16.2 4,853,652 6,000	6100 398 7% 167 3000 593 20% 225	117 Single-Stage 8.6 6 157 Single-Stage 8.6 6	8 1,187,997,225 1,350,090,151 2 8 1,187,093,434 1,349,063,044	2,700,180 450,030 164.8 17,819,958 5.9 4.5 4.0 2.0 6.0 7.3 9.2 1,349,063 224,844 82.3 11,870,934 4.3 0.5 6.1 0.5 6.0 5.8 5.9
Isabel - Pitt Kaipit - Zeballos	N49 29 36.6 W122 34 16.2 49.4935 122.57116 1000 N50 05 06.9 W126 44 42.5 50.08524 126.74515 1000	LM Fresh Mixed VI Fresh Mixed	1 Y N Lake to Lake 32.0 617 1 N N Lake to Lake 98.5 550	300 20.6 2.4 11: 200 15.5 14.9 13:	3 0.1% 5339 3 0.3% 198.5	134 0 0.11 333 300	0.0 5,959,038 6,000 8.7 13,263,666 6,000	2200 483 22% 276 5200 217 4% 614	193 Single-Stage 8.6 6 430 Single-Stage 8.6 6	8 1,270,704,182 1,444,081,824 8 1,884,961,658 2,142,149,926 2	1,444,082 240,680 88.1 12,707,042 7.9 1.3 0.6 0.0 6.0 5.4 4.8 2,142,150 357,025 130.7 18,849,617 9.7 0.7 6.7 0.6 6.0 7.4 7.8
Keary - Carpenter Kenyon - Stave	N50 50 03.5 W122 28 16.5 50.83431 122.47125 1000 N49 24 09.0 W122 16 20.0 49.40249 122.27222 1000	LM Fresh Mixed LM Fresh Mixed	H Y N Lake to Lake 87.3 1759 H N N Lake to Lake 27.8 659	200 5.0 20.9 7 440 20.0 2.4 97	0.1% 4672 0.1% 5640.8	671 0 0.06 84 0 0.09	0.0 2,645,419 6,000 0.0 5,005,592 6,000	6800 1088 16% 122 2000 575 29% 232	86 Multi-Stage 8.6 6 162 Single-Stage 8.6 6	8 1,568,330,180 1,782,316,560 8 1,138,379,527 1,293,702,505	1,782,317 297,053 108.8 15,683,302 2.0 0.3 0.3 0.0 6.0 7.7 10.9 1,293,703 215,617 79.0 11,383,795 7.1 1.8 0.5 0.0 6.0 5.2 5.8
Knight - Fourth Lake of the Mountains - Georgie	N49 04 11.6 W124 25 00.5 49.06988 124.41682 500 N50 45 35.4 W127 44 08.5 50.75982 127.73569 1000	VI Fresh Mixed VI Fresh Mixed	H N N Lake to Lake 15 855 H N N Lake to Lake 180.0 309	320 20 2.1 78 690 20.6 15.8 62	0.1% 200.9 0.1% 465.1	323 260 223 550	3 2,705,090 3,000 9.2 33,467,622 6,000	5500 532 10% 125 3100 86 3% 1549	88 Single-Stage 8.6 6 1085 Single-Stage 8.6 6	8 1,019,750,273 1,158,887,218 2 8 2,426,643,879 2,757,740,448 2	2,317,774 386,296 141.5 15,296,254 5.4 1.3 1.4 0.3 6.0 6.9 8.3 2,757,740 459,623 168.3 24,266,439 18.1 2.9 11.1 1.2 6.0 7.6 4.7
Lewis - Dodd Lewis - Horseshoe	N49 57 21.8 W124 19 00.4 49.95607 124.31679 1000 N49 55 16.1 W124 18 06.0 49.92114 124.30166 1000	LM Fresh Mixed LM Fresh Mixed	I N N Lake to Lake 90.3 414 I N N Lake to Lake 90.3 414	500 16.0 18.9 33 500 14.7 18.9 33	0.1% 722 0.1% 403.8	186 550 164 600	3.7 12,623,752 6,000 4.9 11,512,862 6,000	2500 228 9% 584 5400 250 5% 533	409 Single-Stage 8.6 6 373 Single-Stage 8.6 6	1,177,000,070	1,679,442 279,907 102.5 14,778,067 9.7 1.7 3.3 0.7 6.0 5.9 3.8 1,956,462 326,077 119.4 17,215,675 8.8 1.6 4.1 0.9 6.0 7.4 8.1
Lewis - Nanton Lookout - Harrison	N49 55 05.3 W124 19 49.7 49.91815 124.33046 1000 N49 24 49.7 W121 45 56.0 49.41381 121.76556 1000	LM Fresh Mixed LM Fresh Mixed	H N N Lake to Lake 90.3 414 H Y Y Lake to Lake 10.7 1377	500 15.0 18.9 33 1000 21.7 0.4 57	0.1% 105.4 0.0% 22263	169 500 11 0 0.01	13.1 11,747,818 6,000 0.0 2,107,039 6,000	4600 245 5% 544 3600 1366 38% 98	381 Single-Stage 8.6 6 68 Multi-Stage 8.6 6	8 1,667,889,464 1,895,459,930 1 8 1,574,483,756 1,789,309,744	1,895,460 315,910 115.7 16,678,895 9.0 1.6 8.3 1.5 6.0 7.0 6.9 1,789,310 298,218 109.2 15,744,838 5.1 4.4 0.1 0.0 6.0 6.0 13.7
Loquilts - Un-named Marshall - Carpenter	N50 11 12.6 W123 40 58.6 50.18683 123.68295 1000 N50 53 24.3 W122 36 19.5 50.89009 122.60541 1000	LM Fresh Mixed	H N N Lake to Lake 47.1 1346 H Y N Lake to Lake 63.2 1146	400 18.5 4 86 275 11.6 21.1 28	0.1% 58.2 0.2% 4672	975 230 671 0 0.13	15.3 7,757,993 6,000 0.0 6,059,401 6,000	4900 371 8% 359 3600 475 13% 281	251 Single-Stage 8.6 6 196 Single-Stage 8.6 6	8 1,535,515,132 1,745,024,156 8 1,240,313,995 1,409,545,134	1,745,024 290,837 106.5 15,355,151 8.4 1.5 7.4 0.8 6.0 6.9 7.4 1,409,545 234,924 86.0 12,403,140 5.5 0.7 0.6 0.0 6.0 6.1 5.4
McVey- Khartoum Mystery - Harrison	N49 54 02.6 W124 05 28.0 49.90073 124.09111 1000 N49 31 41.8 W121 53 13.8 49.52829 121.88717 1000	LM Fresh Mixed	H N N Lake to Lake 91.0 920 H Y Y Lake to Man Made 19.5 380	370 6.0 3.3 86 400 42.0 18.3 57	0.2% 482.3 0.3% 22263	133 0 0.76 11 0 0.04	0.0 3,657,199 6,000 0.0 7,800,042 6,000	5700 787 14% 169 3200 369 12% 361	119 Multi-Stage 8.6 6 253 Single-Stage 8.6 6	8 1,563,281,954 1,776,579,543 8 1,511,499,910 1,717,732,244	1,776,580 296,097 108.4 15,632,820 2.7 0.6 1.2 0.0 6.0 7.1 8.6 1,717,732 286,289 104.8 15,114,999 19.5 3.2 0.4 0.0 6.0 6.0 4.8
Nimpkish 1 Nimpkish 2	N50 30 10.4 W127 01 25.1 50.5029 127.02365 1000 N50 21 16.8 W126 55 51.0 50.35467 126.93085 1000	VI Fresh Mixed VI Fresh Mixed	H Y N Lake to Man Made 15.1 975 H Y N Lake to Man Made 40.0 900	1380 22.0 0.15 67 2242 10.2 0.4 67	0.0% 3814 0.0% 3814	25 0 0.08 25 0 0.09	0.0 3,029,701 6,000 0.0 3,289,389 6,000	3200 950 30% 140 3800 875 23% 152	98 Multi-Stage 8.6 6 107 Multi-Stage 8.6 6	8 1,562,180,057 1,775,327,302 8 1,549,163,926 1,760,535,221	1,775,327 295,888 108.4 15,621,801 15.1 6.2 0.3 0.0 6.0 5.8 9.5 1,760,535 293,423 107.5 15,491,639 40.0 5.4 0.4 0.0 6.0 6.1 8.8
North Bonanza North Harrison	N50 22 50.8 W126 46 44.2 50.38078 126.77893 1000 N49 44 47.3 W122 07 00.8 49.74647 122.11689 1000	VI Fresh Mixed LM Fresh Mixed	d Y N Lake to Man Made 40.0 622 d Y Y Lake to Man Made 4.2 1601	500 22.5 10.3 67 530 45.1 1.1 57	0.2% 915 0.1% 22263	271 0 0.90 11 0 0.01	0.0 8,200,044 6,000 0.0 1,810,198 6,000	2000 351 18% 380 4800 1590 33% 84	266 Single-Stage 8.6 6 59 Multi-Stage 8.6 6	8 1,382,905,754 1,571,592,423 1 8 1,634,633,923 1,857,666,931	1,571,592 261,932 95.9 13,829,058 40.0 2.3 1.9 0.0 6.0 5.4 3.5 1,857,667 309,611 113.4 16,346,339 4.2 4.5 0.1 0.0 6.0 6.7 15.9
North Henderson Oliphant - Shawnigan	N49 07 14.5 W125 05 24.4 49.1207 125.09012 1000 N48 36 00.4 W123 37 23.1 48.60012 123.62309 1000	VI Fresh Mixed VI Fresh Mixed	H Y N Lake to Lake 45.7 460 H Y N Lake to Lake 21.5 421	400 16.8 4.1 13 1600 46.2 2.8 44	3 0.2% 1549 0.0% 541	35 0 0.44 118 0 1.76	0.0 6,772,272 6,000 0.0 9,499,061 6,000	1800 425 24% 314 3400 303 9% 440	219 Single-Stage 8.6 6 308 Single-Stage 8.6 6	8 2,139,202,085 2,431,079,470 2	1,576,169 262,695 96.2 13,869,332 7.4 1.4 1.2 0.0 6.0 5.2 4.3 2,431,079 405,180 148.4 21,392,021 17.0 13.9 2.9 0.0 6.0 6.2 5.1
Palisade - Seymour Peneplain - Coquitlam	N49 26 43.3 W122 58 16.1 49.44537 122.97113 1000 N49 26 06.2 W122 45 32.2 49.43505 122.75894 1000	LM Fresh Mixed LM Fresh Mixed	d N Y Lake to Lake 56.3 895 d N Y Lake to Lake 28.2 967	70 11.6 2.4 98 400 14.5 2.1 130	0.1% 262.6 0 0.2% 1199.6	364 0 2.06 152 0 0.29	0.0 5,420,368 6,000 0.0 3,531,553 6,000	3700 531 14% 251 3700 815 22% 163	176 Single-Stage 8.6 6 114 Multi-Stage 8.6 6	8 1,207,930,159 1,372,742,777 1 8 1,375,305,577 1,562,955,261	1,372,743 228,790 83.8 12,079,302 5.2 0.2 2.4 0.0 6.0 6.2 5.6 1,562,955 260,493 95.4 13,753,056 4.9 1.3 0.7 0.0 6.0 6.1 8.2
Pointer - Hornet Pointer - Loose	N50 46 30.0 W126 26 05.2 50.77501 126.43477 1000 N50 45 30.9 W126 23 20.7 50.7586 126.38908 1000	LM Fresh Mixed LM Fresh Mixed	d N N Lake to Lake 75.0 411 d Y N Lake to Lake 75.0 411	200 12.5 2.3 79 450 12.5 2.3 67	0.0% 44.7 0.0% 283	46 160 44 300	19.6 7,885,522 6,000 4.8 7,842,549 6,000	2500 365 15% 365 830 367 44% 363	256 Single-Stage 8.6 6 254 Single-Stage 8.6 6	8 1,273,631,078 1,447,408,072	1,506,813 251,135 92.0 13,259,035 6.6 0.6 8.8 0.6 6.0 5.7 3.8 1,447,408 241,235 88.3 12,736,311 6.6 1.3 3.3 0.4 6.0 4.8 3.7
Potato - Un-named Powell 1	N50 09 05.5 W123 41 17.9 50.15154 123.68829 1000 N50 00 29.4 W124 33 48.6 50.00817 124.5635 1000	LM Fresh Mixed LM Fresh Pure	M N Lake to Lake 23.7 1038 N Y Lake to Man Made 100.0 1000	1000 17.4 6 86 980 5.0 1.7 86	0.3% 103.9 0.1% 12445	248 600 56 0 0.02	5.5 3,643,311 6,000 0.0 3,048,957 6,000	4900 790 16% 169 5900 944 16% 141	118 Multi-Stage 8.6 6 99 Multi-Stage 8.6 6	1,754,750,104	1,689,651 281,609 103.1 14,867,905 5.6 3.7 2.5 1.0 6.0 6.7 7.9 1,754,056 292,343 107.1 15,434,628 100.0 1.5 0.2 0.0 6.0 7.2 9.4
Powell 2 Powell 3	N49 59 52.7 W124 33 49.5 49.99797 124.56374 1000 N50 03 04.1 W124 31 59.0 50.05115 124.53304 1000	LM Fresh Pure LM Fresh Pure	N Y Lake to Man Made 60.0 840 N Y Lake to Man Made 21.7 720	835 8.1 1.6 86 1650 22.0 21.7 86	0.1% 12445 0.9% 12445	56 0 0.03 56 0 0.03	0.0 3,671,193 6,000 0.0 4,334,662 6,000	1700 784 46% 170 3500 664 19% 201	119 Multi-Stage 8.6 6 140 Single-Stage 8.6 6	8 1,333,701,423 1,515,674,546	1,565,012 260,835 95.5 13,771,152 60.0 1.7 0.2 0.0 6.0 5.0 7.8 1,515,675 252,612 92.5 13,337,014 21.7 7.4 0.3 0.0 6.0 6.0 6.6
Powell 4 Powell 5	N50 06 32.6 W124 25 54.0 50.10906 124.43166 1000 N50 00 36.0 W124 22 33.8 50.01001 124.37605 1000	LM Fresh Mixed LM Fresh Mixed	d N Y Lake to Man Made 18.3 728 d N Y Lake to Man Made 26.5 493	460 25.4 3.9 86 915 26.9 5.4 86	0.2% 12445 0.2% 12445	56 0 0.03 56 0 0.05	0.0 4,283,059 6,000 0.0 6,586,306 6,000	3900 672 17% 198 1800 437 24% 305	139 Single-Stage 8.6 6 213 Single-Stage 8.6 6	8 1,362,304,981 1,548,180,836	1,425,929 237,655 87.0 12,547,309 18.3 2.3 0.3 0.0 6.0 6.2 6.7 1,548,181 258,030 94.5 13,623,050 26.5 4.9 0.4 0.0 6.0 5.2 4.4
Pretty Girl - Ellen Quimper - Bulson	N49 18 41.0 W125 43 22.6 49.31139 125.72295 500	VI Fresh Mixed	d N N Lake to Lake 141.2 317 d N N Lake to Lake 18.6 739	250 10.4 17.4 13. 800 18 1.3 12	3 0.4% 95.9 0.1% 33.3	74 300 261 225	14.4 11,844,508 6,000 11 3,010,686 3,000	4200 243 6% 548 2600 478 18% 139	98 Single-Stage 8.6 6	8 1,626,049,767 1,847,911,533 1 8 952,708,170 1,082,697,745 2	2,165,395 360,899 132.2 14,290,623 5.3 3.0 3.8 0.6 6.0 5.4 4.8
Salsbury - Stave Sechelt - Henriette	N49 21 34.0 W122 16 28.9 49.35944 122.2747 1000 N49 40 24.8 W123 20 21.0 49.67354 123.33917 1000	LM Fresh Mixed	N N Lake to Lake 111.3 1183	1200 12.6 3.9 9/ 1800 9.7 4 100 700 18.7 1.8 86		84 0 0.15 847 400	0.0 8,294,569 6,000 17.1 8,566,118 6,000	4100 347 8% 384 3800 336 9% 397	269 Single-Stage 8.6 6 278 Single-Stage 8.6 6	8 1,521,882,363 1,729,531,303	1,708,497 284,750 104.3 15,033,739 6.8 3.4 0.8 0.0 6.0 6.5 6.2 1,729,531 288,255 105.6 15,218,824 5.8 4.2 8.3 1.4 6.0 6.4 5.7
Skwim - Freda Sliammon - Powell	N49 56 16.3 W124 32 48.9 49.93787 124.54691 1000		d Y Y Lake to Lake 175.8 126	700 18.7 1.8 86 575 25.4 43.4 33	0.1% 60.1 0.1% 12445	627 400 56 0 0.33 57 0 0.30	9.4 4,441,691 6,000 0.0 41,117,364 6,000 0.0 2,257,424 6,000	4000 648 16% 206 1400 70 5% 1904	144 Single-Stage 8.6 6 1333 Single-Stage 8.6 6 73 Multi-Stage 8.6 6	8 2,220,236,979 2,523,170,941 2	1,403,301 233,883 85.6 12,348,193 6.5 2.7 4.1 0.9 6.0 6.3 6.5 2,523,171 420,528 154.0 22,202,370 22.7 2.9 2.6 0.0 6.0 7.2 2.1 1,572,235 262,039 96.0 13,834,716 5.3 2.0 0.6 0.0 6.0 6.0 12,8
