Campbell River Water Use Plan

Monitoring Program Terms of Reference

- JHTMON-10 Upper and Lower Campbell Lake Reservoirs Shoreline Vegetation Model Validation
JHTMON-10 Upper and Lower Campbell Lake Reservoirs
Shoreline Vegetation Model Validation Revision 1

Revision Rationale

The purpose of this Revision is to reduce the uncertainty and risk related to the current study approach and the ability to answer the management questions of JHTMON-10. This model validation monitoring program was initiated in 2014, Year 1 data collection was completed in 2014/2015, and the preliminary data analysis report was completed in 2015. The Shoreline Vegetation Model (SVM) was designed to predict vegetation community change via elevation and area over time, and was based on field data collection within the Upper Campbell Reservoir in 2001. Year 1 results demonstrated that, within the Upper Campbell reservoir, measured elevations of the four lowest vegetation communities did not differ from the elevations predicted by the model. However, measured elevations of the two upper communities significantly differed from model predictions.

Based on the results of the Year 1 report, the following changes to the original TOR are included in this Revision:

- Reduce the project sample area to test the model within the Upper Campbell Lake Reservoir only, determine if the model will be successful in the Upper Campbell Reservoir first, before applying it to other systems;
- Change the secondary sampling period from Year 10 to Year 5, to test model validity prior to the end of the WUP review period and still have the opportunity to collect additional data if deemed necessary to improve the model;
- After analysis of Year 5, additional data collection and model validation could be expanded to the two other original reservoirs in Years 6-10 up to the end of the WUP review period;
- If current sampling is not adequate to determine validity of the model, increase the number of transects and length of transects within the Upper Campbell Reservoir to increase model predictability tests of the upper vegetation sites;
- Refine the limiting slope percentage assumed in the current model (vegetation can only grow on slopes less than 15%) by collecting additional field data, including additional information on why there is no vegetation on steeper slopes;
- Retain and continue to collect data from the water level gauge installed at Brewster Lake in 2014 for potential future application.

Table 1 below summarizes the key changes and the rationale to the original TOR (Table 1: Key changes and rationale to the JHTMON-10 TOR Revision 1).
Table 1: Key changes and rationale to the JHTMON-10 TOR Revision 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Change</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| Overall | • Change in sampling time period, from Year 10 to Year 5, with the option to continue the program beyond Year 5 depending on program results
• Changes through text from Year 10 to Year 5
• Change scope to validate the model for the Upper Campbell Reservoir only
• Minor text changes | • Results from Year 1 of this program show model predictions pass the tests for accuracy; however, data gaps were identified that would question model accuracy within the other systems
• The scope of the program was scaled back to focus on increasing model accuracy in the Upper Campbell Reservoir system (which the model was based on) before attempting to apply it to the other systems |
| 1.2-1.3 Management Questions and Summary Hypothesis | • Added to MQ #4: If the 15% slope assumption is not true, determine the shoreline slope gradient that is required for plant ecosystem persistence
• Minor text changes to reflect model testing in the Upper Campbell Reservoir only | • A main assumption of the current SVM is that ecosystems require a gradient of 15% or less, this may not be true, determination of this assumption is warranted to improve the accuracy of the model
• The model will first be tested within the Upper Campbell Reservoir ecosystem only, if the model outputs are acceptable to BC Hydro, model application will be considered on a broader scale |
| 1.4. Key Water Use Decision Affected | • No changes required | |
| 2.1 Objective and Scope | • Changed scope and objectives to reflect the model validation within the Upper Campbell Reservoir only
• Changed sampling to Year 5, from Year 10
• Updated references to Year 1 to indicate that Year 1 has been completed | • See rationale above. |
| 2.2 Approach | • Changed sampling to Year 5, from Year 10
• Changed approach to include sampling and model validation within the Upper Campbell Reservoir only
• Included text about possible program extension in Years 6-10 based on Year 5 results, and an additional addendum submission if necessary for program extension. | • Until the model can be deemed effective within the Upper Campbell Lake, model application within other reservoirs will be delayed. |
<table>
<thead>
<tr>
<th>Section</th>
<th>Change</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Methods</td>
<td>• Changed sampling to Year 5, from Year 10 throughout
• 2.3.1 – added this task has been completed
• 2.3.2 – changed text to the Upper Campbell Reservoir only
• 2.3.4 – added flexibility to statistical testing, consultant may proposed additional tests if deemed appropriate for model validation and updated Figure 10.1
• 2.3.4 – Changed text to reflect analysis on Upper Campbell Reservoir only
• 2.3.4 – Added additional comments about variations to statistic testing and application
• 2.3.4 – Changed references to testing within all reservoirs, and referenced model testing of the reservoirs/diversion lakes after Year 5 analysis if reporting recommends this
• 2.3.4 – changed statistical test wording from “prove” to “appear”
• 2.3.4 Inserted sections in the statistical analysis to include additional/alternative tests if the consultant deems other tests would be more appropriate
• 2.3.4 – Inserted testing the accuracy with different slope gradients
• 2.3.5 – changes to reflect results from Year 1 and the decision to report in Year 5
• 2.3.5 - Comments inserted regarding potential future applications in Year 6-10 within the WUP period, depending on Year 5 results.</td>
<td>• Until the model can be deemed effective within the Upper Campbell Lake (Year 5), model application within other reservoirs will be delayed.
• Added flexibility within the statistical methods testing to observe professional judgement
• Adding slope determination into the scope of work should increase the accuracy of the model</td>
</tr>
<tr>
<td>2.4 Interpretation of Results</td>
<td>• Changed the word "correlation" to "association"</td>
<td>The proposed tests are a comparison of means not a correlation test. Correlation is determining a relationship between two continuous factors in a simple randomized design, association would be more appropriate</td>
</tr>
<tr>
<td>2.5 Schedule</td>
<td>• Updated schedule to reflect current timelines and sampling years</td>
<td></td>
</tr>
<tr>
<td>2.6 Budget</td>
<td>• Change Year 10 to Year 5
• Add budget units to reflect 2016 dollars
• Keep Year 1 budget and units for historical comparison
• Adjusted for underestimation of Photogrammetry and Hydrometric costs</td>
<td>• Updated budget to reflect Year 5 Program</td>
</tr>
</tbody>
</table>
JHTMON-10 Upper and Lower Campbell Lake Reservoirs
Shoreline Vegetation Model Validation — Revision 1

