

Columbia River Project Water Use Plan

Lower Columbia River Fish Management Plan

Implementation Year 6

Reference: CLBMON-45

Lower Columbia River Fish Population Indexing Surveys

Study Period: 2012

Dustin Ford, David Roscoe, Joseph Thorley, Larry Hildebrand, Dana Schmidt

CLBMON-45

Lower Columbia River Fish Population Indexing Surveys -2012 Investigations

Submitted to:

BC Hydro 601 18th Street Castlegar, BC V1N 2N1

Report Number:

1014920102-R-Rev0

Distribution:

BC Hydro - 4 Copies Poisson Consulting - 1 Copy Golder Associates Ltd. - 3 Copies

Suggested Citation: Golder Associates Ltd. and Poisson Consulting Ltd. 2013. CLBMON-45 Lower Columbia River Fish Population Indexing Surveys – 2012 Investigations. Report prepared for BC Hydro Generations, Water Licence Requirements, Castlegar, BC. Golder Report

No. 1014920102-R-Rev0: 65 p. + 8 app.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission from BC Hydro, Burnaby, BC.

Executive Summary

In the mid-1990s, BC Hydro initiated flow management actions from Hugh L. Keenleyside Dam (HLK) during the Mountain Whitefish and Rainbow Trout spawning seasons to reduce egg losses in the Lower Columbia River (LCR). Prior to the peak Mountain Whitefish (*Prosopium williamsoni*) spawning season in early winter, BC Hydro decreases flow from HLK to encourage spawning at lower water level elevations and reduce egg dewatering over the winter egg incubation period. In early spring, flows are reduced and subsequently managed to provide increasing water levels during the Rainbow Trout spawning season, which reduces the likelihood of Rainbow Trout (*Oncorhynchus mykiss*) eggs and other larval fishes from becoming stranded during spring flow management.

In 2007, BC Hydro completed the Water Use Planning process for its hydroelectric and storage facilities on the Columbia River. The Water Use Plan Consultative Committee recommended the commissioning of the LCR Fish Population Indexing Program (CLBMON-45) to address data gaps regarding the effects of HLK operations on the downstream fish communities. CLBMON-45 represents a continuation of BC Hydro's LCR Large River Fish Indexing Program (LRFIP), first established in 2001 to gather baseline information on fish distribution, life history characteristics, and population abundance data for select index species [i.e., Mountain Whitefish, Rainbow Trout, and Walleye (Sanders vitreus)].

The two key management questions to be answered by CLBMON-45 are:

- What are the abundance, growth rate, survival rate, body condition, age distribution, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR?
- What is the effect of inter-annual variability in the Whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR?

The study area for CLBMON-45 includes the portion of the Columbia River between HLK and the Canada-U.S. border (approximately 56.5 km of river habitat) and the 2.8 km section of the Kootenay River from Brilliant Dam (BRD) downstream to the Columbia River confluence.

Field work was conducted in the fall of 2012, which corresponded approximately to the timing of data collected during earlier study years (i.e., 2007 to 2011) and to data collected between 2001 and 2006 as part of the LCR LRFIP. Fishes were sampled by boat electroshocking at night within nearshore habitats. In 2011, a Generalized Random Tessellation Stratified (GRTS) survey was conducted in addition to the standard mark recapture program. All captured Mountain Whitefish, Rainbow Trout, and Walleye were measured for fork length, weighed, and implanted with a Passive Integrated Transponder (PIT) tag. Hierarchical Bayesian Models (HBMs) were used to estimate temporal and spatial variations in species abundance, spatial distribution, growth, size-at-age, survival, and body condition. In 2012, data collected during the early 1990s as part of BC Hydro's Columbia Basin Development Fisheries were included in the HBMs.

Correlation analysis was used to assess relationships between water temperature and discharge, and fish population metrics.

Outputs from the HBMs were precise enough to show temporal and spatial trends/patterns in abundance, spatial distribution, growth, size-at-age, survival, and body condition for subadult and adult Mountain Whitefish, Rainbow Trout, and Walleye.

The effect of inter-annual variability in the whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Mountain Whitefish, Rainbow Trout and Walleye was not determined.