Slippery - Clowhom Slollicum - Harrison	N49 44 35.5 W123 28 15.5 49.74318 123.47097 1000 N49 24 08.6 W121 45 34.0 49.40238 121.75946 1000 N50 06 05.1 W121 51 29.0 50.10141 121.85805 1000	LM Fresh Mixed LM Fresh Mixed	d Y Y Lake to Lake 26.0 1258	450 22.0 1 10.0 200 10.9 1.6 57	0.1% 748.1	11 0 0.01	0.0 2,308,112 6,000	3600 1275 35% 105 3900 1247 32% 107	75 Multi-Stage 8.6 6	8 1,497,635,033 1,701,975,614	1,701,976 283,663 103.9 14,976,350 3.3 0.5 0.1 0.0 6.0 6.2 12.5
Stukolait - Chochiwa Fsable - Comox	N49 34 04.8 W125 10 07.3 49.56801 125.16869 1000		Y Y Lake to Man Made 65.0 1017	850 14.6 13.8 50 250 7.0 2.6 68	0.2% 64.1 0.1% 2118	1095 425 133 0 0.15	15.2 8,465,340 6,000 0.0 3,255,900 6,000	5100 340 7% 392 6500 884 14% 151	274 Single-Stage 8.6 6 106 Multi-Stage 8.6 6	8 1,733,447,222 1,969,962,532	1,969,963 328,327 120.2 17,334,472 2.9 0.5 0.5 0.0 6.0 7.6 9.8
Sable - Nimnim Sable - Willemar	N49 30 02.7 W125 09 16.3 49.50075 125.15452 1000 N49 30 57.3 W125 10 34.5 49.51591 125.17625 1000 N49 21 31.7 W122 16 24.9 49.35881 122.27358 1000		Y N Lake to Lake 65.0 1017	520 10.1 2.6 68 350 8.1 2.6 68	0.1% 44 0.1% 86.1	469 900 291 420	13.9 5,252,218 6,000 6.6 3,964,484 6,000	4700 548 12% 243 5700 726 13% 184	170 Single-Stage 8.6 6 128 Multi-Stage 8.6 6	8 1,541,344,032 1,751,648,363	1,493,816 248,969 91.2 13,144,669 4.7 1.2 5.8 2.8 6.0 6.7 7.1 1,751,648 291,941 106.9 15,413,440 3.5 0.7 3.1 0.7 6.0 7.1 8.6
Fwin Lakes - Stave Fyaughton - Carpenter	N50 54 24.6 W122 44 18.7 50.90683 122.73853 1000	LM Fresh Mixed LM Fresh Mixed	Y N Lake to Lake 95.7 1006	1//2 30.7 0.25 84 250 11.0 14.2 28	0.0% 5640	84 0 0.13 671 0 0.18	0.0 7,177,595 6,000 0.0 8,591,688 6,000	1500 401 27% 332 4700 335 7% 398	233 Single-Stage 8.6 6 278 Single-Stage 8.6 6	8 1,516,572,076 1,723,496,468	1,721,247 286,874 105.1 15,145,923 25.0 10.6 0.7 0.0 6.0 5.1 4.0 1,723,496 287,249 105.2 15,165,721 6.3 0.6 0.9 0.0 6.0 6.9 7.1 1,000,400 200,400<
n-named - Effingham n-named - Goat	N49 09 57.6 W125 16 32.6 49.16601 125.27571 1000 N50 04 44.8 W124 13 20.4 50.07911 124.22232 1000 N49 30 57.2 W126 23 28.4 49.5159 126.39124 1000	VI Fresh Mixed LM Fresh Mixed VI Fresh Mixed	N N Lake to Lake 37.5 1127	500 18.1 0.7 10 500 9.2 4.2 86	3 0.0% 31.5 0.3% 554.3 3 0.1% 477.8	366 522 56 0 0.48 7 0 1.14	13.9 3,742,803 6,000 0.0 2,687,409 6,000 0.0 5,440,861 6,000	6300 769 12% 173 5300 1071 20% 124 4700 529 11% 252	121 Multi-Stage 8.6 6 87 Multi-Stage 8.6 6 176 Single-Stage 8.6 6	8 1,473,449,258 1,674,489,879	1,828,499 304,750 111.6 16,089,678 5.8 2.1 4.9 1.6 6.0 7.5 9.5 1,674,490 279,082 102.2 14,734,493 3.2 1.1 0.8 0.0 6.0 6.9 10.7 1,827,310 304,552 111.5 16,079,212 7.0 0.9 1.8 0.0 6.0 6.7 7.1
n-named - Hesquiat n-named - Huaskin n-Named - Powell	N49 30 57.2 W126 23 28.4 49.5159 126.39124 1000 N50 58 45.5 W126 55 06.2 50.97931 126.9184 1000 N50 14 35.8 W124 21 12.8 50.24329 124.35355 1000		Y N Lake to Lake 105.0 206	230 18.3 2.2 13 700 19.5 6.1 67 1700 18.5 1.8 86		7 0 1.14 49 0 0.85 56 0 0.03	0.0 5,440,861 6,000 0.0 18,332,583 6,000 0.0 4.341,200 6,000	2000 157 8% 849 3200 663 24% 204	176 Single-Stage 8.6 6 594 Single-Stage 8.6 6 141 Single-Stage 8.6 6	8 1,722,973,145 1,958,059,348	1,827,310 304,552 111.5 16,079,212 7.0 0.9 1.8 0.0 6.0 6.7 7.1 1,958,059 326,343 119.5 17,229,731 13.1 2.8 2.8 0.0 6.0 6.1 3.0 1,432,338 238,723 87.4 12,603,701 6.3 6.6 0.3 0.0 6.0 5.8 6.6
n-named - Poweii n-named - Stafford n-named - Tzoonie 1	N50 14 35.8 W124 21 12.8 50.24329 124.35355 1000 N50 46 14.6 W125 26 14.1 50.77074 125.43726 1000 N49 52 30.5 W123 37 17.1 49.87513 123.62141 1000	LM Fresh Mixed LM Fresh Mixed LM Fresh Mixed	N N Lake to Lake 14.2 1251	1700 18.5 1.8 86 250 19.4 1.4 63 450 16.2 4.4 10	0.1% 249.4	85 300 369 220	3.0 2,468,452 6,000 19.7 3.418,308 6.000	3200 663 21% 201 3500 1166 33% 114 5100 842 17% 158	80 Multi-Stage 8.6 6 111 Multi-Stage 8.6 6	8 1,359,074,099 1,544,509,124	1,432,338 238,723 87.4 12,603,701 6.3 6.6 0.3 0.0 6.0 5.8 6.6 1,544,509 257,418 94.3 13,590,741 5.0 1.0 1.1 0.3 6.0 6.0 11.7 1,719,329 286,555 104,9 15,129,046 5.2 1.6 5.9 0.9 6.0 6.8 8.4
n-named - Tzoonie 2 n-named - Uchuck	N49 52 34.8 W123 37 05.0 49.87613 123.61804 1000 N49 52 34.8 W123 37 05.0 49.87633 123.61804 1000 N49 02 09.6 W125 05 37.2 49.036 125.09366 500	LM Fresh Mixed VI Fresh Mixed	N N Lake to Lake 22.0 1249	230 16.9 3.8 10 800 16 2.0	5 0.3% 19.3 19.3 19.4	369 250 44 310	19.7 3,418,308 6,000 18.9 3,270,699 6,000 4 2.741.158 3.000	3200 880 28% 151 7300 525 7% 127	106 Multi-Stage 8.6 6 89 Single-Stage 8.6 6	8 1,415,805,177 1,608,980,715	1,719,329 286,355 104.9 15,129,046 5.2 1.6 5.9 0.9 6.0 6.8 8.4 1,608,981 268,163 98.2 14,158,052 5.2 0.8 5.6 1.0 6.0 5.8 8.8 2,546,345 424,391 155.4 16,804,717 4.6 2.7 1.8 0.4 6.0 7.9 11.0
n-named - Ucnuck n-named - Zeballos pper Deserted - Un-named	N49 02 09.6 W125 05 37.2 49.036 125.09366 500 N50 04 57.7 W126 43 40.4 50.08269 126.72788 500 N50 09 14.1 W123 41 08.3 50.15392 123.68565 1000		N N Lake to Lake 25.7 727	600 16 2.5 13 225 8.8 42.2	3 0.2% 198.5 0.6% 100.3	333 220 248 580	4 2,741,158 3,000 4 3,652,558 3,000 5 6 3,959,031 6,000	6400 394 6% 169 3100 727 23%	118 Single-Stage 8.6 6 128 Multi-Stage 8.6 6	8 1,128,647,950 1,282,643,131 2	2,565,286
pper Deserted - Un-named pper Eldrid - Lower Eldrid pper Elsie	N50 09 14.1 W123 41 08.3 50.15392 123.68565 1000 N50 09 20.4 W124 08 32.1 50.15566 124.14224 1000 N49 26 29.5 W125 10 00.4 49.44152 125.16677 1000	LM Fresh Mixed LM Fresh Mixed VI Fresh Pure	N N Lake to Lake 131.6 1347	700 4.8 3.7 86 1350 20.6 4.4	0.6% 109.3 0.2% 17.9	248 580 575 560 337 0 1.17	5.6 3,959,031 6,000 22.8 3,728,258 6,000 0.0 7.514,923 6.000	3100	128 Multi-Stage 8.6 6 121 Multi-Stage 8.6 6 244 Single-Stage 8.6 6	8 1,412,010,229 1,604,667,976	1,260,098 210,016 76.9 11,088,099 3.7 0.5 2.7 0.9 6.0 5.8 7.3 1,604,668 267,445 97.9 14,120,102 2.3 1.0 6.8 2.6 6.0 5.5 7.7 1.943,351 323,892 118.6 17,100,307 20.0 10.2 2.1 0.0 6.0 6.1 5.0
Jpper Eisle Jpper Great Central Jpper Misery - Lower Misery	N49 26 29.5 W125 10 00.4 49.44152 125.16677 1000 N49 22 39.4 W125 13 34.4 49.37762 125.22621 1000 N49 45 20.9 W123 36 07.1 49.75581 123.60197 1000	VI Fresh Pure VI Fresh Mixed	Y N Lake to Man Made 20.0 900	830 19.9 1 13. 280 12.8	0.0% 645 2 0.1% 5301 5 0.1% 16.5	95 0 0.07 688 360	0.0 7,514,923 6,000 0.0 3,575,423 6,000 31.8 4,920,027 6,000	3300 383 12% 348 2300 805 35% 166 1600 585 37% 228	244 Single-Stage 8.6 6 116 Multi-Stage 8.6 6 159 Single-Stage 8.6 6	8 1,478,762,177 1,680,527,705	1,943,351 323,892 118.6 17,100,307 20.0 10.2 2.1 0.0 6.0 6.1 5.0 1,680,528 280,088 102.6 14,787,622 20.0 3.4 0.3 0.0 6.0 5.4 8.1 1,293,543 215,591 78.9 11,382,396 5.3 0.8 9.7 2.2 6.0 5.0 5.9
Jpper Misery - Un-named	N49 45 20.9 W123 36 07.1 49.75581 123.60197 1000 N49 48 35.2 W123 35 05.3 49.80977 123.58479 1000 I N49 52 04.4 W125 38 01.7 49.8679 125.63381 1000	LM Fresh Mixed LM Fresh Mixed VI Fresh Mixed	d N N Lake to Lake 45.4 1273	360 17.8 2.5 10 350 7.5 60.2	5 0.1% 59 0.2% 2046.7	871 600 266 0 0.92	31.8 4,920,027 6,000 14.1 7,159,740 6,000	1600 585 37% 228 5400 402 7% 331 3200 103 3% 1294	159 Single-Stage 8.6 6 232 Single-Stage 8.6 6 906 Single-Stage 8.6 6	8 1,552,433,642 1,764,251,064	1,293,543 215,591 78.9 11,382,396 5.3 0.8 9.7 2.2 6.0 5.0 5.9 1,764,251 294,042 107.7 15,524,336 7.8 1.3 6.8 1.9 6.0 7.1 8.1 2,460,524 410,087 150.2 21,651,115 8.9 0.7 3.6 0.0 6.0 7.3 4.8
pper Tzoonie - Lower Tzoonie	N49 52 04.4 W125 38 01.7 49.8679 125.63381 1000 N49 52 54.8 W123 36 52.1 49.8819 123.61448 1000 IVER N49 54 39.1 W123 44 08.4 49.91085 123.73566 1000	LM Fresh Mixed LM Fresh Mixed LM Fresh Mixed	N N Lake to Lake 23.3 1346	218 14.6 3.1 10 420 17.5 4.2	5 0.2% 19.3 5 0.1% 20.0	369 250 1085 285	17.3 2,945,973 6,000 15.3 5.320,177 6,000	3200 103 3% 1294 5200 977 19% 136 1400 541 39% 246	906 Single-Stage 8.6 6 95 Multi-Stage 8.6 6 172 Single-Stage 8.6 6	8 1,491,080,467 1,694,526,729	2,460,524 410,087 150.2 21,651,115 8.9 0.7 3.6 0.0 6.0 7.3 4.8 1,694,527 282,421 103.4 14,910,805 4.5 0.7 5.0 0.9 6.0 6.9 9.8 1,283,960 213,993 78.4 11,298,065 6.7 1.5 6.2 0.9 6.0 4.9 5.4
opper Vancouver - Lower Vancou /iew - Great Central Valt - Khartoum	N49 54 39.1 W123 44 08.4 49.91085 123.73566 1000 N49 22 10.8 W125 21 42.4 49.36966 125.36177 1000 N49 53 29.6 W124 05 57.6 49.89156 124.09933 1000	VI Fresh Mixed VI Fresh Mixed LM Fresh Mixed	Y N Lake to Lake 101.0 310	420 17.5 1.2 10 825 15.3 8.3 13 290 110 3.9 86	0.1% 39.9 2 0.2% 5301 0.2% 482.3	95 0 0.25 133 0 0.71	15.3 5,320,177 6,000 0.0 13,387,049 6,000 0.0 3,434,625 6,000	1400 541 39% 246 1600 215 13% 620 5000 838 17% 159	1/2 Single-Stage 8.6 6 434 Single-Stage 8.6 6 111 Multi-Stage 8.6 6	8 1,691,240,455 1,921,996,981	1,283,960 213,993 78.4 11,298,065 6.7 1.5 6.2 0.9 6.0 4.9 5.4 1,921,997 320,333 117.3 16,912,405 9.7 2.7 1.3 0.0 6.0 5.5 2.4 1.674,608 279,101 102.2 14,735,529 4.0 0.7 1.1 0.0 6.0 6.8 8.4
Valt - Knartoum Vilson - Chehalis Vindsor - Goat	N49 25 52.6 W122 02 18.7 49.43127 122.03853 1000	LM Fresh Mixed	d N N Lake to Lake 38.2 9/1 d Y N Lake to Lake 38.2 821 d N N Lake to Lake 96.2 202	400 14.6 3.5 99 375 22.5 10.9 86	0.2% 482.3 0.2% 629.6 0.1% 554.3	133 0 0.71 221 0 0.76 56 120	0.0 3,434,625 6,000 0.0 4,797,026 6,000 5.6 19.713.805 6.000	5000 838 17% 159 4500 600 13% 222 1600 146 9% 913	111 Multi-Stage 8.6 6 155 Single-Stage 8.6 6 639 Single-Stage 8.6 6	8 1,328,232,054 1,509,458,924	1,509,459
Windsor - Goat Windsor - Powell Woss 1	N50 01 35.5 W124 17 31.1 50.02653 124.29197 1000 N50 01 23.9 W124 19 23.9 50.0233 124.32332 1000 N50 06 52.0 W126 35 58.7 50.11445 126.59965 1000	LM Fresh Mixed VI Fresh Mixed	N Y Lake to Lake 96.2 202	375 22.5 10.9 86 375 22.5 10.9 86 1772 20.7 2 13	0.1% 554.3 0.1% 12445 3 0.1% 1404	56 120 56 0 0.16 148 0 0.33	0.0 19,713,805 6,000 0.0 19,713,805 6,000 0.0 4.680,025 6,000	1600 146 9% 913 3600 146 4% 913 3100 615 20% 217	639 Single-Stage 8.6 6 639 Single-Stage 8.6 6 152 Single-Stage 8.6 6	8 1,963,870,353 2,231,825,095 2	1,861,521 310,253 113.6 16,380,251 14.8 1.7 6.0 0.2 6.0 5.9 2.4 2,231,825 371,971 136.2 19,638,704 14.8 1.7 1.3 0.0 6.0 7.0 5.4 1,536,640 256,107 93.8 13,521,497 25.0 7.5 0.9 0.0 6.0 5.8 6.2
Voss 2		VI Fresh Mixed	1 Y N Lake to Lake 14.5 969	460 26.2 1.4 13			,,.	5800 821 14% 162	3	, , , , , , , , , , , , , , , , , , , ,	1,350,040 250,107 93.6 13,321,497 25.0 7.3 0.9 0.0 0.0 3.6 0.2 1,841,036 306,839 112.4 16,200,001 7.3 2.4 0.7 0.0 6.0 7.2 8.7
	VA103-313/1-1 TMF SRM JPH TION PREPID CHKID APPID										