1 Program Rationale

1.1 Background

During the Campbell River Water Use Planning (WUP) process, the Wildlife Technical Sub-committee (WTC) identified eight uncertainties regarding the impact of facility operations on wildlife use. These uncertainties were subjected to a rigorous assessment of 'relative importance' that allowed the list to be pared down to just two issues which were ear-marked for immediate attention in the form of a monitoring study (Bruce 2002a). The first of these was the lack of information on the amphibian habitat use in the area and its overlap with areas impacted by WUP operations and is the subject of Monitor 9. The second uncertainty was concerned with the validity of a newly-developed, lacustrine shoreline vegetation model (SV model) that was used to predict changes in shoreline plant ecosystems of each reservoir or diversion lake in response to operational change. The latter is the subject of the present monitor.

The SV model was developed in response to the WTC’s need to quantify operational impacts on obligate and facultative aquatic wildlife within the Strathcona, Ladoire, and John Hart project areas. A direct assessment of operational impacts, along with a detailed inventory of wildlife use in the area, was considered to be well beyond the scope of WUP because of time and resource constraints involved. In response to these data collection constraints, the WTC adopted an alternative habitat-based approach to assessing wildlife consequences of operational change that relied on a modeling exercise to predict likely changes in riparian ecosystems. By associating seasonal habitat requirements of wildlife species residing in the area with specific plant ecosystem types, it was believed that inferences could be made regarding wildlife impacts by tracking changes in the aerial extent and location of these plant ecosystems (Bruce 2002b, Blood 2001, McLennan and Veenstra, 2001).

To carry out this habitat based assessment, the WTC required two types of information; 1) a database of wildlife species-use in the area, including resident times, habitat uses, and preferred plant ecosystem types; and 2) a model that predicts changes in plant ecosystem types in response to operational change (specifically reservoir water levels through time). With the help of the WTC, a ‘wildlife use’ database was compiled by Bruce (2002c) in which the WTC expressed considerable confidence in its content (i.e., errors, if any, were likely to be minor). However, the shoreline vegetation model developed to predict changes in plant community type did not receive the same level of confidence. This was largely because the approach used in the model to predict community type changes, though thought to be conceptually sound, was largely un-tested. As a result, the WTC only accepted the results of the SV model on the proviso that a monitor be carried out to validate the model through confirmation of model predictions.

1.2 Management Questions

The WTC identified the following set of management questions to be addressed in this monitor:
1) Does the lacustrine shoreline vegetation model accurately predict the reservoir elevation bands that bound the predefined plant community types?