Keywords: Columbia River, Hugh L. Keenleyside Dam (HLK), Density Estimation, Hierarchical Bayesian Models (HBM), Generalized Random Tessellation Stratified (GRTS) Survey

Table EI: Status of management questions and hypotheses after Year 6 of the Lower Columbia River Fish Population Indexing Survey (CLBMON-45).

Management Questions	Management Hypotheses	Sub-Hypotheses	Year 6 (2012) Status
survival rate, body condition, age	Ho ₁ : There is no change in the population levels of Whitefish in the Lower Columbia River over the course of the monitoring period.	abundance of subadult and adult	The hypothesis is rejected. Population levels of Mountain Whitefish have changed over the course of the monitoring period. For example, subadult Mountain Whitefish abundance decreased by 68% from 2001 to 2005; adult Mountain Whitefish abundance decreased by 51% from 2002 to 2012.
			Results in Section 3.4.2
			Discussion in Section 4.2.1
			The hypothesis is rejected. The mean size-at-age of the fry and subadult Mountain Whitefish cohorts were substantially lower in 2001 when compared to other study years.
			Results in Section 3.3.1
			Discussion in Section 4.1.1
		Ho _{1c} : There is no change in the mean survival of subadult and adult Mountain Whitefish.	The hypothesis cannot be rejected at this time. Annual survival estimates were variable and uncertain for both the subadult and adult Mountain Whitefish cohorts.
			Results in Section 3.5.1
			Discussion in Section 4.4.1
		14	The hypothesis is rejected. The body condition of subadult and adult Mountain Whitefish has varied (e.g., lowest in 2002 and 2003 and highest in 2005 and 2006) among study years.
			Results in Section 3.6.1
			Discussion in Section 4.5.1
			The hypothesis cannot be rejected at this time. Subadult and adult Mountain Whitefish densities were generally consistent between study years. Data collected to date does indicate substantial annual changes in spatial distribution for this species.
			Results in Section 3.4.2
			Discussion in Section 4.2.1
	Ho ₂ : There is no change in the population levels of Rainbow Trout in the Lower Columbia River over the course of the monitoring period.	abundance of subadult and adult	The hypothesis is rejected. Population levels of subadult Rainbow Trout have changed over the course of the monitoring period. Subadult Rainbow Trout abundance has changed by as much as 47% over a 1 year period; adult Rainbow Trout abundance has changed by as much as 17% over a 1 year period.
			Results in Section 3.4.3
			Discussion in Section 4.2.2
		Ho _{2b} : There is no change in the mean size-at-age of subadult and adult Rainbow Trout	The hypothesis is rejected. The average size-at-age of the fry and subadult Rainbow Trout cohorts were substantially lower in 2001 when compared to other study years.
			Results in Section 3.3.2
			Discussion in Section 4.1.2
			The hypothesis cannot be rejected at this time. However, annual survival estimates for adult Rainbow Trout were substantially lower from 2011 to 2012 when compared to 2010 to 2011 results. Subadult Rainbow Trout survival estimates were variable.
			Results in Section 3.5.2
			Discussion in Section 4.4.2
		morphological (condition factor) index	The hypothesis is rejected. Body condition estimates for subadult and adult rainbow trout varied annually, but were higher for both cohorts in 2002 and 2006 when compared to other study years.
			Results in Section 3.6.2
			Discussion in Section 4.5.2

Table E1 - Concluded.