 0
 25NOV:10
 ISSUED WITH REPORT VA103-313/1-1
 TMF
 SRM
 JPH

 REV
 DATE
 DESCRIPTION
 PREPID
 CHKID
 APPID

Page 27 of 72 November 2013

Knight Piésold

TABLE 3.2

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SUMMARY OF SALTWATER PUMPED STORAGE SITES

Name	Latitude	Longitude	Latitude	Longitude	e Capacit	ty Locati	ion Salt/Fr	resh Pure/M	/lixed Ty	rpe Uppe	er Reservoir Area	Upper Reservoir Base Elevation	Crost Langth	Upper Reservoir Dam Height	Storage Requirement	Storage Requirement	2D Waterway Length	Gross Head	H/L Ratio (G	esign Flow Seneration)	Design Flow (Pumping), 70% of	Pump/Turbine I	Pumping Duration at Peak Output	Generation Duration at Peak	Development and Construction Time	Total Estimated Capital Cost	Loaded Capital Cost	(Loaded Capital	Unit Cost of Store Energy	d Levelized Cost	Estimated Annual Operating	Upper Ca Reservoir Rroad	water nal / kwater	Staging/ Spoil Ro Laydown Footprint Foo	11/30/2010 16:4 oads Total otprint Footprint
	dd mm ss.s	dd mm ss.s	dd.dddd	dd.dddd	MW	LM/V	VI				ha	masl	m	Dam Height m	m3	MWh	m	m	%	m3/s	Generation Flow m3/s		hrs	hrs	years	\$	\$	Cost/Capatity) \$/MW	\$/MWh	\$/kW-yr	Cost \$/yr	Footprint Foo	tprint ha	-ootprint ha	ha ha
McDonald	N50 36 13.8	W125 31 48.2	50.60383	125.53005	1000	LM	1 Salt	lt Pur	re La	ıke	20	720	300	21	3,844,675	6,000	2200	720	33%	178	125	Multi-Stage	8.6	6	9	1,366,839,478	1,553,334,029	1,553,334	258,889	95	27,336,790	22	5	5 5	7.2 44
Upper Frell	N49 51 48.9 N50 38 37.2	W123 54 46.9	1010000	123.91303	1000	LM	1 Salt	lt Pur	re La	ike	20	620	200	24	4,464,784	6,000	1500	620	41%	207	145	Single-Stage	8.6	6	9	1,371,053,971		1,558,124	259,687 265.032	95	27,421,079	22	5	5 5	6.2 43
Shamrock Hulton		W125 31 17.6 W126 14 20.0		125.52155	3 1000	LM	1 Sali	lt Pur	re La re Man	Made	20	670	900	23	4,464,784	6,000	1000	670	67%	191	134	Single-Stage Single-Stage	8.6	6	9	, , , .	1,602,989,819	1,602,990	265,032	98	28,210,671	22	5	5 5	6.7 44
Foster	N50 46 48.2	W126 01 32.4	50.78005	126.02567	1000	LM	1 Salt	lt Pur	re La	ike	20	520	240	29	5,323,396	6,000	1100	520	47%	246	173	Single-Stage	8.6	6	9	1,414,280,422	1,607,247,918	1,607,248	267,875	98	28,285,608	22	5	5 5	5.2 42
Griffin	N50 36 24.5 N50 38 19.3	W125 33 26.2		125.55729	1000	LM	1 Salt	lt Pur	re La	ke	50	680	200	10	4,070,832	6,000	1400	680	49%	188	132	Single-Stage Single-Stage	8.6	6	9	1,425,415,447		1,619,902 1,663,520	269,984 277,253	99	28,508,309	55	5	5 5	6.8 77
Fawn		W125 16 08.9		125.11359	1000	LM	1 Sali	lt Pur	re La	ike	50	515	140	13	5,375,080	6,000	1300	515	40%	249	174	Single-Stage Single-Stage	8.6	6	9	1,497,183,643		1,701,463	283,577	102	29,943,673	55	5	5 5 5	5.15 75
McNab	N49 34 00.7	W123 20 52.3	49.56686	123.34785	1000	LM	1 Salt	lt Pur	re Man	Made	40	490	500	16	5,649,319	6,000	1200	490	41%	262	183	Single-Stage	8.6	6	9	1,503,839,437	1,709,026,560	1,709,027	284,838	104	30,076,789	44	5	5 5	4.9 64
Bobs	N49 37 14.2 N49 38 17.5		10102001	124.2702	1000	LM	1 Salt	lt Pur	re La	ike	40	640	1600	13	4,325,260 4,772,700	6,000	2300	640	28%	200	140	Single-Stage	8.6	6	9	1,545,471,159		1,756,339 1,757,214	292,723 292,869	107	30,909,423	44	5		6.4 65 5.8 87
Nelson Island		W123 46 41.7 W124 08 01.6		123.77826	1000	LM	1 Salt	lt Pur	re Man	Made	20	520	1200	29	5,323,396	6,000	600	520	87%	246	173	Single-Stage Single-Stage	8.6	6	9	1,551,698,743		1,763,416	292,869	107	31,033,975	22	5		5.2 42
Nepah	N51 00 29.4	W126 46 34.4	51.00816	126.77622	2 1000	LM	1 Salt	lt Pur	re La	ıke	50	430	300	15	6,437,596	6,000	1200	430	36%	298	209	Single-Stage	8.6	6	9	1,555,406,877		1,767,630	294,605	108	31,108,138	55	5	5 5	4.3 74
Walter		W124 47 04.2		124.7845	1000	LM	1 Salt	lt Pur	re La	ıke	10	480	350	60	5,767,013	6,000	1500	480	32%	267	187	Single-Stage	8.6	6	9			1,781,798	296,966	109	31,357,476	11	5	5 5	4.8 31
Grant	N50 32 34.3 N49 37 22.2	W125 33 52.0 W124 16 25.4		125.56443	2 1000	LM	1 Sali	It Pur It Pur	re Man	Made Made	10	620	900	30 47	5,536,332 4,464,784	6,000	1100	620	34%	256	179 145	Single-Stage Single-Stage	8.6	6	9	1,580,948,256 1,639,313,198		1,796,656 1,862,985	299,443 310,497	110	31,618,965	11	5	5 5	6.2 32
Burley		W126 45 51.2		126.76422	1000	LM	1 Salt	lt Pur	re La	ıke	20	900	150	17	3,075,740	6,000	900	900	100%	142	100	Multi-Stage	8.6	6	9	1,646,726,523		1,871,409	311,902	114	32,934,530	22	5	5 5	9 46
Mouat		W124 18 56.8		124.31578	1000	LM	1 Salt	lt Pur	re Man	Made	50	440	1400	15	6,291,287	6,000	1500	440	29%	291	204	Single-Stage	8.6	6	9	1,647,817,409		1,872,649	312,108	114	32,956,348	55	5	5 5	4.4 74
Downie Lawrence	N50 26 53.3 N50 25 46.9	W125 02 53.3 W125 07 04.4		125.04815 125.11788	1000	LM	Sali	lt Pur	re La	Made	30	330	400	23	8,388,382 7,481,530	6,000	1400 800	330	24% 46%	388	272	Single-Stage Single-Stage	8.6	6	9	1,679,644,287 1,687,122,565		1,908,819 1,917,317	318,136 319,553	117	33,592,886 33,742,451	33	5	5 5	3.3 62 3.7 52
Snout		W124 37 53.5		124.63153	1000	LM	1 Salt	lt Pur	re La	ike	100	440	400	8	6,291,287	6,000	1000	440	44%	291	204	Single-Stage	8.6	6	9	1,708,340,360		1,941,430	323,572	118	34,166,807	110	5	5 5	4.4 129
Appolina		W126 19 28.0			1000	LM	1 Salt	lt Pur	re La	ake	20	1060	1000	15	2,611,477	6,000	1100	1060	96%	121	85	Multi-Stage	8.6	6	9	1,718,851,515	1,953,375,354	1,953,375	325,563	119	34,377,030	22	5		10.6 48
Thors		W124 42 00.3 W126 16 46.2		124.70009	1000	LM	1 Salt	lt Pur	re Man	Made	10	780	300	37	3,548,931	6,000	1800	780	43%	164	115	Multi-Stage Multi-Stage	8.6	6	9	1,719,796,818 1,729,359,348	, , , , ,	1,954,450 1,965,317	325,742 327,553	119	34,395,936	11	5	5 5	7.8 34
Amor		W124 59 31.6		124.99211	1000	LM	1 Salt	lt Pur	re La	ike	30	1080	120	11	2,563,117	6,000	2400	1080	45%	119	83	Multi-Stage	8.6	6	9	1,729,359,346		1,969,850	328,308	120	34,567,167	33	5	5 5 1	9 57
Hkusam Mountain	N50 22 47.1	W125 51 13.4	50.37974	125.85372	2 1000	VI	Salt	lt Pur	re Man	Made	16	1220	360	16	2,268,989	6,000	3100	1220	39%	105	74	Multi-Stage	8.6	6	9	1,735,830,885	1,972,671,426	1,972,671	328,779	120	34,716,618	17.6	5	5 5 1	2.2 45
Jordan River South		W123 59 52.1		123.9978	1000	VI	Salt	lt Pur	re Man	Made	48	600	2450	12	4,613,610	6,000	4670	600	13%	214	150	Single-Stage	8.6	6	9	1,750,082,368	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,988,867	331,478	121	35,001,647	52.8	5	5 5 7	.005 75
Breg	N50 18 47.9 N50 19 00.8	W124 49 10.7				LM	1 Sali	lt Pur It Pur	re La re Man	Made	10	840 440	800 600	65	3,295,436 6,291,287	6,000	1600	840 440	34%	153 291	107 204	Multi-Stage Single-Stage	8.6	6	9	1,751,241,978		1,990,185	331,698	121	35,024,840	11	5	5 5	3.4 56 4.4 30
Calder		W123 57 12.8		123.95355	1000	LM	1 Salt	lt Pur	re La	ike	30	790	900	14	3,504,008	6,000	1400	790	56%	162	114	Multi-Stage	8.6	6	9	1,754,092,337		1,993,425	332,237	122	35,081,847	33	5	5 5	7.9 56
Moh		W125 01 11.8	00.020.	125.01994	1000	LM	1 Salt	lt Pur	re La	ıke	10	1120	600	27	2,471,577	6,000	2600	1120	43%	114	80	Multi-Stage	8.6	6	9	1,761,506,352		2,001,850	333,642	122	35,230,127	11	5	5 5 1	1.2 37
Ramsay	N50 26 09.9 N50 38 25.3	W124 58 20.4			1000	LM	1 Sali	lt Pur	re La	Mada	40	1040	300	9	2,661,698	6,000	2500	1040	42%	123	86	Multi-Stage Multi-Stage	8.6	6	9	1,779,800,133		2,022,640	337,107 338.038	123	35,596,003	44	5	5 5 1	0.4 69
Saumarez	N49 53 49.0	W123 57 42.5 W123 56 17.7	49.89696	123.93826	5 1000	LM	1 Salt	lt Pur	re Man	Made	20	950	1400	17	2,766,166	6,000	1800	950	53%	135	94	Multi-Stage	8.6	6	9	, , ,	2,026,229,917	2,035,382	339,230	124	35,820,242	22	5	5 5	9.5 47
Misery	N49 41 12.0	W123 33 25.5	49.68668	123.55707	1000	LM	1 Salt	lt Pur	re La	ike	30	790	750	14	3,504,008	6,000	2600	790	30%	162	114	Multi-Stage	8.6	6	9	1,796,587,232	2,041,717,501	2,041,718	340,286	125	35,931,745	33	5	5 5	7.9 56
Highland Point		W123 49 22.3 W124 02 36.1		123.82286	1000	LM	1 Salt	lt Pur	re Man	Made	20	940	1400	17	2,944,858 8 650 519	6,000	2000	940	47%	136	95	Multi-Stage Single-Stage	8.6	6	9	1,800,774,597 1,801,134,359		2,046,476	341,079 341.148	125	36,015,492 36,022,687	22 44	5	5 5).4 46
Gustafson		W124 02 36.1 W123 39 26.0				LM	1 Sali	it Pur It Pur	re Ivian re La	ike	40	1400	300	7	1,977,261	6,000	3500	1400	40%	92	64	Multi-Stage	8.6	6	9	1,801,134,359		2,046,885	341,148	125	36,022,687	44	5	5 5	14 73
Stakawus	N50 03 16.3	W123 47 03.9	50.05452	123.78441	1000	LM	1 Salt	lt Pur	re Man	Made	30	280	1100	35	9,886,307	6,000	600	280	47%	458	320	Single-Stage	8.6	6	9	1,822,354,125	2,071,000,085	2,071,000	345,167	126	36,447,082	33	5	5 5	2.8 51
Albert		W123 56 18.0		123.93834	1000	LM	1 Salt	lt Pur	re Man	Made	10	1670	1200	19	1,657,584	6,000	2300	1670	73%	77	54	Multi-Stage	8.6	6	9	1,837,676,183		2,088,413	348,069	127	36,753,524	11	5	5 5 1	6.7 43
Hays		W124 57 00.0 W124 32 41.1		124.95 124.54474	1000	LM	1 Sali 1 Sali	It Pur It Pur	re Man re La	Made ike	60	1160	260	6	3,460,208 2.386,350	6,000	750 2600	1160	107% 45%	110	112 77	Multi-Stage Multi-Stage	8.6	6	9	1,837,891,860 1,848,555,960	2,088,657,822	2,088,658	348,110 350,129	127	36,757,837	66	5	5 5 1	8 34 11.6 93
Thornhill	N49 39 35.2			123.59612	2 1000	LM	1 Salt	lt Pur	re La	ıke	70	1070	500	6	2,587,071	6,000	2300	1070	47%	120	84	Multi-Stage	8.6	6	9	1,880,263,414		2,136,811	356,135	130	37,605,268	77	5	5 5 1	0.7 103
Lyon		W123 51 37.6		123.86044	1000	LM	1 Salt	lt Pur	re La	ike	60	1060	850	6	2,611,477	6,000	2900	1060	37%	121	85	Multi-Stage	8.6	6	9	1,882,854,911		2,139,756	356,626	131	37,657,098	66	5	5 5 1	0.6 92
Purcell		W124 54 41.8 W125 00 46.3		124.91161	1000	LM	1 Salt	lt Pur	re Man	Made Made	40	940	3300	9	2,944,858	6,000	1500	940	63%	136	95	Multi-Stage Multi-Stage	8.6	6	9	1,888,139,893 1,895,441,174		2,145,762 2,154,059	357,627 359,010	131	37,762,798	11	5	5 5	9.4 68
Young		W125 42 21.6		125.70599	1000	LM	1 Sali	It Pur	re La	ike	70	1040	400	6	2,661,698	6,000	2800	1040	37%	123	86	Multi-Stage Multi-Stage	8.6	6	9	1,897,349,610		2,156,228	359,371	132	37,906,823	77	5	5 5 1	10.4 102
Mount Hallowell	N49 41 39.1	W123 53 07.2	49.6942	123.88534	1000	LM	1 Sali	lt Pur	re Man	Made	50	975	1800	8	2,839,145	6,000	3100	975	31%	131	92	Multi-Stage	8.6	6	9	1,901,742,534		2,161,220	360,203	132	38,034,851	55	5	5 5 9	9.75 80
Gastineau		W124 44 35.6 W124 22 48.1		124.74322	1000	LM	1 Salt	lt Pur	re La	Mede	50	1120	2300	7	2,471,577 9,227,220	6,000	3200	1120	35%	114	80	Multi-Stage Single-Stage	8.6	6	9	1,916,488,125 1,916,884,196		2,177,978 2,178,428	362,996 363,071	133	38,329,762	55	5	5 5 1	11.2 81
Elk Bay South	N50 12 04.5					VI	Salt	lt Pur	re Man	Made	117	740	3830	5	3,740,765	6,000	5700	740	13%	173	121	Multi-Stage	8.6	6	9	1,943,745,532	· · · · ·	2,208,954	368,159			128.7	5	5 5 5	8.55 152
Mid Point	N49 38 59.7	W123 42 42.8	49.64993	123.71189	1000	LM	1 Salt	lt Pur	re Man	Made	70	1160	2400	5	2,386,350	6,000	2800	1160	41%	110	77	Multi-Stage	8.6	6	9	1,960,477,744	2,227,969,591	2,227,970	371,328	136	39,209,555	77	5	5 5 1	11.6 104
Hkusam Mountain South						VI	Salt	lt Pur	re Man	Made	113	550	3770	6	5,033,029	6,000	4000	550	14%	233	163	Single-Stage	8.6	6	9	1,966,247,230		2,234,526	372,421	136	39,324,945	124.3	5		6 145
Mt Collison Mount Troubridge	N50 31 47.8 N49 46 44.3	W126 44 31.4 W124 12 00.0		126.74205 124.20001	1000	LM	Sali 1 Sali	lt Pur It Pur	re Man	Made	60	960	3470 3100	7	2,636,349 2,883,506	6,000	3700	960	26%	133	93	Multi-Stage Multi-Stage	8.6	6	9	1,972,674,282 2,004,969,208		2,241,830 2,278,532	373,638 379,755	137	39,453,486 40,099,384	66	5		92 9.6 91
Halfway		W123 50 26.4				LM	1 Salt	lt Pur	re Man	Made	90	915	2800	5	3,025,318	6,000	1800	915	51%	140	98	Multi-Stage	8.6	6	9	2,005,968,194		2,279,667	379,944	139	40,119,364	99	5		9.15 123
Newcastle Peak	N50 26 19.3			126.05806		VI	Salt	lt Pur	re Man	Made	67	1050	2700	6	2,636,349	6,000	3960	1050	27%	122	85	Multi-Stage	8.6	6	9	2,012,495,801		2,287,085	381,181	140	40,249,916	73.7	5	5 5 1	0.5 99
Cataract Lake Homfray	N48 59 18.2 N50 16 45.0				1000	VI	Salt	lt Pur	re Man	Made	154	540	4390	5	5,126,233 2,661,698	6,000	2440	540	22% 65%	237	166	Single-Stage Multi-Stage	8.6	6	9	2,041,196,521 2,061,929,695		2,319,702 2,343,264	386,617 390,544	142	40,823,930 41,238,594	169.4	5		5.4 190 10.4 168
McConnel		W124 57 26.1 W123 53 08.2		123.88562	2 1000	LM	Salt	lt Pur	re La	ike	130	820	300	5	3,375,812	6,000	2100	820	39%	156	109	Multi-Stage	8.6	6	9	2,081,711,864		2,365,745	394,291	144	41,634,237	143	5		8.2 166
Mt Collison South	N50 30 51.7					VI	Sali	lt Pur	re Man	Made	88	1300	3330	4	2,129,359	6,000	4590	1300	28%	99	69	Multi-Stage	8.6	6	9	2,108,875,779		2,396,615	399,436			96.8	5	5 5	13 125
Mt Palmerston	N50 28 49.3 N48 25 14.8	W126 20 50.7		126.34741	1000	VI	Salt	lt Pur	re Man	Made	105	1050	3645	5	2,636,349 9,227,220	6,000	2910	1050	36%	122	85	Multi-Stage	8.6	6	9	2,117,947,492		2,406,925	401,154	147	42,358,950	115.5	5		10.5 141
Jordan River East Syren		W124 03 04.7 W124 01 58.3		124.0513 124.03286	1000	LM	Sali 1 Sali	lt Pur	re Man	Made	30	240	2100	40	9,227,220	6,000	100	240	240%	534	299 374	Single-Stage Single-Stage	8.6	6	9	2,144,486,233 2,156,399,238		2,437,085 2,450,623	406,181 408,437	149	42,889,725 43,127,985	35.2	5	5 5 5 5	4.5 55 2.4 50
Myers	N49 41 03.5			123.87558	1000	LM	1 Salt	lt Pur	re La	ake	140	1060	2400	4	2,611,477	6,000	2600	1060	41%	121	85	Multi-Stage	8.6	6	9	2,187,785,522		2,486,292	414,382	152	43,755,710	154	5		10.6 180
Picton		W125 24 58.4		125.41621	1000	LM	1 Salt	lt Pur	re Man	Made .	40	180	1600	40	15,378,700	6,000	600	180	30%	712	498	Single-Stage	8.6	6	9	2,212,299,291		2,514,150	419,025	153	44,245,986	44	5		1.8 61
Crucil Port Alberni	N49 32 44.9 N49 13 56.7	W123 45 31.0 W124 50 18.1		123.7586 124.83836	1000	LM \/I	1 Salt	It Pur	re La	ike Made	130	1060	2400	7	2,611,477 6,751,625	6,000	3130	1060	23% 13%	313	85 219	Multi-Stage Single-Stage	8.6	6	9	2,237,200,201 2,259,360,007		2,542,449 2,567,632	423,741 427,939	155 157	44,744,004 45,187,200	143 162.8	5		10.6 169 1.695 182
Dinner	N49 56 54.6			12 1.00000	1000	LM	1 Sali	lt Pur	re Man	Made	70	200	3000	22	13,840,830	6,000	1500	200	13%	641	449	Single-Stage Single-Stage	8.6	6	9	2,301,988,481		2,616,077	436,013	160	46,039,770	77	5		2.25 94
Alberni Inlet		W124 53 46.0		124.8961	1000	VI	Sali	lt Pur	re Man	Made	254	500	5650	4	5,536,332	6,000	1890	500	26%	256	179	Single-Stage	8.6	6	9	2,406,426,318		2,734,764	455,794	167		279.4	5	5 5	5 299
Colvin	N49 29 23.3 N50 16 43.1			123.90727	1000	LM VI	1 Salt	lt Pur	re Man	Made Made	130	180	3700	14	15,378,700 11,072,664	6,000 6.000	1400	180	13%	712	498 359	Single-Stage	8.6	6	9	2,444,431,198 2,554,160,461		2,777,955 2,902,656	462,992 483,776	170 177	48,888,624 51,083,209	143 169.4	5	5 5	2.1 160 5.805 190
Elk Bay Caren	N49 37 16.3	W123 50 33.9	49.6212	123.84275	1000	LM	1 Salt	It Pur	re Man re La	ike	350	880	2500	3	3,145,643	6,000	2700	880	33%	146	102	Single-Stage Multi-Stage	8.6	6	9	2,935,913,377		3,336,496	556,083			385	5	5 5 5	
M:\1\03\00313\01\A\Dat																																			