2) If the model is in error, is the magnitude of the error such that it would warrant a change in the predicted outcome of the WUP (e.g., Figure 10.1)?

3) Are there changes to the modeling approach that could improve its accuracy for implementation in future WUP reviews?

4) Is it reasonable to expect that most riparian plant ecosystems require shoreline slopes to have a gradient less than 15% to perpetuate (presumably because it allows for the accumulation of nutrient rich soil through time)? If this is not reasonable, what is the shoreline slope gradient that is required for plant ecosystem persistence?

The present model assumes that shoreline gradient would have to be 15% or less to allow soils to accumulate and hence allow for plant growth. The selection of this criterion was somewhat arbitrary and then later supported by professional opinion of the WTC. This assumption may not be correct. Thus the aerial estimates of plant ecosystem extent were used to assess the impacts of operational change that may not be correct. Further determination of the shoreline gradient criterion is warranted.

Though not explicitly requested by the WTC, the monitor also implicitly addresses the following management question:

5) Has the distribution of riparian plant ecosystems changed following implementation of the WUP and if so, can the change be attributed to the WUP operation?

1.3 Summary Hypotheses

The general approach to resolving the management questions listed in Section 1.2 is to first determine whether the model predictions were accurate through a test of the following hypothesis:

\[H_0: \text{Measured elevation bands defining the upper and lower extents of each vegetation community type in the area are not significantly different than those predicted by the shoreline vegetation model.} \]

Acceptance of \(H_0 \) would require no further follow-up analyses. However, rejection of \(H_0 \) would lead to a detailed evaluation of the modeling error; firstly, to determine whether it would be large enough to have changed WTC and Consultative Committee (CC) deliberations and conclusions (Management Question 2); and secondly, to uncover shortcomings in the modeling process so as to make changes to improve future accuracy if possible (Management Question 3).

Management Question 2 will be addressed largely through inference and subjective analyses as it cannot be structured into a testable hypothesis. Management Question 3 will be addressed through exploratory analysis, including a characterization of modeling errors, a re-evaluation of the model’s underlying concepts and assumptions, and test of alternative modeling approaches to determine whether modeling accuracy can indeed be improved. Hypothesis testing in the latter case will be dependent on the results of preceding analyses and cannot be formulated at this time.
Management Question 4 will require resolution through geostatistical analysis of plant ecosystem polygons overlaid on topographical or bathymetrical data, leading to the test of the following hypothesis:

\(H_0^2: \) The likelihood that a particular plant ecosystem type occurs within a predicted reservoir elevation band is not dependent on shoreline gradient.

The test of \(H_0^2 \) should be done for each plant ecosystem separately, as well as for all types as a group within the drawdown zone. During the WUP, the WTC assumed that a 15% gradient formed a reasonable threshold for plant growth, but other values should be investigated, including the possibility that plant growth is independent of gradient.

Management Question 5 will involve a simple comparison of ‘before’ and ‘after’ states following implementation of the WUP:

\(H_0^3: \) Plant community distribution following implementation of the WUP does not differ significantly from the measured state prior to implementation.

If the SVM model proves valid (i.e., \(H_0^1 \) is accepted), then it can be inferred that observed changes (i.e., \(H_0^3 \) is rejected) are likely be attributed to WUP operations.

1.4 Key Water Use Decision

The shoreline vegetation (SV) model was used in two ways during the WUP process. The first was numerically, where predictions were made on the future elevation boundaries of specific plant ecosystems following implementation of a test operating alternatives (e.g., Figure 10.1). This was only carried out on Upper Campbell Lake Reservoir, which was the only system with sufficient data to populate the model. The model was used in the Lower Campbell Lake reservoir as well, but with uncertain results due to the fact that the model was only populated with Upper Campbell Lake Reservoir data. The second use of the model was conceptual, where the model’s underlying concepts and assumptions were applied to logically derive likely outcomes given what was understood at that time of an operating alternative’s impact on local hydrology. This was generally done for all of the diversion lakes, though there was considerable uncertainty regarding the impact of flow changes on lake elevation.