Management Questions	Management Hypotheses	Sub-Hypotheses	Year 6 (2012) Status
			The hypothesis cannot be rejected at this time. Subadult and adult Rainbow Trout densities were generally consistent between study years. Data collected to date does indicate substantial annual changes in spatial distribution for this species. Results in Section 3.4.3
			Discussion in Section 4.2.2
	Ho ₃ : There is no change in the population levels of Walleye in the Lower Columbia River over the course of the monitoring period.	abundance of subadult and adult	The hypothesis is rejected. Population levels of Walleye have changed over the course of the monitoring period. Walleye abundance has more than doubled with a single year.
			Results in Section 3.4.4
			Discussion in Section 4.2.3
			The hypothesis cannot be rejected at this time. Analysis was limited to data collected from inter-year recaptured Walleye. Annual growth estimates were variable and uncertain for this species.
			Results in Section 3.3.3
			Discussion in Section 4.1.3
		Ho _{3c} : There is no change in the mean survival of subadult and adult Walleye.	Hypothesis cannot be rejected at this time. Limited data prevented the HBM from properly converging.
			Results in Section 3.5.3
			Discussion in Section 4.4.3
		Ho _{3d} : There is no change in the morphological (condition factor) index of body condition of subadult and	This hypothesis is rejected. Walleye body condition changes and is inversely related to walleye abundance.
		adult Walleye.	Results in Section 3.6.3
			Discussion in Section 4.5.3
		Ho _{3e} : Whitefish and Rainbow Trout flows do not alter the distribution of subadult and adult Walleye.	Hypothesis cannot be rejected at this time. Patterns or trends in Walleye distribution were not discernible.
			Results in Section 3.4.4
			Discussion in Section 4.2.3
What is the effect of inter-annual variability in the Whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial			Hypothesis cannot be rejected at this time. However, cross-correlation analysis indicated relationships between discharge (variance and/or mean values) and growth (for Mountain Whitefish, Rainbow Trout, and Walleye), absolute density (subadult Rainbow Trout), and length-at-age (Rainbow Trout fry).
distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the Lower Columbia River?			

ACKNOWLEDGEMENTS

The Lower Columbia River Fish Population Indexing Program is funded by BC Hydro's Columbia River Water Use Plan. Golder Associates Ltd. and Dr. Joseph Thorley of Poisson Consulting Ltd. would like to thank the following individuals for their contributions to the program:

BC Hydro

Margo Dennis Burnaby, BC
Julie Fournier Burnaby, BC
Guy Martel Burnaby, BC

BC Ministry of Forests, Lands and Natural Resource Operations

Jeff Burrows Nelson, BC Albert Chirico Nelson, BC Rachel Thomas Victoria, BC

Environment Canada

Mark Sekela Nelson, BC

The following employees of **GOLDER ASSOCIATES LTD**. contributed to the collection of data and preparation of this report.

Dustin Ford, R.P.Bio. Project Manager/Author
David Roscoe Biostatistician/Co-author

Larry Hildebrand, R.P.Bio. Senior Fisheries Biologist/Project Advisor/Editor Dana Schmidt, R.P.Bio. Senior Fisheries Biologist/Project Director

Demitria Burgoon Biologist

Sima Usvyatsov Biological Scientist
Megan Crozier Biological Technician
Chris King Biological Technician
Geoff Sawatzky Biological Technician
James Goodier GIS Technician

Carrie McAllister Administrative Assistant

Trisha Cooper Word Processor
Ron Giles Warehouse Manager

Table of Contents

1.0	INTRO	DUCTION	
	1.1	Study Objectives	
	1.2	Key Management Questions	
	1.3	Management Hypotheses	2
	1.4	Study Area and Study Period	3
2.0	METHO	DDS	6
	2.1	Data Collection	6
	2.1.1	Discharge	
	2.1.2	Water Temperature	6
	2.1.3	Habitat Conditions	6
	2.1.4	Fish Capture	8
	2.1.5	Generalized Random Tessellation Stratified Survey	8
	2.1.6	Fish Processing	10
	2.1.7	Stomach Content and Carcass Collection	11
	2.1.8	Ageing	12
	2.1.9	Historical Data	13
	2.2	Data Analyses	13
	2.2.1	Data Compilation and Validation	13
	2.2.2	Hierarchical Bayesian Analyses	14
	2.2.3	Length-At-Age	15
	2.2.4	Growth	15
	2.2.5	Count Density	16
	2.2.6	Catch Density	16
	2.2.7	Site Fidelity	17
	2.2.8	Absolute Density	17
	2.2.9	Capture Efficiency	17
	2.2.10	Survival	18
	2.2.11	Body Condition	18
	2.2.12	Catch Curve Analysis	18
	2.2.13	Environmental Correlations	19
3.0	RESUL	T\$	20
	3.1	Physical Habitat	20
	3.1.1	Columbia River	
	3.1.1.1	Discharge	20
	3.1.1.2	Temperature	21
	3.1.2	Kootenay River	22
	3.1.2.1	Discharge	22
	3.1.2.2	Temperature	
	3.1.3	Habitat Variables	24
	3.2	Catch	24
	3.3	Length-At-Age and Growth Rate	25
	3.3.1	Mountain Whitefish	
	3.3.2	Rainbow Trout	
	3.3.3	Walleye	
	3.4	Spatial Distribution and Abundance	
	3.4.1	Site Fidelity	
	3.4.2	Mountain Whitefish	
	3.4.3	Rainbow Trout	
	3.4.4	Walleye	