 0
 25NOV'10
 ISSUED WITH REPORT VA103-313/1-1
 TMF
 SRM
 JPH

 REV
 DATE
 DESCRIPTION
 PREP'D
 CHK'D
 APP'D

of 72 November 2013

TABLE 3.3

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

UNDERGROUND MINES IN THE PROJECT AREA

Print: 11/30/2010 10:27

Site Name	Type of Operation	Products
Myra Falls Operations ¹	Operating Underground Mine	Copper, Gold, Silver, Zinc
Quinsam Mine ²	Operating Underground Mine	Coal
Britannia Mine ²	Historic Underground Mine	Copper
Pioneer Mine ²	Historic Underground Mine	Gold
Bralorne Mine ²	Historic Underground Mine	Gold
Minto Mine ²	Historic Underground Mine	Gold

M:\1\03\00313\01\A\Data\Task 100 - Technology Review\[Table 3.3_Underground PSH.xlsx]Sheet1

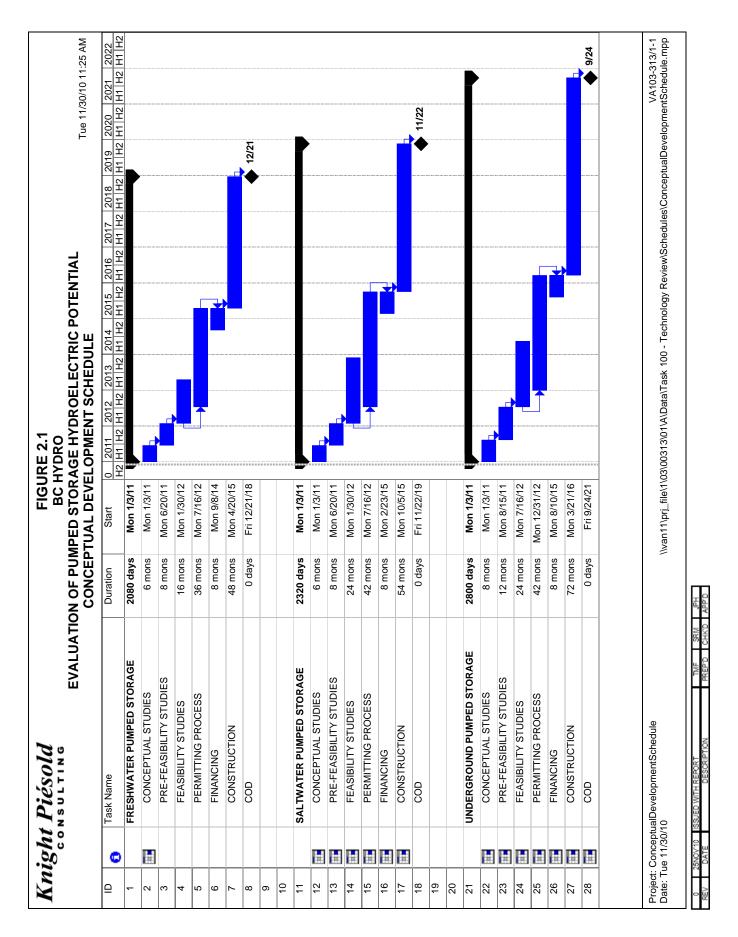
NOTES:

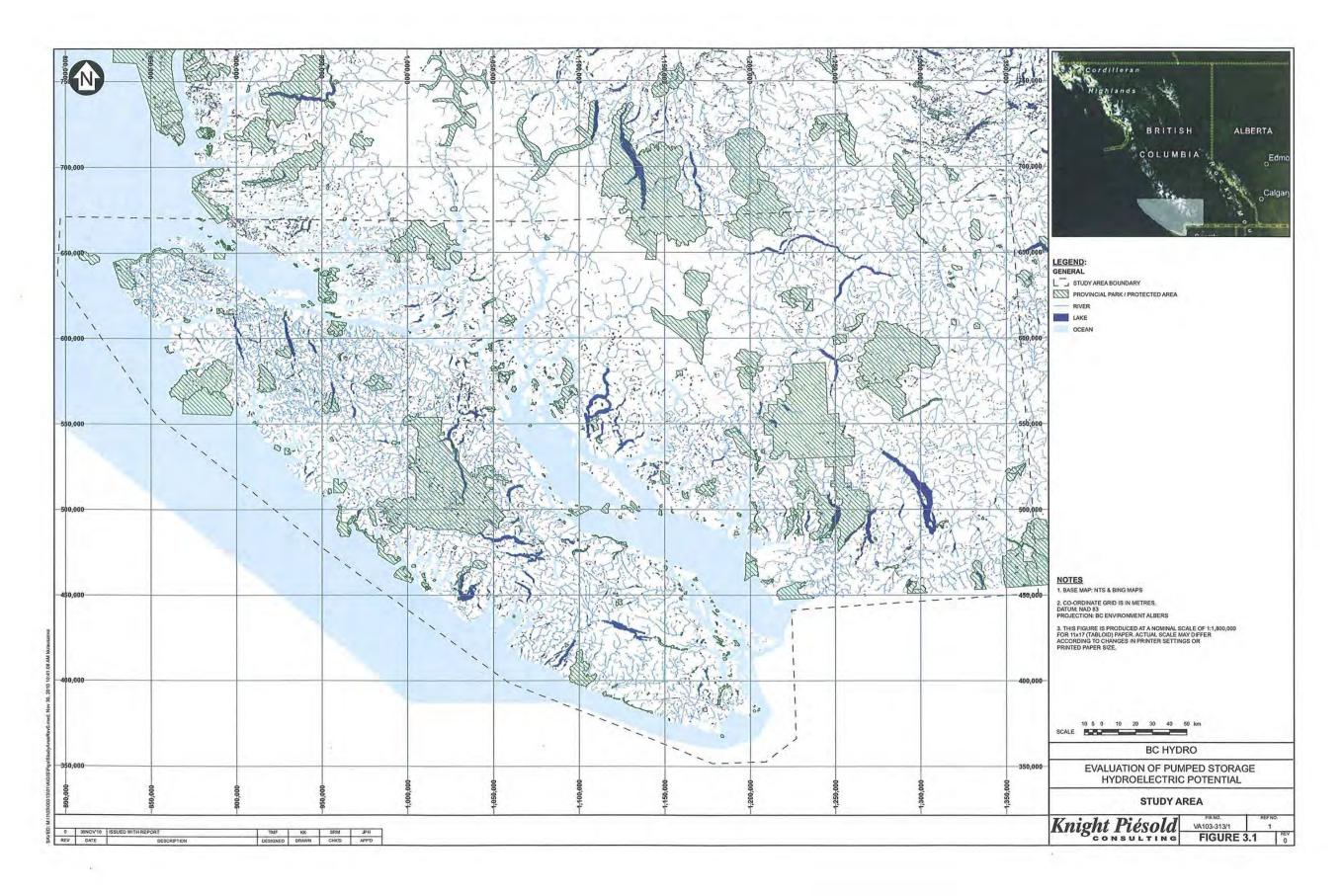
- $1. \ SOURCE: \ http://mmsd.mms.nrcan.gc.ca/stat-stat/mine-mine/bcm-pcm-eng.aspx?CID=11$
- 2. SOURCE: http://en.wikipedia.org/wiki/List_of_ghost_towns_in_British_Columbia

0	25NOV'10	ISSUED WITH REPORT VA103-313/1-1	TMF	SRM	JPH
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

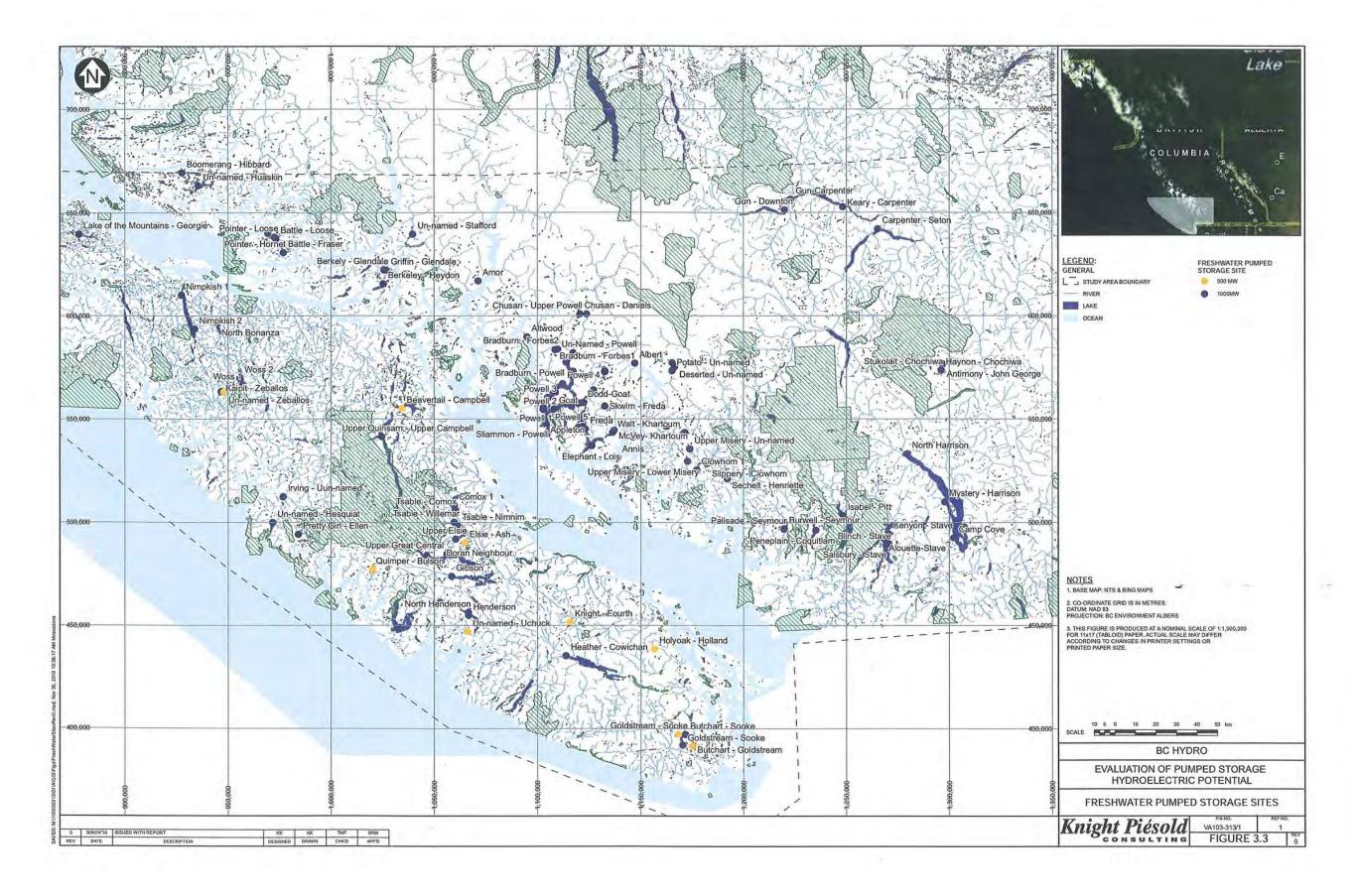
TABLE 3.4

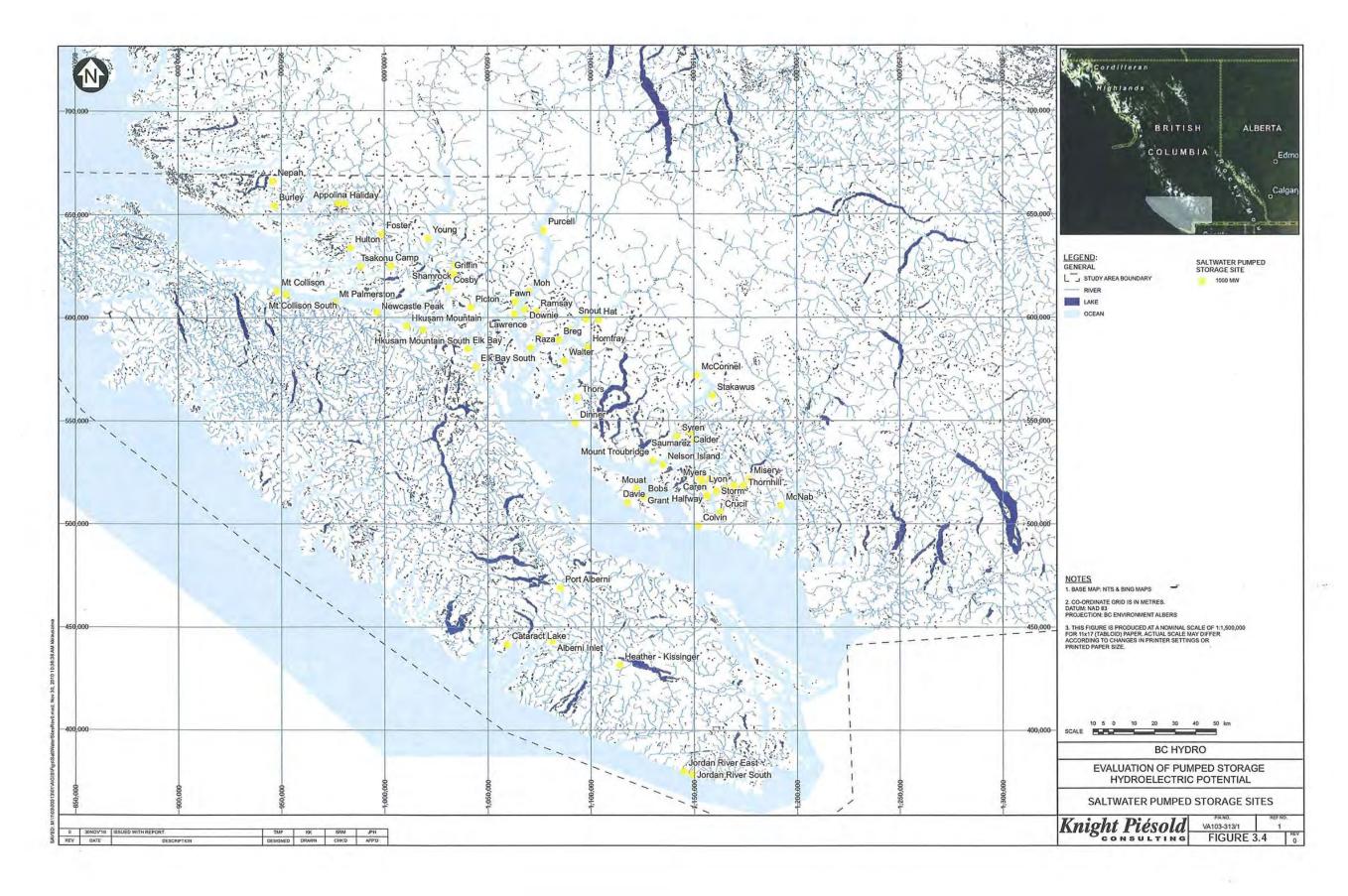
BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