In both cases, modeling results lead the WTC to conclude that the consequences of proposed operational changes were either benign or positive, and because of the high level of uncertainty associated with these results, decided to abandon the issue of operational impacts on wildlife habitat as an issue for consideration during WUP trade-off analyses. Contributing to that decision was the fact that benefits to a number of other values, including fish and recreation, appeared to coincide with wildlife habitat values, and that there appeared to be no compelling evidence (from the modeling exercise) that any of the proposed operating strategies would cause a worsening of wildlife habitat conditions. The WTC did note however, that evidence to the contrary would cause a reversal in their decision and thus impact future WUP review decisions. For this reason, the WTC deemed it imperative that a monitoring study be carried out to verify the conclusions drawn from the SV modeling results.
3.4 4.2
1.2 2.0
0.6 0.7
0.7 1.1
0.6 0.7
1.1 2.0
3.9 3.9
1.9

Figure 10.1 Example of a numerical shoreline vegetation model result that compares the measured elevation bands of existing plant communities to that predicted following implementation of the WUP. Numbers indicate the depth range of each plant community type.

2 Program Proposal

2.1 Objective and Scope

The primary objective of this Monitor is to address the management questions presented in Section 1.2 by collecting data necessary to draw inferences and to test the impact hypotheses outlined in Section 1.3. The following aspects define the scope of the study:

1) The study area will consist of the Upper Lake Reservoir. Upper Campbell Lake Reservoir is expected to have the largest change to reservoir hydrology following WUP implementation and hence will be the most robust test of the model. If the model test results are deemed acceptable by BC Hydro, opportunities may exist to expand model application to the Lower Campbell Lake Reservoir and the diversion lake; however, these opportunities will be discussed with BC Hydro later in the program, after the initial test results of the Upper Campbell model application. The Monitor will be carried out over a five-year period with the majority of work occurring in Years 1 and 5 of the study period. The only data to be collected in the intervening years is water level at key study locations. Opportunity to extend the monitoring period to the other reservoirs to a 10-year period will depend on the validity of the model and application conclusions. If the monitoring period is to be extended, an additional Addendum or Revision to this Terms of Reference will be re-submitted.

2) Sampling will be carried out in a standardized manner and follow a specified schedule to ensure consistency in data quality and collection procedures. All GIS data will be captured and archived according to BC Hydro standards.

3) An interim report was prepared following the work in Year 1 the purpose of the report was to: clearly describe the location of all transects, equipment...
installations and other pertinent geographical monuments, include a detailed
description of the methods used, a printed and electronic copy of all data
collected to date, and a discussion of initial findings that could be useful in future
sampling efforts.

4) A final report will be prepared at the end of the Monitor (Year 5) that summarizes
the results collected to date, discusses inferences that can be drawn pertaining to
the impacts of the WUP over time, and presents conclusions concerning the
management questions in Section 1.2 and the impact hypotheses in Section 1.3,
including how the model could be adjusted to function in the other reservoirs in
the system if deemed appropriate.

2.2 Approach

The monitoring study will be carried out in two parts, the first of which will be
associated with the validation of the SVM itself and its ability to predict elevation
boundaries of local plant community types based on reservoir hydrology. The other
part will be an examination of plant community distributions to determine how they
may correlate with other environmental attributes (principally gradient) so that a
means of calculating aerial extent (ha) can be formally developed.

The general approach to the SVM validation will be to compare in situ measurements
of plant ecosystem boundary elevations with those predicted by the model. It began
in Year 1 with a collection of baseline data to populate the model, and will continue
with a data collection phase in Year 5 to compare model predictions to measured
values.

In addition to comparing predicted versus actual ecosystem boundary elevations, the
SVM will also be tested by comparing estimation parameters used in the model to
derive these predictions. Data collected in Year 1 of the Monitor was compared to
that used in the WUP, while data collected in Year 5 will be compared to Year 1.
Large differences through time, as well as between sites, would be indicative of an
unreliable model and will be used as corroborating evidence to the main model
validation procedure.

Aerial estimates (ha) of each plant community type were calculated based on the
assumption that shoreline areas with gradients less than 15% were suitable for plant
growth. Validation of this premise will be carried out initially through an analysis of
existing plant ecosystem distributions in Year 1 of the Monitor, and again in Year 5
when model predictions will be compared to measure values. The analysis will rely
on GIS data analysis of 2-D rectified air photo mosaics. As inferred above, the air
photo work will be done in Year 1 and Year 5 of the Monitor. The focus of the Year 1
work was to develop a predictive tool for future use, while the Year 5 work will
provide the means to test overall accuracy and utility. After analysis is completed in
Year 5, there is opportunity to collect additional data in Years 6-10 to further refine
the model, or expand model application to neighboring reservoirs, if deemed
necessary. This current TOR Revision only applies to Years 1-5, a subsequent
addendum or revision may be prepared for Year 6-10 after reviewing results from
Year 5.