	3.5	Survival	37
	3.5.	Mountain Whitefish	37
	3.5.2	2 Rainbow Trout	38
	3.5.3	3 Walleye	38
	3.6	Body Condition	40
	3.6.	Mountain Whitefish	40
	3.6.2	2 Rainbow Trout	42
	3.6.3	3 Walleye	44
	3.7	Environmental Correlations	
	3.8	Other Species	
4.0	DIS	CUSSION	46
	4.1	Length-At-Age and Growth	46
	4.1.1	Mountain Whitefish	46
	4.1.2	Rainbow Trout	47
	4.1.3	3 Walleye	48
	4.2	Abundance	48
	4.2.1	Mountain Whitefish	48
	4.2.2	2 Rainbow Trout	49
	4.2.3	3 Walleye	50
	4.2.4	4 Other Species	51
	4.3	Spatial Distribution	51
	4.3.1	Mountain Whitefish	51
	4.3.2	2 Rainbow Trout	52
	4.3.3	3 Walleye	53
	4.4	Survival	53
	4.4.1	Mountain Whitefish	53
	4.4.2	Rainbow Trout	54
	4.4.3	B Walleye	54
	4.5	Body Condition	55
	4.5.	Mountain Whitefish	55
	4.5.2	Painbow Trout	56
	4.5.3	B Walleye	56
	4.6	Summary	57
5.0	REC	COMMENDATIONS	59
6.0	LITE	RATURE CITED	60
7.0	CLC	SURE	65
TAB	LES		
Tabl	e 1:	Annual study periods for boat electroshocking surveys conducted in the Lower Columbia River, 2001 to	
	•	2012	4
Tabl	e 2:	List and description of habitat variables recorded at each sample site in the Lower Columbia River, 2012	
Tabl		List and description of variables recorded for each fish captured in the Lower Columbia River, 2012	
Tabl		Summary of fish stomach content and carcass samples collected during the Lower Columbia River Fish	
		Population Indexing study and provided to other groups for analysis in 2012.	12
Tabl	e 5:	Number of fishes caught and observed during boat electroshocking surveys and their frequency of	
		occurrence in sampled sections of the Lower Columbia River, September 24 to October 25, 2012	25
Tabl	e 6:	Hierarchical Bayesian model generated estimates of minimum and maximum fork lengths (in mm) for each	_•
		life stage by year for Mountain Whitefish and Rainbow Trout in the Lower Columbia River, 1990 to 1993,	
		2001 to 2012.	26
Tabl	e 7:	Cross-correlations among fish abundance, condition, life-history, and environmental variables from the	
		Lower Columbia River, 2001-2012, Only correlations significant at the 0.001 level are presented	45