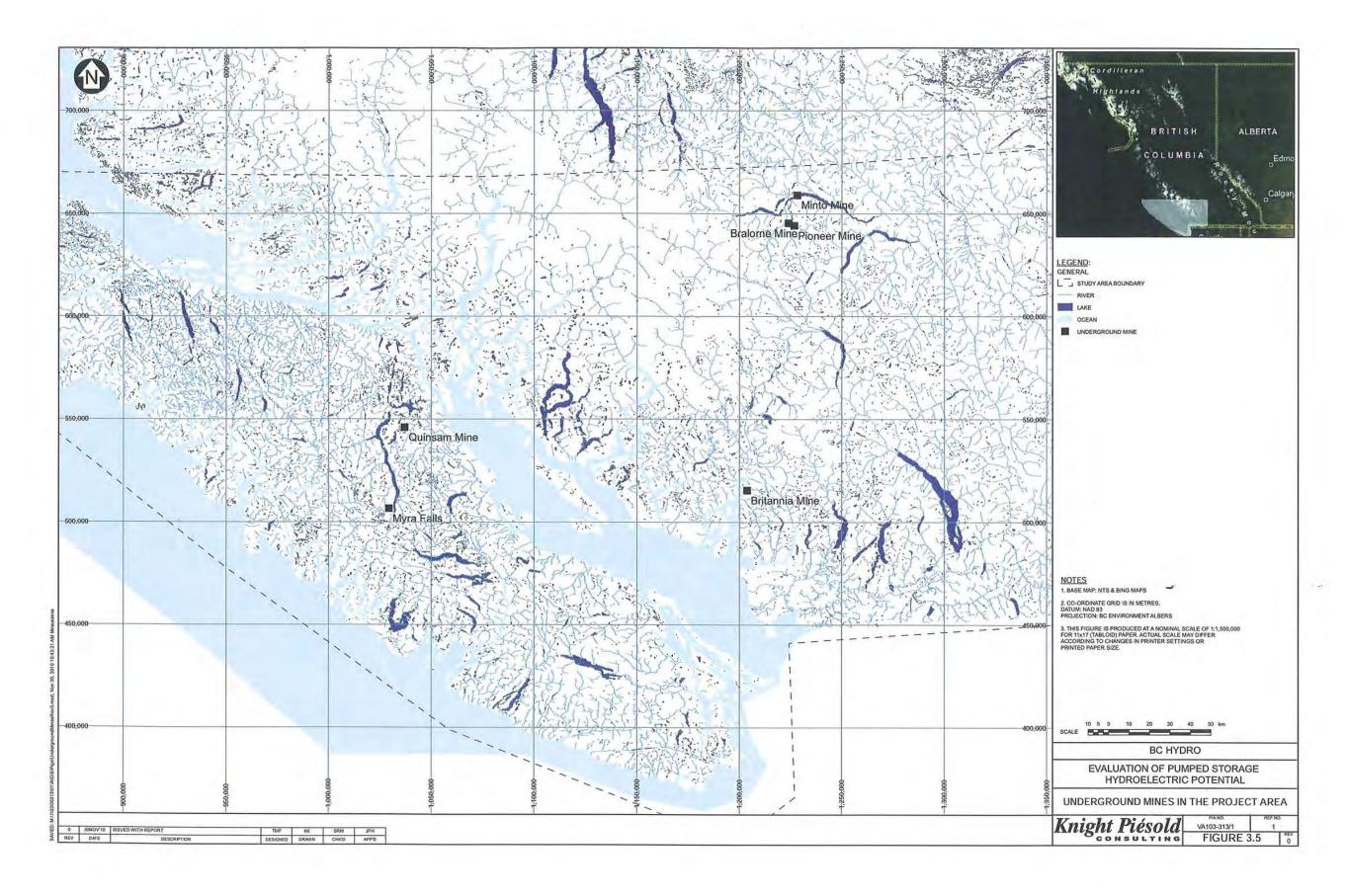

DEVELOPMENT COST DISTRIBUTION BY PUMPED STORATE TYPE

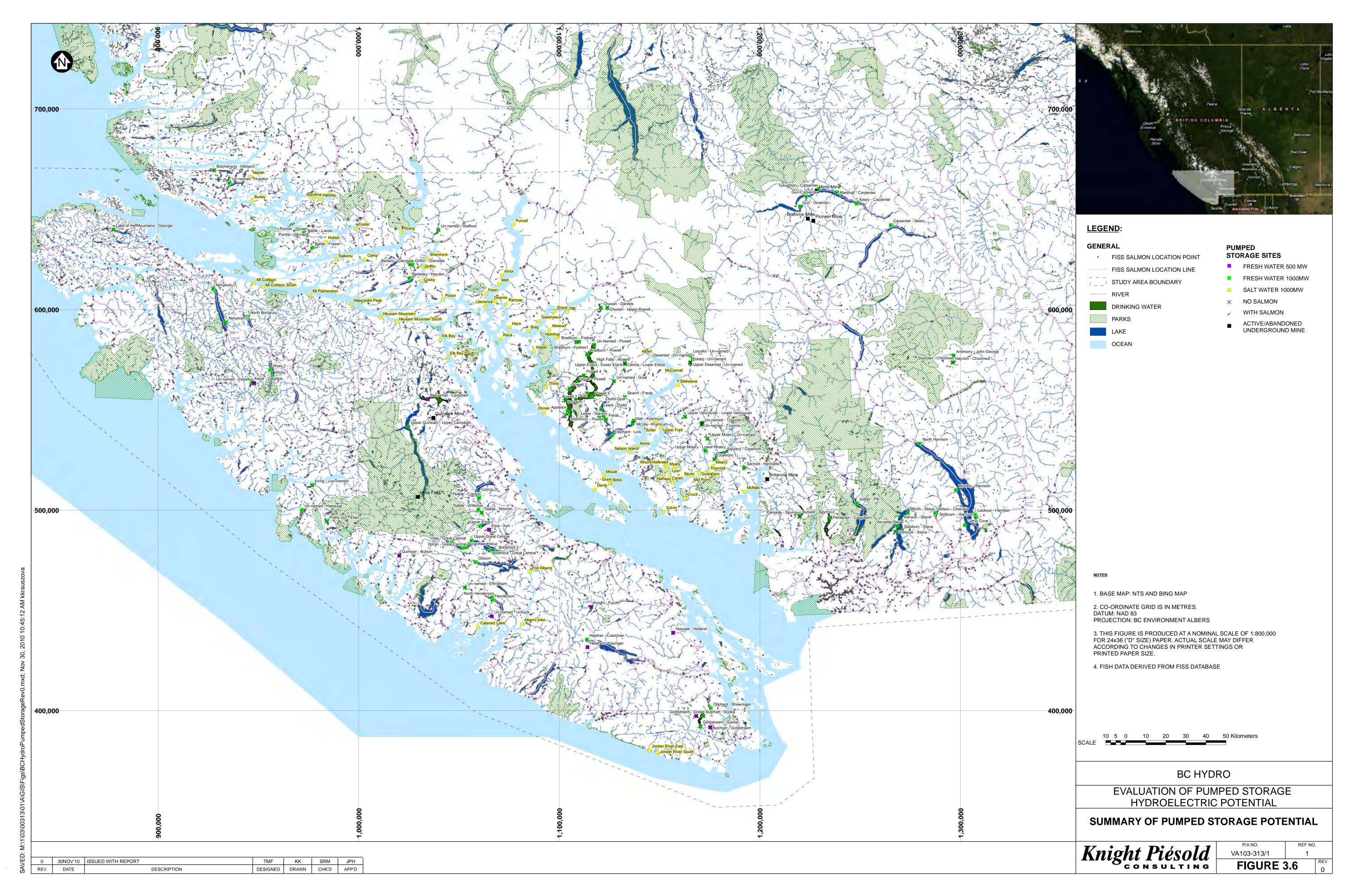

Print: 11/30/2010 10:29

	Deve	lopment Cost Distri	bution
Year	Freshwater	Saltwater	Underground
Year 1	0%	0%	0%
Year 2	0%	0%	0%
Year 3	5%	0%	0%
Year 4	10%	5%	0%
Year 5	20%	10%	0%
Year 6	30%	20%	5%
Year 7	30%	30%	10%
Year 8	5%	30%	20%
Year 9		5%	30%
Year 10			30%
Year 11			5%
Total	100%	100%	100%


3.4_CostDistribution.xlsx]Sheet1


	0	25NOV'10	ISSUED WITH REPORT VA103-313/1-1	TMF	SRM	JPH
I	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D





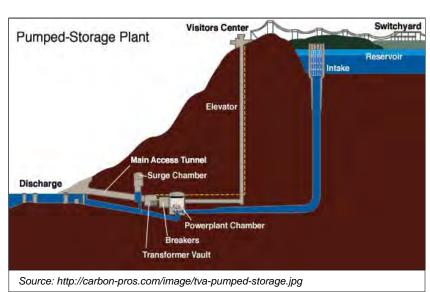
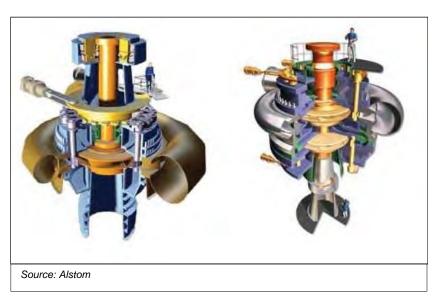



PHOTO 1 - Schematic of Pumped Storage Scheme.

PHOTO 2 – Schematic of Single-Stage vs. Multistage Reversible Pump Turbines.

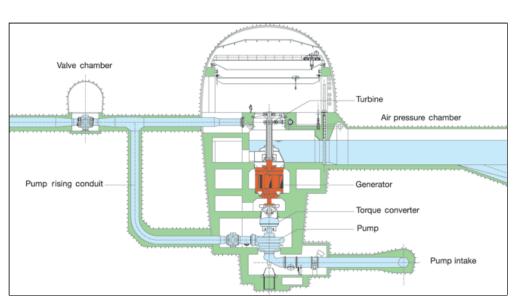
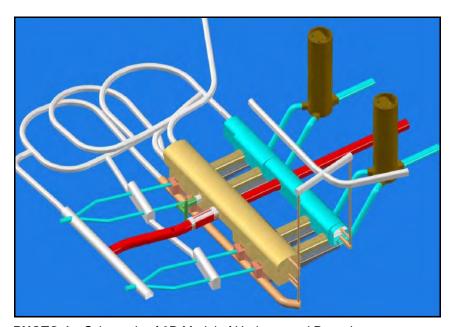



PHOTO 3 – Schematic of Pelton Unit Combined with Multistage Pump.

PHOTO 4 – Schematic of 3D Model of Underground Powerhouse.

BC HYDRO

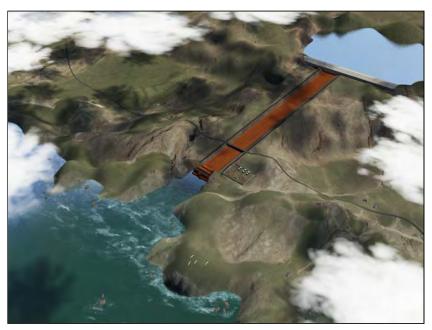


PHOTO 5 - Spirit of Ireland Project - Artistic Rendition of Saltwater Pumped Storage Scheme.

PHOTO 6 - Okinawa Saltwater Pumped Storage Plant - Cutaway Model of Plant.

BC HYDRO

PHOTO 7 - Ingula Pumped Storage Scheme - CFRD Dam.

PHOTO 8 – Ingula Pumped Storage Scheme – Intake Tower Under Construction.

PHOTO 9 – Ingula Pumped Storage Scheme – Machine Hall Under Construction.

PHOTO 10 – Ingula Pumped Storage Scheme – Outlet Structure Under Construction.

Source: http://www.hydroworld.com/etc/medialib/HRW/Articles/Volume-18/issue-4.Par.90483.Image.450.319.1.gif

PHOTO 11 – Example of "Crow's Nest" Upper Reservoir – Taum Sauk Facility, USA.

Source: http://lostontheshore.typepad.com/photos/uncategorized/2008/02/20/usace_kinzua_dam_downriver.jpg

PHOTO 12 – Example of "Crow's Nest" Upper Reservoir – Seneca Facility, USA.

Source: http://data.czechtourism.com/aktivity/foto/2008-09-01-0953-za-poznanim-pesituristika-loucna-nad-desnou/e474ebbb-77fa-11dd-addc-001a64a218ce.jpg

PHOTO 13 – Example of "Crow's Nest" Upper Reservoir – Dlouhé Stráně Facility, Czech Republic.

PHOTO 14 - Aerial View of Okinawa Saltwater Pumped Storage Plant, Japan.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT

PREPARED FOR:

BC Hydro 333 Dunsmuir Street Vancouver BC, V6B 5R3

PREPARED BY:

Knight Piésold Ltd.
Suite 1400 – 750 West Pender Street
Vancouver, BC V6C 2T8 Canada
p. +1.604.685.0543 • f. +1.604.685.0147

Knight Piésold consulting

www.knightpiesold.com

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

Rev	Description	Date	Approved
0	Issued in Final	March 15, 2012	SRM
-		-	-
			1

Knight Piésold Ltd.

Suite 1400

750 West Pender Street

Vancouver, British Columbia Canada V6C 2T8

Telephone: (604) 685-0543 Facsimile: (604) 685-0147 www.knightpiesold.com

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

EXECUTIVE SUMMARY

BC Hydro engaged Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the North Coast Region of British Columbia. The purpose of this assessment was to determine whether there are potentially viable greenfield pumped storage hydroelectric sites in the North Coast Region of British Columbia. This report illustrates that there are a number of potentially viable sites, all of which are freshwater.

The assessment was limited to an area within 50 km of BC Hydro's two main transmission lines within the North Coast Region (2L101 and 2L99). Within the area surrounding 2L99, sites of up to 1000 MW capacity were assessed, while sites were limited to 500 MW in the region near 2L101. In addition, potential pumped storage sites were assessed along a likely transmission corridor from the West Coast of Banks Island to Douglas Channel, given the high potential for wind resources in the area.

Potential basins were identified using a combination of existing lakes and/or man-made reservoirs. Using these potential candidate basins, an in-house GIS screening tool identified sites that could provide storage for 16 or 48 hours of continuous generation with a minimum dam embankment construction volume. In addition, potential saltwater sites were identified. The 120 potential sites identified using Knight Piésold's in-house GIS screening tool were then ranked using a cost estimation spreadsheet in order of levelised capital cost (\$/kW-year).

From the list of possible sites, a total of 33 were identified as having the potential to provide 16 hrs of continuous generation at either 500 MW or 1000 MW capacity below a threshold of \$200/kW-yr. In addition, 29 sites were identified as having the ability to provide 48 hrs of continuous generation below a threshold of \$500/kW-yr. The 25 best sites had estimated costs ranging from \$83/kW-yr to \$140/kW-yr for 16 hours of continuous generation, and \$181/kW-yr to \$430/kW-yr for 48 hours of continuous generation. While a number of potential saltwater sites were identified, it appears that development of freshwater pumped storage sites would be more cost effective. The saltwater pumped storage sites identified ranged in cost between \$267 – 490/kW-yr. In addition, the development of freshwater pumped storage sites will likely have a reduced environmental impact in comparison to saltwater pumped storage.

The North Coast Region of British Columbia has a high technical potential for freshwater pumped storage development due to the steep topography and existence of many natural lakes and other suitable basins for constructing pumped storage reservoirs. The development costs appear to be similar to the Lower Mainland and Vancouver Island, but with fewer viable sites, due to the relative lack of existing hydropower reservoirs in the region. Based on the potential for pumped storage in the North Coast, and the projected increase in loads and renewable energy in the region, we recommend further assessment of these sites, commencing with estimation of transmission, access and interconnection costs.

I of I

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

TABLE OF CONTENTS

			PAGE
EXECUTI	VE SUM	MARY	I
TABLE O	F CONTI	ENTS	i
SECTION	I 1 0 - IN	TRODUCTION	1
1.1		DDUCTION	
1.2		IOUS STUDIES	
1.3		GROUND TO PUMPED STORAGE	
SECTION	1 2.0 - SC	CREENING METHODOLOGY	3
2.1	SPAT	IAL LIMITATIONS	3
2.2	LIMIT	ATIONS ON GENERATION CAPACITY	3
2.3	MINIM	IUM STORAGE REQUIREMENTS	3
2.4	ENVIF	RONMENTAL LIMITATIONS	3
2.5	TECH	NICAL CONSTRAINTS	4
	2.5.1	Freshwater Lake to Lake Sites	4
	2.5.2	Man-Made Reservoir Sites	4
	2.5.3	Saltwater Pumped Storage Sites	5
	2.5.4	Screening Assessment	5
	2.5.5	Site Characterisation and Costing	5
SECTION		REENING ASSESSMENT RESULTS	
3.1	_	HWATER SITE IDENTIFICATION	
3.2	SALT	WATER SITE IDENTIFICATION	7
SECTION	1 4.0 - CC	DNCLUSIONS AND RECOMMENDATIONS	8
SECTION	l 5.0 - RE	FERENCES	9
SECTION	160-CF	RTIFICATION	10

Knight Piésold

TABLES

Table 2.1 Rev 0	Development Cost Distribution by Pumped Storage Type
Table 3.1 Rev 0	Summary of Sites with Storage for 16 hrs of Continuous Generation
Table 3.2 Rev 0	Summary of Sites with Storage for 48 hrs of Continuous Generation

FIGURES

Figure 2.1 Rev 0	Study Area
Figure 2.2 Rev 0	Salmon Bearing Waterways in the Study Area
Figure 2.3 Rev 0	Potential Locations for Saltwater Reservoirs
Figure 2.4 Rev 0	Potential Locations for Freshwater Reservoirs
Figure 2.5 Rev 0	Conceptual Development Schedule
Figure 3.1 Rev 0	Cost of Cumulative Installed Capacity – Storage for 16 hrs Continuous Generation
Figure 3.2 Rev 0	Cost of Cumulative Installed Capacity – Storage for 48 hrs Continuous Generation
Figure 3.3 Rev 0	Cost of Cumulative Installed Capacity – Saltwater Sites
Figure 3.4 Rev 0	Location of Pumped Storage Sites for 16 hrs of Continuous Generation
Figure 3.5 Rev 0	Location of Pumped Storage Sites for 48 hrs of Continuous Generation

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

SECTION 1.0 - INTRODUCTION

1.1 INTRODUCTION

BC Hydro engaged Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the North Coast Region of British Columbia. This report discusses the results of the assessment.

1.2 PREVIOUS STUDIES

KPL previously conducted a similar study for the Lower Mainland and Vancouver Island region of southwest British Columbia, in 2010. KPL have adopted a similar methodology in the current report, and have adapted the same screening and assessment tools that were developed for that study.

1.3 BACKGROUND TO PUMPED STORAGE

The concept of pumped storage is the generation of electricity by capturing the energy of water being transferred from a higher elevation upper reservoir, through turbine/generator units, into a lower elevation reservoir. The system is then reversed and the water from the lower reservoir is pumped back to the upper reservoir. Though the system is a net consumer of energy, it can be advantageous to developers/utilities by:

- Providing additional capacity during high-load hours when the cost of energy is greatest
- Increasing profitability by using low-value base load energy to pump water to the upper reservoir during low-load hours
- Providing grid stability by reducing the generation differential between high-load and low-load periods.
- Relieving constrained transmission components
- Providing voltage regulation, especially at the end of long transmission systems (relevant to the North Coast Region of BC)
- Providing storage for intermittent renewable energy sources that cannot be dispatched on demand
- Providing backup capacity in the event of a planned or unplanned outage of another significant generation source connected to the grid, and/or
- Providing capacity for export.

Pumped storage projects can be either freshwater or saltwater. Nearly all pumped storage projects worldwide to date are freshwater pumped storage projects. As of 2009, it was estimated that more than 127, 000 MW of pumped storage capacity was operating worldwide.

1 of 10

Knight Piésold

The concept of saltwater pumped storage is the same as that of freshwater pumped storage, with the exception that seawater is exchanged between the ocean and an upper reservoir instead of a freshwater lower reservoir. The advantage of saltwater pumped storage over freshwater pumped storage is that construction of only one reservoir is needed, which can significantly reduce the capital cost of the development. There is currently only one saltwater pumped storage project operating worldwide. This is located in Okinawa, Japan, and has been operating for more than 10 years. There are also numerous saltwater tidal power projects around the world. However, in BC there are numerous fresh water lakes that could also act as the lower reservoir, without the additional complications of salt water corrosion, marine growth issues and added environmental permitting risk of a saltwater development.

2 of 10

SECTION 2.0 - SCREENING METHODOLOGY

2.1 SPATIAL LIMITATIONS

The study area was limited to the North Coast Region of British Columbia, limited to a 50 km boundary on either side of the 2L99 and 2L101 transmission lines of BC Hydro's grid. Within the study area, the following spatial limitations apply:

- Terrestrial parks and reserve areas are excluded from the study area
- Marine parks are included in the study area
- · Private land is included in the study area, and
- · Indian Reserves are included in the study area.

A summary of the study area is shown on Figure 2.1.

In addition, potential pumped storage sites were assessed along a likely transmission corridor from the West Coast of Banks Island to Douglas Channel, given the high potential for wind resources in the area.