The air photo mosaics and GIS dataset will also provide the means to compare plant
ecosystem distributions before and after WUP implementation, and therefore test
H₀3 using geo-statistical procedures. It will also provide the means by which the true
outcome of the WUP operation can be assessed regarding its impact to riparian plant
communities and associated wildlife. This analysis will corroborate the SVM test results should it prove valid, or act as a fall back should it be rejected. In the latter case, this information can be used to determine mitigation action if required, and be used as a base case for future review.

2.3 Methods

2.3.1 Literature Review – Completed Year 1

Before all field work is to begin, a cursory review of primary literature will be carried out to assess the current state of knowledge on the effect of reservoir type hydrology on riparian plant community structure. All pertinent articles will be photocopied and collated into binders with a table of contents for easy reference. The collection of articles will be for reference purposes only and is to help in the development and refinement of the model, as well as with the interpretation of model results. No summary report is expected.

2.3.2 Data Capture

2.3.2.1 Shoreline Vegetation Model Validation

Field Work

In situ plant ecosystem boundary-elevations will be estimated by transect analysis at a minimum of five and no more than 10 different locations. The transects will be located in areas where at least four (preferably all) of the six plant community types identified by MacLennan and Veenstra (2001) are present (see Figure 10.1). Each transect will be oriented perpendicular to the shoreline, begin in a mudflat area, and extend into the upland forest community above maximum reservoir or lake elevation. At the top end of each transect, a permanent bench mark (e.g., numbered survey tag bolted to a boulder or bedrock, or nail in a tree) will be installed for future reference. The benchmark’s location and elevation will be established by GPS and/or traditional survey techniques as deemed necessary, which should include photo-documentation. Using the plant community definitions developed by MacLennan and Veenstra (2001), boundary elevations between the different plant ecosystems will be measured relative to the benchmark. Boundary delineations may at times be difficult to establish, so it is important that the survey team be well trained at identifying local plants and recognizing plant ecosystem types. Because boundary locations may not always be clearly identifiable, it is also important that the same crew do the survey work at all sites and years so that observer bias can be accounted for when analyzing the data.

To the extent possible, the methodology of MacLennan and Veenstra (2001) should be used to ensure compatibility between their data and those collected here. In the case of Upper Campbell Reservoir, this includes repeating the boundary elevation work on transect locations used in their study. It is unlikely that these transects have been benchmarked, so they will have to be relocated based on the information given in their report and then permanently marked for future reference.

Daily average water level will rely on the fore bay elevation data presently being collected by BC Hydro. There are no elevation data currently being collected for any of the diversion lakes. Consequently, a water level data recorder was installed in the
diversion lake selected for study (Brewster Lake). The recorder will accurately record water level under all hydrological conditions, and is accessible for downloading two times per year. Water level is recorded at hourly intervals and averaged across each day.

Modeling

At the end of the sampling period, the daily average water level data will be collated into a single file for each study system for use in the shoreline vegetation model. The model will output boundary elevation data as meters below maximum elevation. Details of the modeling procedure are provided by Bruce (2002b).

2.3.2.2 Air Photo Interpretation

At Year 1 and Year 5 of the Monitor, 1:20,000 to 1:40,000 scaled air photographs will be taken of each study area to identify present location and aerial extent (ha) of the plant community types defined by McLennan and Veenstra (2001). A vegetation specialist will, through air photo interpretation, identify the geographic extent of each plant ecosystem on the mosaic and delineate them as a polygon in a GIS database for later use in the field and subsequent analyses. It will be up to the contractor to develop the air photo interpretation procedures. To ensure that all plant ecosystem types are identifiable, the air photos should be taken in colour and at a time when the reservoir is at its normal, minimum operating level, and vegetation communities are most easily identifiable from the air. Given that plant phenology timing and minimum reservoir levels will likely not correspond, a balance will be sought when selecting timing of the flights.

To verify the database’s accuracy, a subset of polygons will be selected for ground-truthing where a two-person crew will be sent into the field to verify polygon boundaries and their designated plant ecosystem type. Errors that are uncovered during the survey will be analyzed with the intent of refining the air-photo interpretation techniques initially developed by the contractor. This will lead to corrections in the air-photo mosaic and GIS database used for subsequent analyses.

Following the ground-truthing exercise, the Year 1 GIS database will be integrated with existing Digital Elevation Model (DEM) models (Monitor 1), as well as existing bathymetry and topographic maps. The integrated database would then be used to test hypothesis H_0^2 (Section 1.3) and serve as the reference to compare the Year 5 database to test hypothesis H_0^3.