FIGURES

Figure 1:	Overview of the Lower Columbia River Fish Population Indexing study area, 2012.	5
Figure 2:	Mean daily discharge (m³/s) for the Columbia River at the Birchbank water gauging station, 2012 (black line)	20
Figure 3:	Mean daily discharge (m ³ /s) for the Columbia River at Hugh L. Keenleyside Dam, 2012 (black line)	21
-	Mean daily water temperature (°C) for the Columbia River at Fort Shepherd, 2012 (black line).	
	Mean daily discharge (m ³ /s) for the Kootenay River at Brilliant Dam (BRD), 2012 (black line)	
•	Mean daily water temperature (°C) for the Kootenay River downstream of Brilliant Dam (BRD), 2012, (black line)	
Figure 7:	Length-at-age (median with 95% CRIs) by year (left) and date (right) for Mountain Whitefish fry in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	26
Figure 8:	Length-at-age (median with 95% CRIs) by year (left) and date (right) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	27
Figure 9:	Expected inter-annual growth (median with 95% CRIs) for a 300 mm FL Mountain Whitefish in the Lower Columbia River, 2001 to 2012.	27
Figure 10:	Length-at-age (median with 95% CRIs) by year (left) and date (right) for Rainbow Trout fry in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	28
Figure 11:	Length-at-age (median with 95% CRIs) by year (left) and date (right) for subadult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	28
Figure 12:	Expected inter-annual growth for a 350 mm FL Rainbow Trout in the Lower Columbia River, 2001 to 2012	28
Figure 13:	Expected inter-annual growth for a 400 mm FL Walleye in the Lower Columbia River, 2001 to 2012	29
Figure 14:	Expected probability that a fish is recaptured at the same site where it was marked by species and life stage in the Lower Columbia River, 2001 to 2012	29
Figure 15:	Count density estimates (median with 95% CRIs) for Mountain Whitefish (all age-classes combined) in the Lower Columbia River, 2001 to 2012.	30
Figure 16:	Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	30
Figure 17:	Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for adult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	
Figure 18:	Count density estimates (median with 95% CRIs) for Mountain Whitefish (all age-classes combined) in the Lower Columbia River, 2001-2012	
Figure 19:	Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for subadult Mountain Whitefish in the Lower Columbia River, 1990-2012.	
Figure 20:	Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for adult Mountain Whitefish in the Lower Columbia River, 1990-2012	32
Figure 21:	Count density estimates (median with 95% CRIs) for Rainbow Trout (all age-classes combined) in the Lower Columbia River, 2001 to 2012.	33
Figure 22:	Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	33
Figure 23:	Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for adult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	33
Figure 24:	Count density estimates (median with 95% CRIs) for Rainbow Trout (all age-classes combined) in the Lower Columbia River, 2001-2012	
Figure 25:	Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for subadult Rainbow Trout in the Lower Columbia River, 1990-2012.	
Figure 26:	Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for adult Rainbow Trout in the Lower Columbia River, 1990-2012.	

Figure 27:	Count density estimates (median with 95% CRIs) for Walleye (all age-classes combined) in the Lower Columbia River, 2001 to 2012	36
Figure 28:	Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for Walleye in the Lower Columbia River, 1990 to 1993 and 2001 to 2012	36
Figure 29:	Count density estimates (median with 95% CRIs) for Walleye (all age-classes combined) in the Lower Columbia River, 2001-2012	36
Figure 30:	Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for Walleye in the Lower Columbia River, 1990-2012.	37
Figure 31:	Inter-annual survival estimates (median with 95% CRIs) for subadult (left panel) and adult (right panel) Mountain Whitefish in the Lower Columbia River, 2001-2012	38
Figure 32:	Inter-annual survival estimates (median with 95% CRIs) for subadult (left panel) and adult (right panel) Rainbow Trout in the Lower Columbia River, 2001-2012.	38
Figure 33:	Survival estimates for Mountain Whitefish based on catch curve analysis (median with 95% CRIs) in the Lower Columbia River, 2001-2012.	39
Figure 34:	Survival estimates for Mountain Whitefish based on catch curve analysis (median with 95% CRIs) in the Lower Columbia River, 1990 to 1996.	40
Figure 35:	Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012	41
Figure 36:	Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for adult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	41
•	Body condition effect size estimates (median with 95% CRIs) by site for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993, 2001 to 2012.	41
Figure 38:	Body condition effect size estimates (median with 95% CRIs) by site for adult Mountain Whitefish in the Lower Columbia River, 1990 to 1993, 2001 to 2012	42
Figure 39:	Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for subadult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	42
Figure 40:	Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for adult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012	43
Figure 41:	Body condition effect size estimates (median with 95% CRIs) by site for subadult Rainbow Trout in the Lower Columbia River, 1990 to 1993, 2001 to 2012	43
Figure 42:	Body condition effect size estimates (median with 95% CRIs) by site for adult Rainbow Trout in the Lower Columbia River, 1990 to 1993, 2001 to 2012.	43
Figure 43:	Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for Walleye in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.	44
Figure 44:	Body condition effect size estimates (median with 95% CRIs) by site for Walleye in the Lower Columbia River, 1990 to 1993, 2001 to 2012	44