2.2 LIMITATIONS ON GENERATION CAPACITY

Only sites that have an installed capacity of 500 MW were considered along the 2L101 corridor. Sites with either 500 MW or 1000 MW of installed capacity were considered along the 2L99 corridor. In instances where the defined study areas along 2L99 and 2L101 intersect, the requirements for 2L99 applied.

It is assumed that the additional sites along potential transmission line routes from Banks Island to Kitimat would follow the same requirements for the 2L99 region.

2.3 MINIMUM STORAGE REQUIREMENTS

Two sets of sites were identified. The first set included sites that have storage for 16 continuous hours of generation. The second set included sites that have storage for 48 hours of continuous generation. These equate to an energy storage of 8,000 MWh and 24,000 MWh for the 500 MW sites, and 16,000 MWh and 48,000 MWh for the 1,000 MW sites respectively. The volume of water required to store this amount of energy varies by project, depending on the available head.

2.4 ENVIRONMENTAL LIMITATIONS

Salmon bearing rivers were excluded from the study. The Fish Information Summary System (FISS) from the BC Ministry of Environment was used as the basis for known fish distribution data. Rivers with historical observances of Chinook, Sockeye, Chum, Coho, Pink and/or Steelhead were not considered in the screening assessment.

Existing lakes with historical observances of Salmon were included in the assessment. Only one salmon bearing lakes was identified as a potential pumped storage site, and this was not one of the more cost effective sites. Another two salmon bearing lakes (Kitsumkalum Lake and Lakelse Lake) were identified in the study area as potentially good pumped storage reservoir locations. However, these were excluded

3 of 10

Knight Piésold

as it would be likely that construction of a pumped storage facility at other of these locations would require the creation of a reservoir that would impact salmon habitat on the rivers upstream of the lake. A summary of the fish distribution data for the salmon species mentioned above are shown on Figure 2.2.

2.5 TECHNICAL CONSTRAINTS

For each of the two sets of sites (16 hours storage and 48 hours of storage), a maximum of 25 sites were identified. A preliminary cost estimate for each of the 120 potential sites identified by the screening was undertaken in order to rank the sites in order of levelised capital cost. Only the 25 highest ranked sites for each of the two sets of sites were included in the report. Where a potential site was ranked highly for both 500 MW or 1000 MW capacity, only the lower cost (levelised capital cost) configuration was included in the list of potential sites. In order to determine the real levelised cost (\$/kW-year), the following was assumed:

- Design Life = 70 years, and
- Discount Rate = 6%

2.5.1 Freshwater Lake to Lake Sites

The North Coast Region of British Columbia has an abundance of small lakes in combination with the steep topography. Due to this high number of potential sites, lakes with the most attractive characteristics were targeted, and were included in the pool of candidate basins for further assessment. All existing lakes within the study area were screened as follows;

- Lakes > 2 ha were assessed as potential reservoir basins.
- Existing lakes within a 10 km horizontal distance that could be used as an upper and lower reservoir respectively (i.e. waterway length is limited to approximately 10 km or less).
- For existing lakes, all water storage was assumed to be constructed above the natural lake water level.

A total of approximately 100 "existing lake" basins were identified using an automated GIS searching tool.

2.5.2 Man-Made Reservoir Sites

Due to the relatively undisturbed nature of the North Coast Region, there are few existing reservoirs, and large existing lakes are concentrated towards the west coast. For this reason, it was necessary to assess the potential of new man-made reservoirs to serve as potential upper and/or lower reservoirs. A visual assessment was undertaken using TRIM mapping to manually identify potential reservoir basins. For each potential basin, a "nominal" reservoir size was calculated using GIS, including the dam height and crest length, reservoir storage volume, and reservoir elevation. A total of approximately 200 "man-made reservoir" basins were identified using a visual assessment of the entire study area.

4 of 10

Knight Piésold

2.5.3 Saltwater Pumped Storage Sites

The same constraints for the freshwater "man-made reservoir" sites were applied to the screening assessment of saltwater pumped storage sites. Additionally, freshwater lakes were not considered as upstream reservoirs, due to the high environmental impact of pumping saltwater into a freshwater ecosystem. In some instances, upstream reservoirs were proposed in areas that contained either wetland or small ponds. Since it is difficult to determine at what size threshold this may not be permissible, a certain amount of judgement was required to satisfy this constraint. Only sites whose watershed flows directly to the ocean were considered and any saltwater site that would flow into an existing lake or salmon bearing river was not considered. Using visual assessment, a total of approximately 20 potential saltwater basins were identified in the study area. These potential basins are shown on Figure 2.3.

2.5.4 Screening Assessment

From the above, a list of 320 potential basins for freshwater reservoirs was created as shown on Figure 2.4. A screening was undertaken using an automated GIS tool to choose the best combinations of freshwater basins that would lead to viable pumped storage sites. This tool identifies any two basins within approximately 10 km. In some cases, two basins slightly more than 10 km apart were assessed. Between any two basins, the GIS tool will assess the gross head between the two sites and will calculate the storage volume required to meet the project assessment requirements. The GIS tool then determines whether the two basins can be constructed as a potential pumped-storage facility with a dam embankment construction volume below a certain threshold. This threshold was chosen as dam embankment construction can potentially add up to 33% or more of project construction costs, and so minimising dam embankment volume appears to be a useful mechanism to screen some of the best sites from the pool of potentially infinite combinations of sites between the basins identified. The GIS assessment tool was used with the following two constraints;

- A total dam embankment construction volume of 1,000,000 m³, with a reservoir storage capacity for 48 hrs of continuous generation.
- A total dam embankment construction volume of 500,000 m³, with a reservoir storage capacity for 16 hrs of continuous generation.

Using these constraints, the GIS tool flagged a total of 120 potential pumped-storage sites.

2.5.5 Site Characterisation and Costing

Using the 120 potential sites flagged by the GIS tool, each site was characterised in order to determine the project properties, which were then used as the basis of the cost estimate for each alternative. The main parameters of the characterisation include overall project parameters (gross head, design flow, capacity), reservoir parameters (required storage volume, reservoir area, embankment height and length, embankment volume), and waterway parameters (length, diameter, lining requirements). Due to the coarse resolution of the data, and the automated nature of the calculations, some of the site parameters (such as dam

5 of 10

Knight Piésold

height, crest length and reservoir area) may vary once each site is assessed in greater detail on an individual basis.

Cost estimates were prepared for each identified pumped-storage site by using a cost template of unit rates for project components. The unit rates used in the costing were based on experience from other pumped storage and hydroelectric projects that KPL has experience in. To provide comparison, these were the same costs as were adopted for the Assessment of Pumped Storage Potential in South-West BC, so all costs are in 2010 dollars. The capital cost estimates do not include transmission, interconnection or access to the site. As such, it would not be prudent to compare the sites based purely on a cost basis until these additional costs have been determined. The cost of transmission, interconnection and access will favour those sites closer to load centres or transmission lines.

The costs for each site are presented as loaded capital costs (based on the schedules presented in Figure 2.5, a discount rate of 6% and cost distributions as presented in Table 2.1). Cost per MW installed, cost per MWh stored, and levelized capital cost (\$/kW-yr) were also determined.

Annual Operation and Maintenance costs were also estimated for each site. These costs are estimated as a percentage of the total estimated capital cost as follows;

- Freshwater pumped storage sites, 1000 MW 1.0%
- Freshwater pumped storage sites, 500 MW 1.5%, and
- Saltwater pumped storage sites, 500 MW 2.0%.

Knight Piésold

SECTION 3.0 - SCREENING ASSESSMENT RESULTS

3.1 FRESHWATER SITE IDENTIFICATION

A total of 33 potential freshwater sites with storage for 16 hrs of continuous generation and levelised capital cost below \$200/kW-yr were identified. These included;

- Four sites with costs less than \$100/kW-yr
- Fourteen sites with costs between \$100 125/kW-yr
- Eleven sites with costs between \$125 150/kW-yr, and
- Ten sites with costs greater than \$150/kW-yr.

The cost of cumulative installed capacity is indicated on Figure 3.1. The characteristics and costs of the 25 sites with the lowest estimated levelised cost are shown in Table 3.1 and Figure 3.4.

A total of 29 potential freshwater sites with storage for 48 hrs of continuous generation and levelised capital cost below \$500/kW-yr were identified. These included;

- Three sites with costs less than \$200/kW-yr
- Eleven sites with costs between \$200 300/kW-yr
- Nine sites with costs between \$300 400/kW-yr, and
- Six sites with costs greater than \$400/kW-yr.

The cost of cumulative installed capacity is indicated on Figure 3.2. The characteristics and costs of the 25 sites with the lowest estimated levelised cost are shown in Table 3.2 and Figure 3.5

3.2 SALTWATER SITE IDENTIFICATION

A total of 12 potential saltwater sites with storage for 16 hrs of continuous generation and levelised capital cost below \$500/kW-yr were identified. These included;

- Three sites with costs less than \$300/kW-yr
- Four sites with costs between \$300 400/kW-yr, and
- Five sites with greater than \$400/kW-yr.

The cost of cumulative installed capacity is indicated on Figure 3.3. No saltwater sites with potential for storage for 48 hrs continuous generation were identified. The lists of the lowest estimated cost sites (Tables 3.1 and 3.2), did not include any saltwater sites.

7 of 10

SECTION 4.0 - CONCLUSIONS AND RECOMMENDATIONS

The North Coast Region of British Columbia has a high technical potential for freshwater pumped storage development due to the steep topography and existence of many natural lakes and other suitable basins for constructing pumped storage reservoirs. The potential appears to be slightly less than in the Lower Mainland and Vancouver Island, primarily due to the relatively undisturbed nature of the landscape and the lack of many existing hydropower and other man-made reservoirs suitable for use as part of a pumped storage facility. In addition, it appears that larger lakes are concentrated in the western portion of the region, where there are a large number of parks and few suitable high elevation basins for use as an upper reservoir. These factors appear to limit the total number of sites, however the most cost effective sites appear to be similar in terms of unit cost (\$/kW-yr) to the best sites in the Lower Mainland.

A total of 33 sites were identified with the potential to provide 16 hrs of continuous generation at either 500 MW or 1000 MW capacity. In addition, 29 sites were identified having the ability to provide 48 hrs of continuous generation. The 25 best sites had estimated costs ranging from \$83/kW-yr to \$140/kW-yr for 16 hours of continuous generation, and \$181/kW-yr to \$430/kW-yr for 48 hours of continuous generation. Of the top 25 sites for 48 hours of continuous generation, all were of 500 MW capacity. While some sites can be developed to 1000 MW capacity, it appears to be more cost effective to constrain these larger sites to 500 MW. Still, it is likely that it would be more cost effective to develop some of the best sites to a capacity of 1000 MW than to develop two lower ranked sites to a capacity of 500 MW each.

While a number of potential saltwater sites were identified, it appears that development of freshwater pumped storage sites would be more cost effective. The saltwater pumped storage sites identified ranged in cost between \$267 – 490/kW-yr. In addition, the development of freshwater pumped storage sites will likely be easier to permit, and pose fewer technical challenges in comparison to construction of saltwater pumped storage sites.

Should BC Hydro wish to further pursue pumped storage potential in BC, KPL recommends the items below. KPL is aware that some of these items are underway already;

- Estimate the costs of transmission, interconnection and access to each of the sites identified in order to meaningfully compare each potential project.
- Conduct a system-wide study to determine the benefits/impacts of integrating pumped storage into the BC Hydro grid.
- Determine the "ideal" characteristics of a pumped storage facility, in terms of providing the maximum benefits to the BC Hydro system, improving export opportunities and firming of renewable energy (especially wind power).
- Conduct a screening assessment for the remaining portions of the province where there is a high
 resource potential of intermittent loads or renewable energy sources such as wind, run-of-river hydro,
 solar, tidal and/or wave energy.
- Conduct a more detailed assessment of the most favourable sites identified in this assessment.

8 of 10

SECTION 5.0 - REFERENCES

American Society of Civil Engineers. 1989. *Civil engineering guidelines for planning and designing hydroelectric developments.* Volume 5, Pumped Storage and Tidal Power. New York, NY: American Society of Civil Engineers.

Knight Piésold Ltd. 2010. Evaluation of Pumped Storage Hydroelectric Potential in South-West BC – Screening Assessment Report. Ref: VA103-313/1-1.

9 of 10

SECTION 6.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

M. G. FULLINGER # 162149

Prepared:

Michael Pullinger, M.Sc., P.Eng.

Project Engineer

Reviewed:

Sam Mottram, P.Eng Power Services Manager

Approved:

Jeremy Haile, P.Eng

President

This report was prepared by Knight Piésold Ltd. for the account of BC Hydro. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

10 of 10

TABLE 2.1

BC HYDRO NORTH COAST PUMPED STORAGE ASSESSMENT

DEVELOPMENT COST DISTRIBUTION BY PUMPED STORAGE TYPE

Print: 3/15/2012 10:38

	Development C	ost Distribution
Year	Freshwater	Saltwater
Year 1	0%	0%
Year 2	0%	0%
Year 3	5%	0%
Year 4	10%	5%
Year 5	20%	10%
Year 6	30%	20%
Year 7	30%	30%
Year 8	5%	30%
Year 9		5%
Total	100%	100%

 $\label{lem:loss} $$M:\1\03\02\A\Report\1 - North Coast Region Pumped Storage\Rev 0\Tables\Table2-1.xlsx]Sheet1$

	0	6MAR'12	ISSUED WITH REPORT VA103-313/2-1	MGP	SRM	JPH
ı	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

TABLE 3.1

BC HYDRO NORTH COAST PUMPED STORAGE ASSESSMENT

SUMMARY OF SITES WITH STORAGE FOR 16 HRS OF CONTINUOUS GENERATION

																																		Print: 3/6/2	2012 9:35
Name	Latitude	Longitude	Latitude	Longitude	Capacity	/ Location	Upper Reservoir Area	Upper Reservoir Base Elevation	Upper Reservoir Crest Length	Upper Reservoir Dam Height	Lower Reservoir Area	Lower Reservoir Base Elevation	Lower Reservoir Dam Crest Length	Lower Reservoir Dam Height	Storage Requirement	Storage Requirement	2D Waterway Length	Gross Head	H/L Ratio	Design Flow (Generation)	Design Flow (Pumping), 70% of Generation Flow	Pump/Turbine Type	Total Estimated Capital Cost	Loaded Capital Cost		Unit Cost of Stored Energy	Levelized Cost	Upper Reservoir Footprint	Upper Dam Footprint	Lower Reservoir Footprint	Lower Dam Footprint	Staging/La ydown Footprint	Spoil Footprint	Roads Footprint	Total Footprint
	decimal	decimal	decimal	decimal	MW	Trans.	ha	masl	m	m	ha	masl	m	m	m3	MWh	m	m	%	m3/s	m3/s		s	s	S/MW	\$/MWh	\$/kW-vr	ha	ha	ha	ha	ha	ha	ha	ha
Upper Clore	degrees 54.212	-127.933	Gegrees 54 194	degrees	1000	Line 2L99	101.6	1260	260	F1	46.0	590	164.2	48.5	11 287 120	16 000	4150	690	160/	196	137	Single Stage	1,199,967,306	1 262 602 455	1 100 067	74.000	83.2	20.4	2.5	25.2	1.5	6.0	6.2	6.9	87.7
Sleeman	53.671	-127.933	53 607	-128 672	1000	21.00	101.0	900	555	5/	115.1	300	508.7	40.5 40.0	12 702 060	16,000	2825	600	21%	222	155		1,329,292,286			92.091	03.2	41.6	5.5	30.3	5.5	6.0	5.7	6.0	109.5
Hirsch	54.027	-128.380	54 033	-128 334	1000	21 99	89.5	1340	636	64	36.7	400	223.8	22.4	8.165.150	16,000	3076	940	31%	142	99		1,408.031.541			88 002	92.2	46.1	7.3	93	1.0	6.0	5.8	9.4	84.8
Lower Falls	53.735	-128 498	53 702	-128 527	1000	21.99	71.5	700	481	83	119 1	120	102.2	7.8	13 233 175	16,000	4122	580	14%	230	161		1.418.849.098	1/	, ,	88 678	98.4	56.8	7.0	4.5	0.2	6.0	6.4	6.2	87.2
Hugh	53.750	-128.774	53.697	-128.672	1000	2L99	85.3	900	397	39	82.2	60	110.3	25	9.137.192	16.000	8897	840	9%	159	111	- 3 3 -	1.450.922.536	1- //	1.450.923	90,683	100.6	25.9	2.8	15.8	0.5	6.0	8.8	13.3	73.2
Upper Falls	53.700	-128.488	53.702	-128.527	1000	2L99	74.0	700	499	86	123.4	140	611.0	37.4	13,705,788	16,000	2622	560	21%	238	167	Single-Stage	1,481,452,194	1,683,584,754	1,481,452	92,591	102.8	60.1	7.7	29.5	4.2	6.0	5.6	5.6	118.6
Oliver	54.803	-128.193	54.820	-128.165	1000	2L99	74.3	1020	468	63	74.3	400	829.7	66.1	12,379,422	16,000	2580	620	24%	215	150	Single-Stage	1,484,079,322	1,686,570,332	1,484,079	92,755	102.9	41.9	5.3	44.3	9.9	6.0	5.5	6.2	119.2
Kitimat 1	54.044	-128.120	54.049	-128.032	1000	2L99	67.2	1300	421	90	62.2	560	370.1	36.6	10,371,948	16,000	5798	740	13%	180	126	Single-Stage	1,517,064,912	1,724,056,548	1,517,065	94,817	105.2	61.1	6.8	20.9	2.5	6.0	7.2	8.7	113.1
Lower Hirsch 2	54.088	-128.487	54.017	-128.446	1000	2L99	56.3	1140	711	54	90.1	220	165.5	4.6	8,342,654	16,000	8383	920	11%	145	101	Multi-Stage	1,564,032,935	1,777,432,991	1,564,033	97,752	108.5	30.8	6.9	1.8	0.2	6.0	8.5	12.6	66.9
Andesite	54.409	-129.268	54.384	-129.186	1000	2L99	114.7	900	829	72	59.2	200	62.9	18.5	10,964,631	16,000	5996	700	12%	190	133	Single-Stage	1,581,949,905	1,797,794,590	1,581,950	98,872	109.7	59.4	10.8	9.3	0.2	6.0	7.3	9.0	102.0
Jesse Creek 1	53.929	-128.901	53.939	-128.929	1000	2L99	215.9	360	783	67	431.7	40	1177.8	25.1	23,985,129	16,000	2095	320	15%	416	291	Single-Stage	1,624,035,890	1,845,622,879	1,624,036	101,502	112.6	73.2	9.5	34.6	5.6	6.0	5.5	3.2	137.6
Lower Hirsch 1	54.098	-128.484	54.033	-128.334	1000	2L99	77.7	1340	534	53	74.0	220	136.0	3.8	6,852,894	16,000	12186	1120	9%	119	83	Multi-Stage	1,638,581,601	1,862,153,238	1,638,582	102,411	113.7	35.4	5.2	1.1	0.1	6.0	10.5	18.3	76.6
Lower Clore 2	54.295	-127.924	54.341	-127.793	1000	2L99	287.8	980	901	45	50.8	500	108.4	13.8	15,990,086	16,000	9902	480	5%	278	194	- 3 3 -	1,649,729,649	1- 1- 1	, ,	103,108	114.4	54.1	7.4	6.1	0.3	6.0	9.4	14.9	98.2
Kitimat 2	54.070	-128.123	54.049	-128.032	1000	2L99	64.0	1300	399	86	106.3	520	545.4	35.0	9,840,053	16,000	6392	780	12%	171	120		1,652,999,182	,, ,	,,	103,312	114.7	56.2	6.1	25.5	3.5	6.0	7.5	9.6	114.4
Lower Clore 1	54.275	-127.940	54.184	-127.975	1000	2L99	90.9	1260	330	46	32.1	500	68.8	8.7	10,099,002	16,000	10424	760	7%	175	123		1,690,199,438	1//	1,690,199	105,637	117.2	32.2	2.8	2.8	0.1	6.0	9.6	15.6	69.1
Jesse Lake	53.917	-128.898	53.935	-128.934	1000	2L99	203.2	360	737	63	1776.5	20	714.7	49	22,574,239	16,000	3094	340	11%	392	274	9	1,707,693,616	.,,,	.,	106,731	118.4	66.5	8.4	144.1	6.4	6.0	6.0	4.6	242.1
Chimdemash	54.615	-128.220	54.593	-128.195	1000	2L99	28.8	1300	587	93	53.1	700	567.7	63.6	12,792,069	16,000	2938	600	20%	222	155		1,713,917,122			107,120	118.9	44.8	9.7	36.6	6.5	6.0	5.7	6.0	115.4
North Hirsch	54.063	-128.253	54.034	-128.327	1000	2L99	109.3	1340	808	81	62.2	600	725.6	49.5	10,371,948	16,000	5813	740	13%	180	126	- 3 3 -	1,810,944,527	, , , .	1,810,945	113,184	125.6	66.2	11.7	29.4	6.6	6.0	7.2	8.7	135.8
Upper Lukes	54.132	-128.845	54.196	-128.884	1000	2L99	90.2	980	719	86	76.2	300	394.8	38.1	11,287,120	16,000	7544	680	9%	196	137	- 3 3 -	1,811,198,926	1/- 1-	1,811,199	113,200	125.6	65.3	11.1	23.9	2.8	6.0	8.1	11.3	128.5
Diana 	54.206	-130.150	54.205	-130.168	500	2L101	107.9	400	104	30	699.5	80	328.7	11.0	11,992,565	8,000	1165	320	2/%	208	146	Single-Stage	. ,,	1/	1,824,074	114,005	126.5	21.4	0.6	17.0	0.8	6.0	4.7	3.2	53.7
Lower Lukes	54.147	-128.733	54.196	-128.884	1000	2L99	80.4	980	627	75	35.4	200	51.9	11.0	9,840,053	16,000	11270	780	7%	171	120		1,859,125,119			116,195	129.0	53.0	8.4	3.9	0.1	6.0	10.1	16.9	98.4
Sue-Bardon 1	53.675	-129.018	53.639	-129.100	1000	2L99	162.8	400	193	44	230.3	100	292.4	109.7	25,584,138	16,000	4050	300	4%	444	311	9	1,876,885,771	_,,	.,,	117,305	130.2	40.1	1.6	74.0	5.7	6.0	7.9	10.0	201.7
Sue-Bardon 2	53.668	-129.048	53.639	-129.100	1000	2L99	190.7	400	263	60	194.4	180	546.2	68.3	34,887,461	16,000	4658	220	5%	606	424	0 0	1,924,007,175		1,924,007	120,250	133.5	60.9	2.9	71.0	6.7	6.0	7.1	7.0	161.6
Jesse Creek 2	53.963	-128.948	53.940	-128.934	1000	2L99	246.7	360	895	77	296.0	80	5/2.4	60.9	27,411,576	16,000	2643	280	11%	476	333	- 3 3 -	1,963,207,318	1 - 1- 1	,,	122,700	136.2	90.2	12.3	76.2	6.3	6.0	5.9	4.0	200.9
Aveling	54.221	-128.883	54.196	-128.884	1000	2L99	92.5	980	741	88	89.7	320	890.8	81.0	11,629,154	16,000	2776	660	24%	202	141	Single-Stage	2,010,547,752	2,284,871,260	2,010,548	125,659	139.5	68.3	11.7	60.9	13.0	6.0	5.6	6.6	172.1