2.3.3 The need for Year 10 air photograph interpretation will be determined after Year 5 based on whether the SVM model can accurately predict vegetation community change.

Safety Concerns

A safety plan will have to be developed for all aspects of the study in accordance with WorkSafe BC and BC Hydro procedures and guidelines. It is important to note that, because of the remoteness of some of the study areas, all field work must always be carried out by at least two crew members and that appropriate check-in and checkout procedures must be followed.
2.3.4 Data Analysis

2.3.4.1 Shoreline Vegetation Model Validation

Data analysis will proceed on two fronts; the first where predicted and measured boundary elevation bands are compared in a direct test of model accuracy, and the second where estimation criteria used in the model are compared before and after inclusion of new data.

Boundary Elevation Analysis

Boundary elevation analysis for each study water body will be carried out by first subtracting the predicted elevation bands from the SVM from the individual measurements taken at the transect sites. The set of differences will then be subject to a single factor Analysis of Variance (ANOVA, or other appropriate test) to determine whether significant differences exist between measured and predicted elevations. Rejection of the null hypothesis of no difference would indicate a failure in the model to accurately predict boundary elevations between plant community types. Acceptance of the null hypothesis would lead to the next phase in the analysis where all differences between measured and predicted elevations are pooled and subjected to a z-test to determine if the mean difference is not significantly different from 0. Acceptance of the null hypothesis would be the first indication of the model’s validity. Conversely, rejection of the null hypothesis would indicate a bias in the model’s output and that a correction may be necessary (e.g., reservoir elevation at the transect site is consistently greater or lesser than that measured at the dam forebay)\(^1\).

SV Estimation Parameters

The SV model relies on a set inundation-duration probability distribution functions (PDF) that it tries to match by selecting boundary elevations through a trial and error procedure. It is the means by which the model predicts plant ecosystem boundary elevations (Bruce 2002b). The inundation-duration PDFs are derived from historical water level data and measured boundary elevations collected at the time of model development (MacLennan and Veenstra 2001). During the WUP, the only data available to develop these PDFs were from the Upper Campbell Lake Reservoir where reservoir water level data have been collected since 1984 and the appropriate vegetation surveys were carried out. This version of the model, labeled here as SVM\(\text{UCR}_{2001}\) is to be updated in Year 1 as new data are available. Each time new data are added, the potential exits that the inundation-duration PDFs will be altered; hence changing the model’s output. To determine if the differences are significant, the PDFs before and after the addition of new data will be compared using a simple goodness of fit test (e.g., Kolmogorov-Smirnov ‘D’ statistic; Zar 1974). If the consultant deems that another comparative test would be more appropriate, they may propose this test to BC Hydro.

\(^1\) The consultant is also required to use professional judgment as to whether they think the model predicts things accurately, and take into account succession trajectory of plant communities within reservoirs.
Testing Scheme through Time

Upper Campbell Lake Reservoir has the best data availability to test model accuracy. Elevation band data was originally collected at this site during the WUP to develop the SVM and significant changes in shoreline riparian habitat is expected following WUP implementation (Figure 10.2), providing a significant contrast for comparison. However, because of the time delay for WUP implementation, a new dataset should be collected to re-establish the baseline state of the riparian plant ecosystems at that site.

Changes in plant community distributions are also expected in Lower Campbell Lake Reservoir, though the changes will likely be more subtle. The original TOR included a determination of the SVM’s sensitivity to predict change within the Lower Campbell Lake reservoir and a diversion lake. Until the model can be deemed effective within the Upper Campbell Lake, model tests within these other locations will be delayed. A data set for the other reservoirs was collected in Year 1 to provide a baseline for comparison if deemed appropriate after Year 5.
Figure 10.1 SVM Testing Procedure for Upper Campbell Lake Reservoir
The system with the least data will be the diversion lake, no matter which one is selected for study. No data were collected at the time of the WUP, and unlike the reservoir sites, water level is not monitored on a regular basis. Testing of the diversion lake will only be completed if recommended after data analysis at Year 5 of the Monitor when sufficient water level data exists to develop model predictions for comparison (Figure 10.4) and if recommendations within the Year 5 report suggest model application should be extended out to the other reservoirs/diversion lakes.