APPENDICES

APPENDIX A

Maps and UTM Coordinates

APPENDIX B

Habitat Summary Information

APPENDIX C

HBM Methods

APPENDIX D

Discharge and Temperature Data

APPENDIX E

Catch and Effort Data Summaries

APPENDIX F

Life History Summaries

APPENDIX G

HBM Results

APPENDIX H

HBM Additional Figures

1.0 INTRODUCTION

In the mid-1990s, BC Hydro initiated water management from Hugh L. Keenleyside Dam (HLK) during the Mountain Whitefish (*Prosopium williamsoni*) and Rainbow Trout (*Oncorhynchus mykiss*) spawning seasons to reduce egg losses downstream of the dam. During the Mountain Whitefish spawning season (December to February), BC Hydro decreases flow from HLK during the peak spawning period (December 24 to January 21; Golder 2010b) to encourage spawning at lower water level elevations and reduce egg dewatering over the winter period and during the early spring when annual minimum flows typically occur. Subsequently, flows are managed (i.e., within the constraints of the Columbia River Treaty and flood protection considerations) to provide stable or increasing water levels during the middle of the Rainbow Trout spawning season (early April to late June) to protect the majority of Rainbow Trout spawners by reducing the likelihood that Rainbow Trout eggs (and other larval fishes) will be stranded during spring flow management.

BC Hydro implemented a Water Use Plan (WUP; BC Hydro 2005) for the Columbia River in 2007. As part of the WUP, the Columbia River Water Use Plan Consultative Committee (WUP CC) recommended the establishment of the Lower Columba River (LCR) Fish Indexing Program to address data gaps regarding the effects of water management at HLK (particularly during the Mountain Whitefish and Rainbow Trout spawning seasons) on downstream fish populations. The LCR Fish Indexing Program represents a continuation of the Large River Fish Indexing Program (LRFIP), a program initiated by BC Hydro in 2001 to develop a reliable and cost-effective method of indexing the fish community downstream of HLK.

In 2001, the LRFIP gathered baseline information on fish distribution, life history characteristics, and population abundance of fish species present in the LCR (Golder 2002). Between 2002 and 2006 (Golder 2003, 2004, 2005, 2006, 2007), the program was refined, based on the results of previous study years, to provide a systematic and repetitive index of fish population parameters for three index species: Mountain Whitefish, Rainbow Trout, and Walleye (*Sanders vitreus*). A detailed summary of the life history requirements for these three species was provided by Golder (2009a, 2010a).

Data collected under the LRFIP (Golder 2002, 2003, 2004, 2005, 2006, 2007) and the current program (Golder 2008, 2009a, 2010a, Ford and Thorley 2011a, Ford and Thorley 2012) will allow the calculation of fish population parameters at a level of resolution that can be used to identify changes to fish populations and assist in the determination of the biological and statistical significance of these changes in relation to Mountain Whitefish and Rainbow Trout spawning protection flows.

1.1 Study Objectives

The objectives of CLMBON-45 include (BC Hydro 2007):

- To extend time series data on the abundance, distribution, and biological characteristics of nearshore and shallow water fish populations in the LCR;
- To examine long-term trends in key index fish populations (i.e., Whitefish, Walleye, and Rainbow Trout) during the continued implementation of Whitefish and Rainbow Trout flows in the LCR;
- To build upon previous investigations for the further refinement of sampling strategy, sampling program, and analytical procedures to establish a long-term monitoring program for fish populations in the LCR;

- To update the existing electronic storage and retrieval system for fish population and habitat monitoring data for the Columbia River;
- To establish linkages between other biological monitoring programs being undertaken in the LCR, in particular, the Physical Habitat and Ecological Productivity Monitoring Program (CLBMON-44); and,
- To identify gaps in data and understanding of current knowledge about fish populations and procedures for sampling them, and to provide recommendations for future monitoring and fisheries investigations.