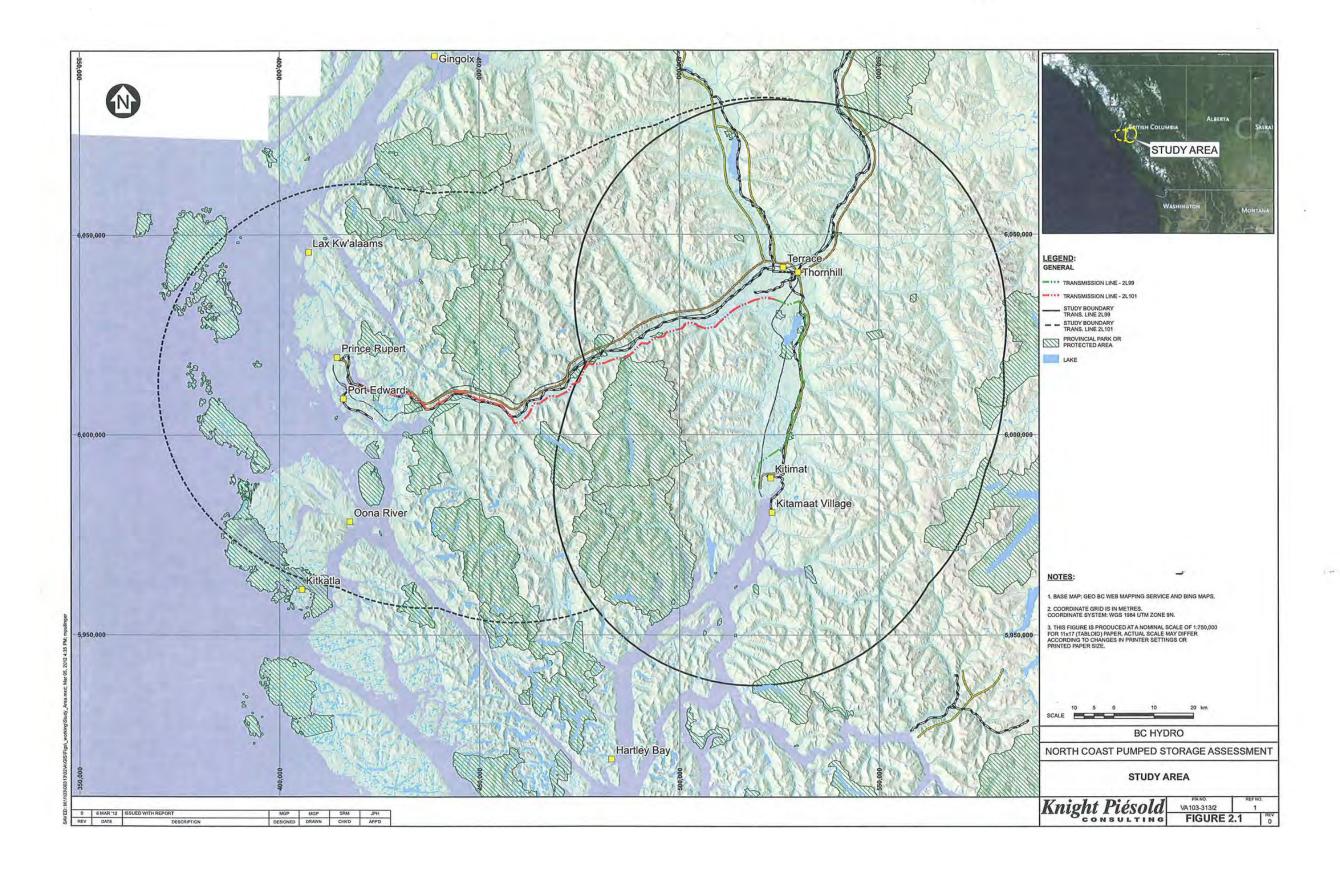
M:\1\03\00313\02\A\Report\1 - North Coast Region Pumped Storage\Tables\[Fig_Table_3-1.xlsx]\[Table3.1]

0 6MART2 ISSUED WITH REPORT VA103-313/2-1 MGP SRM JPH REV DATE DESCRIPTION PREPD CHCD APPD

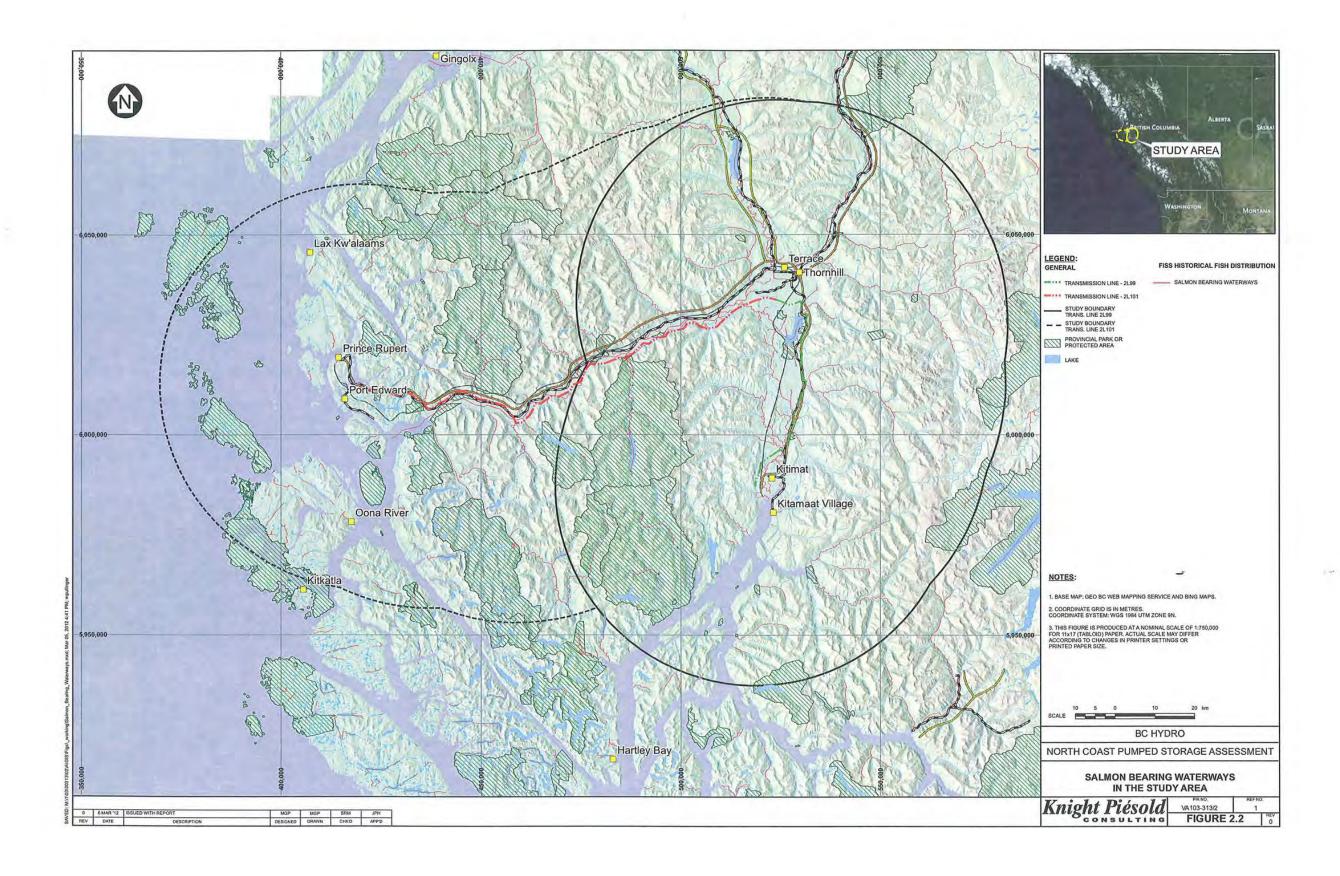
Page 61 of 72 November 2013

TABLE 3.2

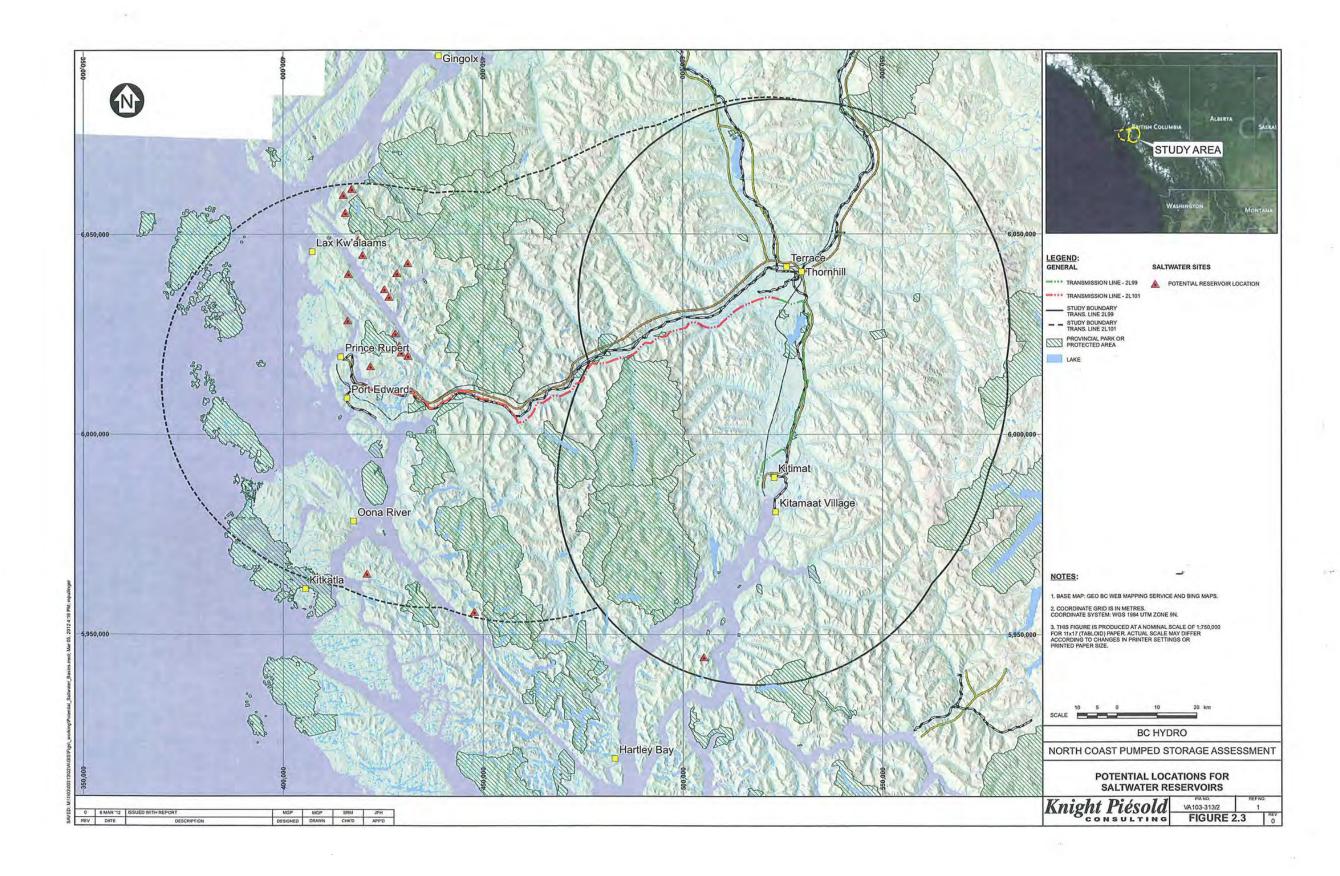
BC HYDRO NORTH COAST PUMPED STORAGE ASSESSMENT