2.3.4.2 Air Photo Interpretation

The aerial extent information will be analyzed in several ways. The first will be to confirm the simple conversion protocol used to transform the SVM boundary elevation predictions to an aerial estimate (ha) of each plant community type. The second will be to test the protocol’s accuracy by comparing predictions with measured values collected in Year 5 of the Monitor. The last will be a direct comparison of plant community distributions before and after implementation of the WUP.

Converting Boundary Elevation Data into Estimates of Aerial Extent (ha)

During the WUP, it was assumed that shoreline areas with a gradient exceeding 15% were incapable of retaining soil in the drawdown zone when exposed to wave action. To test this assumption, the average gradient of all plant community polygons will be interpolated from the integrated GIS database. Included in the dataset will be at least a subset of polygons where no vegetation growth has occurred. The data will then be organized into a 2 x 2 contingency table that compares the presence and absence of a given plant community type, and whether the average gradient is above or below 15%. The table can be analyzed using the Fisher exact test (or other appropriate test) to test whether the proportion of polygons with vegetation cover is similar between the two categories of shoreline gradient. The contractor is encouraged to explore alternative gradient thresholds using the same analytical technique, and apply the alternative gradient to the model if it will increase model accuracy.

If the data allow, other environmental factors can be explored (e.g., fetch or solar exposure, soil substrate, influence of timing of inundation, growing degree days), but such analysis will be considered beyond the scope of the present Monitor.

Validation of the Hectare Estimation Tool

Validation of the hectare estimation tool can only occur in Year 5 of the Monitor when an independent dataset will be available for comparison. The estimation tool will consist mainly of a table of depth intervals (likely 0.1 m) starting at maximum water level down to minimum normal operating range and a corresponding set of values noting the total area of shoreline habitat (ha) within that interval that has a gradient less than 15% (the 15% threshold value is used here as an example; the preceding analysis will determine what this value should be). Thus, for a given range of boundary elevations produced by the SV model, a corresponding aerial extent estimate can be obtained by summing the interval habitat area values in the table that lie in between them, e.g.,

\[
\text{Total Sedge Willow Area (ha)} = \sum_{i=\text{LowerElevation}}^{\text{UpperElevation}} \text{Area}_i | \text{Gradient} < 15\%
\]
It is important to note that the end result of this estimation tool is an estimate of the total area of the plant community type of interest in the study area of interest. It does not explicitly predict the location and area (ha) of specific community polygons.

Verification of model predictions will be done by comparing Total Area (ha) estimates of each plant community type to that measured in the field by polygon analysis using simple regression techniques. A significant regression coefficient (r^2) will be considered a strong indicator of model validity. The regression equation will be viewed as an indication of the bias in the estimation procedure, and may be considered a means of calibrating the model if found to be common in all study sites by an analysis of covariance (ANCOVA). A key component of the analysis will be verification of the assumptions of normality, linearity and homoscedasticity.

Before-After Comparisons

Before-after comparison of plant community type distribution following WUP implementation will be done visually by directly comparing community polygons using maps as the primary communication and analytical tool. The analysis will be largely descriptive in nature, and will assume measurements of polygon location, shape and area are made without error. In the case that the SVM predictions appear to be wrong, the before-after comparison of the air photo mosaics would form the foundation from which an assessment of the true riparian outcome of the WUP and associated wildlife impacts.

2.3.5 Reporting

Two major reports will be prepared as part of this Monitor, as well as annual water level reports. The first report has been completed and documented the results of all testing done in Year 1 of the Monitor as per Section 2.3.4. This information has provided the first insight into the SVM’s validity and utility, and has resulted in this Revision to the original TOR. The true test of the Monitor’s hypotheses will not occur until Year 5 of the Monitor when the final report will be due.

Because the Monitor was not repeated within five years, the Year 1 report focused on detailed descriptions of the methodologies used in the Monitor to date. It included:

1) Precise location of all transects benchmarks, and equipment installations,

2) Detailed instructions of methods to be used/repeated in Year 5,

3) Both printed and electronic copies of all data collected, photos, and maps to date to ensure utility and accessibility into the future, and

4) Initial results, derived from hypothesis testing done to date as described in Section 2.3.4.

At the conclusion of the Monitor in Year 5, a final report will be prepared that summarizes the data collected to date and discusses in detail the results of all analyses as they pertain to the impact hypotheses in Section 1.3, and more importantly, the management questions in Section 1.2. The report should:

1) Re-iterate the objective and scope of the Monitor,

2) Present the methods of data collection and data analysis,

3) Describe the compiled data set and present the results of all analyses,
4) Discuss the results as they pertain to the hypotheses in Section 1.3 and the Management Questions in Section 1.2,

5) Discusses the consequences of these results as they pertain to the current WUP operation, and how it may influence future WUP decisions, and

6) Include an executive summary that summarizes the results of the Monitor and their consequences as they relate to the success/failure of the WUP decision.