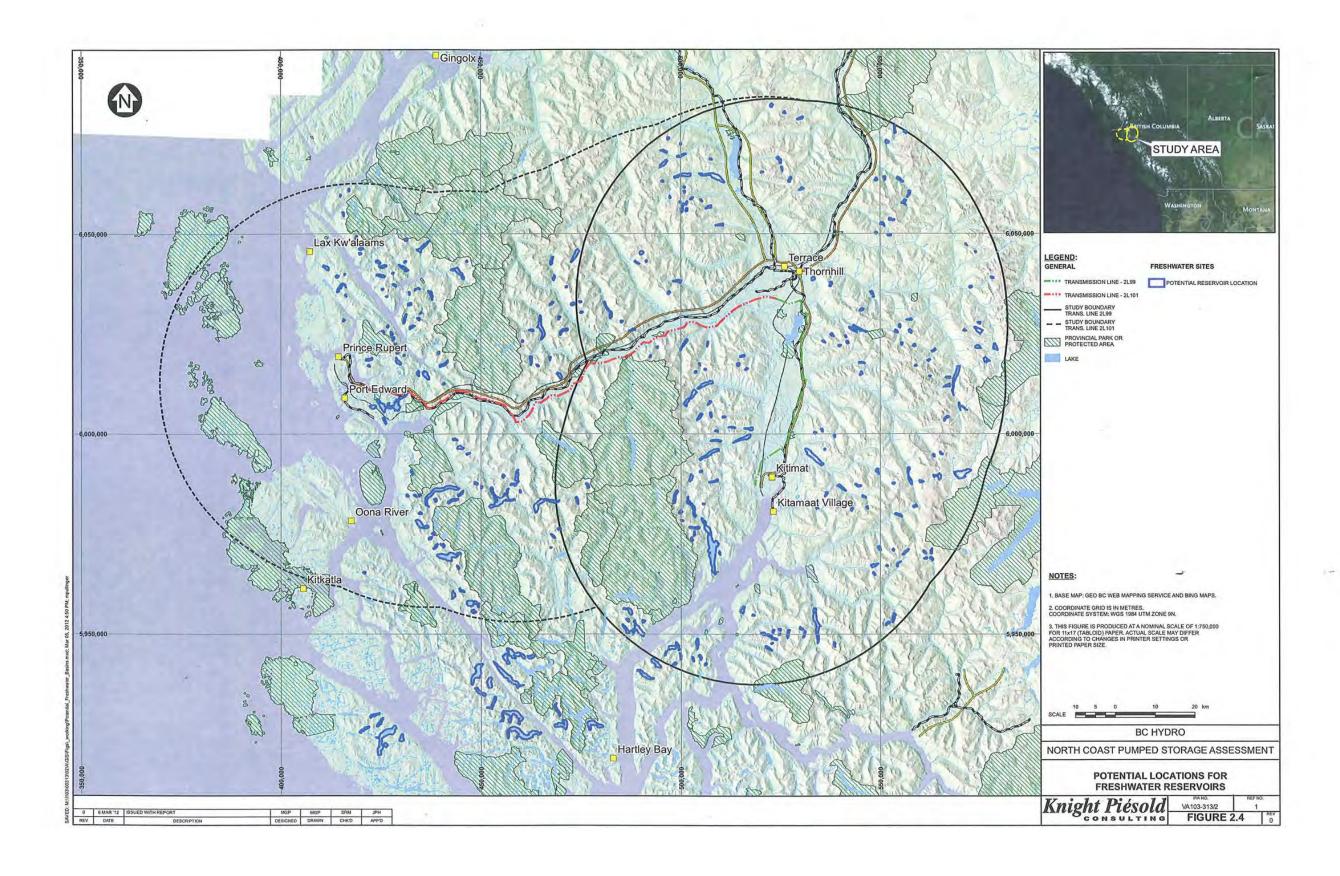

SUMMARY OF SITES WITH STORAGE FOR 48 HRS OF CONTINUOUS GENERATION

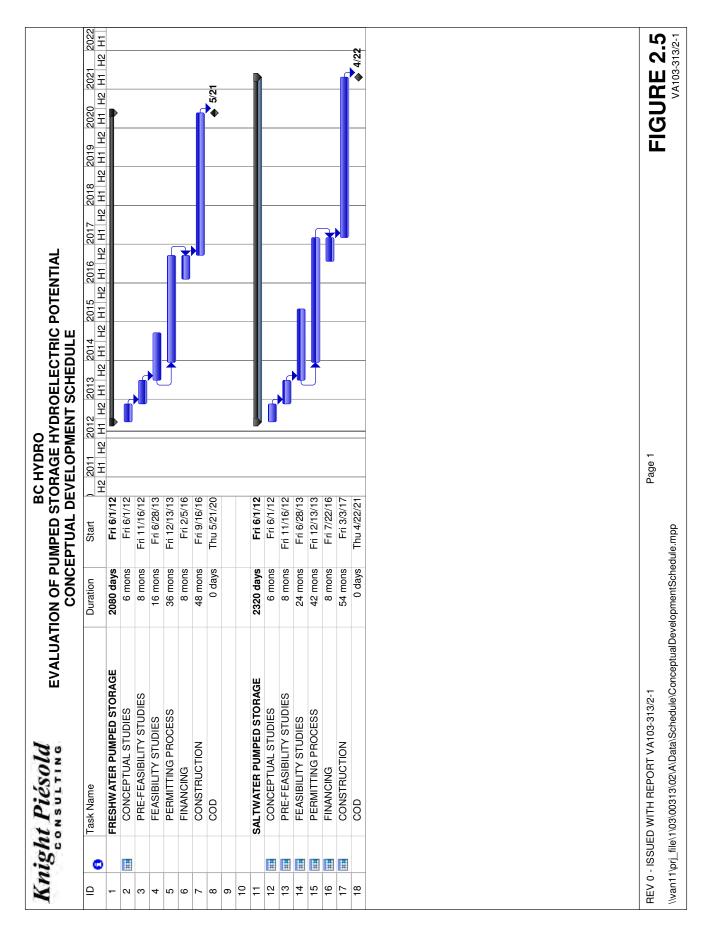
															Print: 3/6/2012 9:36																				
Name	Latitude	Longitude	Latitude	Longitude	Capacity	/ Location	Upper Reservoir Area	Upper Reservoir Base Elevation	Upper Reservoir Crest Length	Upper Reservoir Dam Height	Lower Reservoir Area	Lower Reservoir Base Elevation	Lower Reservoir Dam Crest Length	Lower Reservoir Dam Height	Storage Requirement	Storage Requirement	2D Waterway Length	Gross Head	H/L Ratio	Design Flow (Generation)	Design Flow (Pumping), 70% of Generation Flow	Pumn/Turhine	Total Estimated Capital Cost	Loaded Capita Cost	Unit Cost of Capacity (Loaded Capital Cost/Capa city)	Unit Cost of Stored Energy		Upper Reservoir Footprint	Upper Dam Footprint	Lower Reservoir Footprint	Lower Dam Footprint	Staging/La ydown Footprint	Spoil Footprint	Roads Footprint	Total Footprint
	decimal	decimal	decimal	decimal	MW	Trans.	ha	masi	m	m	ha	masi	m	m	m3	MWh	m	m	%	m3/s	m3/s		\$	\$	\$/MW	\$/MWh	\$/kW-yr	ha	ha	ha	ha	ha	ha	ha	ha
Diana	degrees 54,206	degrees -130.150	degrees 54.205	-130.168	500	2L101	323.8	400	212	90	058.6	80	086.2	22.1	35 977 694	24.000	1165	220	27%	208	146	Single-Stage	1.304.491.993	1.482.479.718	2 609 094	54.354	181.0	120.8	5.0	60.5	6.1	6.0	4.7	3.2	215.2
Upper Clore	54.212	-130.130	54.203	-130.100	500	2100	152 /	1260	552	77	70.2	580	246.2	72.9	16 020 670	24,000	4150	680	16%	208	60	Single-Stage	1,304,491,993	1,482,479,718	,,	. ,	101.0	72.0	7.7	19.5	2.2	6.0	6.7	6.8	151.1
Hugh	53.750	-128.774	53.697	-128.672	500	21.99	110.0	900	595	58	123 /	60	165.4	38.2	13.705.788	24,000	8897	840	9%	79	56	Multi-Stage	1,478,930,471	1,680,718,961	_,,	61.622	205.2	45.9	6.3	30.1	1.2	6.0	8.7	13.3	111.5
Lower Clore 1	54.275	-127.940	54 184	-127 975	500	2199	136.3	1260	495	69	18 1	500	103.4	13.1	15 148 503	24,000	10424	760	7%	88	61	Multi-Stage	1 541 842 715	.,,	,,.	- ,-	213.9	61.1	6.2	5.6	0.3	6.0	9.5	15.6	104.3
Loretta-Bardon	53.689	-128.940	53 636	-129 088	500	2199	201.1	400	289	66	148.0	100	308.4	100	38 376 207	24,000	11474	300	3%	222	155	Single-Stage	1.827.119.264	2.076.415.390	0,000,000	01,210	253.5	69.4	3.4	97.0	5.5	6.0	10.2	17.2	208.8
Lower Hirsch 1	54.098	-128.484	54.033	-128.334	500	2L99	108.5	1340	801	80	111.0	220	204.0	5.7	10.279.341	24.000	12186	1120	9%	59	42	Multi-Stage	1.836.259.420	2.086.802.648	3.672.519	76,511	254.7	65.3	11.5	2.8	0.3	6.0	10.5	18.3	114.6
Sleeman	53.671	-128.675	53.697	-128.672	500	21.99	139.6	900	833	82	172.7	300	898.0	74.8	19.188.103	24.000	2825	600	21%	111	78	Single-Stage	1.857.558.607	2.111.007.943	3.715.117	77.398	257.7	74.7	12.2	74.5	12.1	6.0	5.5	6.0	191.1
Lower Clore 2	54.295	-127.924	54.341	-127.793	500	2L99	431.7	980	1351	68	76.2	500	162.6	20.6	23,985,129	24.000	9902	480	5%	139	97	Single-Stage	1,895,746,349	2.154.406.104	3,791,493	78,989	263.0	102.0	16.5	12.0	0.6	6.0	9.2	14.9	161.1
Lower Hirsch 2	54.088	-128.487	54.017	-128.446	500	2L99	84.5	1140	1067	80	135.2	220	248.3	6.9	12,513,980	24,000	8383	920	11%	72	51	Multi-Stage	1,900,653,182	2,159,982,436	3,801,306	79,194	263.7	58.9	15.4	4.1	0.4	6.0	8.4	12.6	105.8
Hirsch	54.027	-128.380	54.033	-128.334	500	2L99	126.2	1340	954	95	55.1	400	335.6	33.6	12,247,726	24,000	3076	940	31%	71	50	Multi-Stage	1,920,277,472	2,182,284,307	3,840,555	80,012	266.4	85.4	16.3	17.9	2.1	6.0	5.6	9.4	142.6
Lower Falls	53.735	-128.498	53.702	-128.527	500	2L99	107.2	700	722	125	178.6	120	153.2	11.6	19,849,762	24,000	4122	580	14%	115	80	Single-Stage	2,017,465,362	2,292,732,723	4,034,931	84,061	279.9	108.8	16.0	9.3	0.4	6.0	6.2	6.2	152.8
Big Falls	53.995	-129.678	53.976	-129.557	500	2L101	431.7	200	392	51	1599.2	80	647.9	50.8	95,940,517	24,000	8201	120	1%	555	389	Single-Stage	2,062,223,752	2,343,598,046	4,124,448	85,926	286.1	75.3	3.6	141.4	6.0	6.0	8.9	12.3	253.5
Sue-Bardon 1	53.675	-129.018	53.639	-129.100	500	2L99	201.1	400	289	66	345.4	100	438.6	164.5	38,376,207	24,000	6667	300	4%	222	155	Single-Stage	2,128,012,525	2,418,363,182	4,256,025	88,667	295.2	69.4	3.4	247.3	12.8	6.0	7.6	10.0	356.5
Sue-Bardon 2	53.668	-129.048	53.639	-129.100	500	2L99	243.0	400	394	90	288.6	180	819.3	102.4	52,331,191	24,000	4658	220	5%	303	212	Single-Stage	2,199,503,331	2,499,608,349	4,399,007	91,646	305.1	106.8	6.3	133.6	15.0	6.0	6.7	7.0	281.4
Kitimat 1	54.044	-128.120	54.049	-128.032	500	2L99	98.3	1300	631	135	93.3	560	555.1	54.9	15,557,922	24,000	5798	740	13%	90	63	Single-Stage	2,218,247,521	2,520,910,038	4,436,495	92,427	307.7	116.1	15.2	39.8	5.5	6.0	7.1	8.7	198.3
Kitimat 2	54.070	-128.123	54.049	-128.032	500	2L99	93.6	1300	599	128	159.4	520	818.1	52	14,760,080	24,000	6392	780	12%	85	60	Multi-Stage	2,282,387,994	2,593,801,976	4,564,776	95,099	316.6	106.7	13.7	48.3	7.8	6.0	7.4	9.6	199.6
Upper Falls	53.700	-128.488	53.702	-128.527	500	2L99	111.0	700	748	129	185.0	140	916.5	56.1	20,558,682	24,000	2622	560	21%	119	83	Single-Stage	2,321,789,285	2,638,579,265	4,643,579	96,741	322.1	115.1	17.2	55.9	9.3	6.0	5.4	5.6	214.5
Oliver	54.803	-128.193	54.820	-128.165	500	2L99	111.4	1020	703	94	111.4	400	1244.6	99.1	18,569,132	24,000	2580	620	24%	107	75	Single-Stage	2,359,396,713	2,681,317,932	4,718,793	98,308	327.3	79.8	11.9	84.5	22.1	6.0	5.4	6.2	215.9
Jesse Creek 1	53.929	-128.901	53.939	-128.929	500	2L99	323.8	360	1175	101	647.6	40	1766.7	37.6	35,977,694	24,000	2095	320	15%	208	146	Single-Stage	2,368,897,655	2,692,115,204	4,737,795	98,704	328.6	138.1	21.1	65.8	12.3	6.0	5.2	3.2	251.8
Andesite	54.409	-129.268	54.384	-129.186	500	2L99	164.0	900	1244	108	88.8	200	94.3	27.7	16,446,946	24,000	5996	700	12%	95	67	Single-Stage	2,394,690,377	2,721,427,140	4,789,381	99,779	332.2	110.6	24.0	18.0	0.5	6.0	7.2	9.0	175.3
Jesse Lake	53.917	-128.898	53.935	-128.934	500	2L99	304.8	360	1105	95	2081.3	20	1072.1	73.9	33,861,359	24,000	3094	340	11%	196	137	Single-Stage	2,440,122,755	2,773,058,411	4,880,246	101,672	338.5	125.6	18.7	239.2	14.3	6.0	5.7	4.6	414.2
Lower Lukes	54.147	-128.733	54.196	-128.884	500	2L99	113.6	980	940	112	53.1	200	77.9	16.5	14,760,080	24,000	11270	780	7%	85	60	Multi-Stage	2,448,676,842	2,782,779,636	4,897,354	102,028	339.7	98.6	18.8	7.7	0.3	6.0	9.9	16.9	158.2
Upper Lukes	54.132	-128.845	54.196	-128.884	500	2L99	128.3	980	1078	129	114.3	300	592.2	57.1	16,930,679	24,000	7544	680	9%	98	69	Single-Stage	2,889,369,258	3,283,601,084	5,778,739	120,390	400.8	122.0	24.7	45.6	6.1	6.0	8.0	11.3	223.7
Chimdemash	54.615	-128.220	54.593	-128.195	500	2L99	43.2	1300	880	139	79.7	700	851.5	95.4	19,188,103	24,000	2938	600	20%	111	78	Single-Stage	3,023,828,919	3,436,406,713	6,047,658	125,993	419.5	87.4	21.7	70.1	14.5	6.0	5.6	6.0	211.3
North Hirsch	54.063	-128.253	54.034	-128.327	500	2L99	156.0	1340	1212	121	93.3	600	1088.4	74.2	15,557,922	24,000	5813	740	13%	90	63	Single-Stage	3,100,066,059	3,523,045,814	6,200,132	129,169	430.0	123.4	26.2	56.0	14.5	6.0	7.1	8.7	241.9

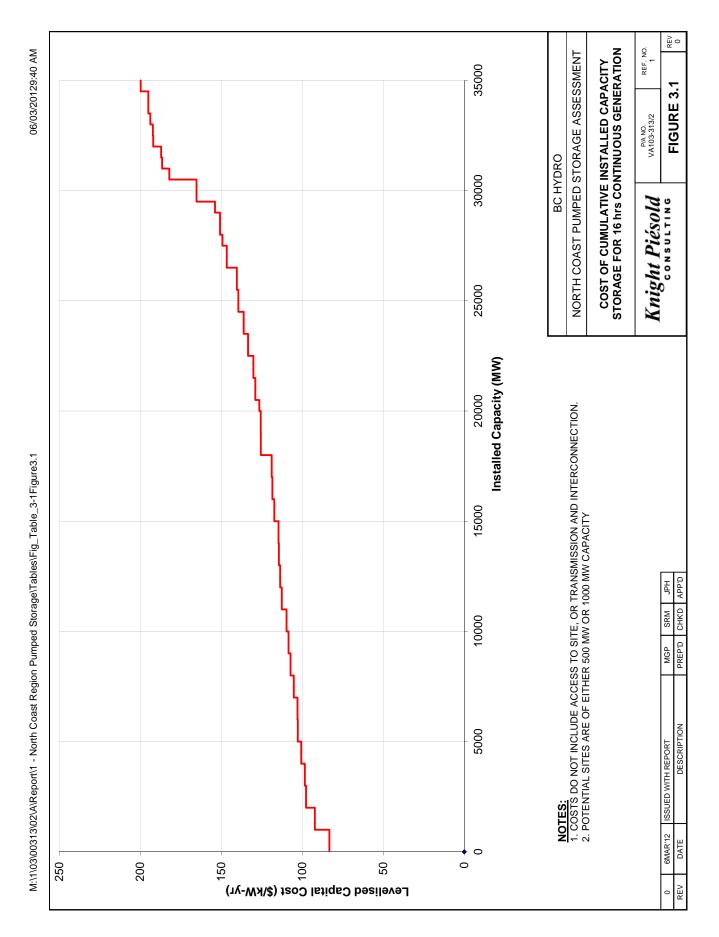

M:\1\03\00313\02\A\Report\1 - North Coast Region Pumped Storage\Tables\[Fig_Table_3-2.xlsx]Table3.2

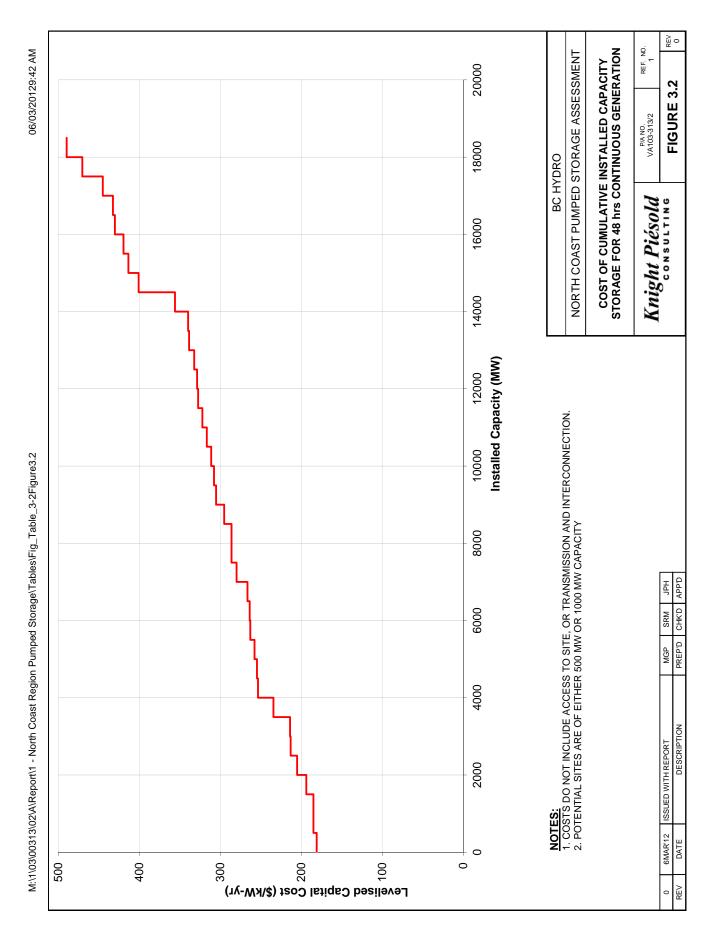
0 6MAR'12 ISSUED WITH REPORT VA103-313/2-1 MGP SRM JPH


Page 62 of 72 November 2013




Page 63 of 72 November 2013




Page 64 of 72 November 2013