7) Include recommendations for remedial work in the remaining Years 6-10, if needed, as well as the scope for future study work to refine the model and potential application of the model within the other reservoirs if appropriate.

2.4 Interpretation of Results

2.4.1 Shoreline Vegetation Model Validation

A significant association between predicted and measured plant community boundary elevation bands of would be considered a positive indication of the SV model's precision and accuracy. Similarly, a significant association of inundation exposure pdf's between measurement periods would also support the model's premise that vegetation growth and community structure along reservoir shorelines is at least in part governed by its hydrology, and that each community type represents an 'arrested state' of successional development. Together, both lines of evidence would validate the model and its underlying premise. Such an outcome would confirm the assumptions made by the WTC during the WUP and validate the decisions that were made regarding the WUP's outcome. In this case the model can be used in future WUP reviews without modification for Performance Measure (PM) development and decision analysis.

Conversely, lack of an association in either line of query would lead to a rejection of the model. Whether the model should be abandoned or refined, will depend on the nature of the relationship between predicted and measured values, as well as the level of consistency between study sites. For example, acceptance of H_01 in Upper Campbell Lake Reservoir but rejection elsewhere would suggest that the model is only responsive to large changes in hydrology and because of its low fidelity, should be restricted in its use rather than be abandoned. The data collected during the Monitor could shed light on ways to refine the model and improve its fidelity for future use in WUP reviews.

Rejection of the SV model, or the necessity to modify it, would require that an assessment be made on whether the true outcome of the WUP was considerably different from what was originally hypothesized. This will require careful interpretation of the air photo information, as noted below.

2.4.2 Air Photo Interpretation

The contingency analysis should identify threshold gradient below which vegetation growth can occur should hydraulic conditions be suitable. Analysis of the association between predicted and measured total area of plant community types will refute or confirm the relationship and its value in improving the model's utility. The available area of shoreline with a gradient below the threshold value could vary considerably depending on elevation, thus the true impact of a boundary elevation shift may be greater or lesser than that implied in the magnitude of the shift itself.
Rejection of both lines of inquiry would lead to an abandonment of this refinement to the SVM output, and depending on the nature of the difference, could call into question the utility of the SVM itself if its validation proves inconclusive as well. Rejection of either line of inquiry would lead to an inconclusive outcome to this component of the Monitor.

Results of the before-after comparison of air photo mosaics will provide a follow-up means of assessing the true outcome of the WUP regarding its impact of riparian plant communities and associated wildlife. This analysis will corroborate the SVM test results should it prove valid, or be a fall back means of assessment should it be rejected. In the latter case, this information can be used to determine possible mitigation action if required, and be used as a base case for future WUP review comparisons. Used in conjunction with the other information collected in the present Monitor, it could also provide useful information for future model re-development and/or refinement.

2.5 Schedule

The shoreline vegetation model validation Monitor will be carried out over a five-year period, but with the majority of work being done in Years 1 and 5. In Year 1 of the Monitor, monitoring activities were focused of the refinement of the SV model based on a preliminary assessment of model validation (Upper Campbell Lake Reservoir only), a redefinition of baseline conditions for comparative purposes in five years’ time, the set-up of all study site locations, the installation of measuring equipment and survey benchmarks, and a clear definition of all methods and procedures. Formal testing of the SVM will be done in Year 5 when all study sites will be re-sampled to establish shoreline conditions following WUP implementation. In the intervening years, the only monitoring work to be carried out is the continuous recording of water levels for study.

A preliminary report was prepared Year 1 of the Monitor as per Section 2.3.5. A comprehensive report on shoreline vegetation model validation will only be prepared at the conclusion of the Monitor in Year 5, as per Section 2.3.5. A summary of the Monitor schedule can be found in Table 10.1.

In the CC report, the time frame for monitoring was for five years; the original TOR issued in 2013 extended this period to 10 years and included the monitor of Lower Campbell Reservoir and a diversion lake. Upon review, this has been changed back to five years, the study area reduced to the Upper Campbell Reservoir only, with the option to collect additional data in Years 6-10 to coincide with the WUP depending on whether the model is found to accurately predict vegetation community change.

2.6 Budget

Total Revised Program Cost: $203,387.00

3 References