1.2 Key Management Questions

Key management questions to be addressed by CLBMON-45 include:

- What are the abundance, growth rate, survival rate, body condition, age distribution, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR?
- What is the effect of inter-annual variability in the Whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Whitefish, Rainbow Trout and Walleye in the LCR?

1.3 Management Hypotheses

Specific hypotheses to be tested under CLBMON-45 include:

- Ho₁: There is no change in the population levels of Whitefish in the LCR over the course of the monitoring period.
 - Ho_{1a}: There is no change in the abundance of adult and subadult Whitefish.
 - Ho_{1b}: There is no change in the mean size-at-age of subadult and adult Whitefish.
 - Ho_{1c}: There is no change in the mean survival of adult and subadult Whitefish.
 - Ho_{1d}: There is no change in the morphological (condition factor) index of body condition of adult and subadult Whitefish.
 - Ho_{1e}: There is no change in the distribution of adult and subadult Whitefish.
- Ho₂: There is no change in the population levels of Rainbow Trout in the LCR over the course of the monitoring period.
 - Ho_{2a}: There is no change in the abundance of adult and subadult Rainbow Trout.
 - Ho_{2b}: There is no change in the mean size-at-age of subadult and adult Rainbow Trout.
 - Ho_{2c}: There is no change in the mean survival of adult and subadult Rainbow Trout.
 - Ho_{2d}: There is no change in the morphological (condition factor) index of body condition of adult and subadult Rainbow Trout.
 - Ho_{2e}: There is no change in the distribution of adult and subadult Rainbow Trout.

- Ho₃: There is no change in the population levels of Walleye in the LCR over the course of the monitoring period.
 - Ho_{3a}: There is no change in the abundance of adult and subadult Walleye.
 - Ho_{3b}: There is no change in the mean size-at-age of subadult and adult Walleye.
 - Ho_{3c}: There is no change in the mean survival of adult and subadult Walleye.
 - Ho_{3d}: There is no change in the morphological (condition factor) index of body condition of adult and subadult Walleye.
 - Ho_{3e}: There is no change in the distribution of adult and subadult Walleye.

1.4 Study Area and Study Period

The study area for the LCR Fish Indexing Program encompassed the approximately 56.5 km section of the riverine habitat from the base of HLK to the Canada-U.S. border (Figure 1). This study area also included the 2.8 km of the Kootenay River below Brilliant Dam (BRD) and the Columbia-Pend d'Oreille rivers confluence below Waneta Dam.

For the purposes of this study, the study area was divided into three sections. The upstream section of the Columbia River extended from HLK (RKm 0.0) downstream to the Kootenay River confluence (RKm 10.7). The downstream section of the Columbia River extended from the Kootenay River confluence downstream to the Canada-U.S. border (RKm 56.5). The Kootenay River section was established as a separate sample section that extended from the Kootenay-Columbia rivers confluence upstream to BRD (approximately 2.8 km).

In 2012, sample sites were distributed throughout the study area in locations similar to all other study years. In total, nine sites were sampled in the upstream section of the Columbia River (Appendix A, Figure A1), 15 sites were sampled in the downstream section of the Columbia River (Appendix A, Figures A2 and A3), and four sites were sampled in the Kootenay River (Appendix A, Figure A1). Site descriptions and UTM locations for all sites are listed in Appendix A, Table A1. Each of the 28 sites listed above was sampled four times (i.e., four sessions) between September 24 and October 22, 2012 (Table 1). Field sampling also was conducted in the late summer to fall during previous study years.

In addition to the standard indexing program described above, in 2012, 20 additional sites were sampled using a Generalized Random Tessellation Stratified (GRTS) survey (see Section 2.1.5). The GRTS survey (i.e., Session 5) was completed between October 19 and 26, 2013.

Table 1: Annual study periods for boat electroshocking surveys conducted in the Lower Columbia River, 2001 to 2012.

Year	Start Date	End Date	Number of Sessions	Duration (in days)
2001	August 13	September 23	5	42
2002	September 16	October 27	6	42
2003	September 15	October 26	6	42
2004	September 13	October 30	7	48
2005	September 19	November 1	6	44
2006	September 18	November 2	6	46
2007	September 27	November 6	5	41
2008	September 22	November 3	5	43
2009	September 28	October 30	5	33
2010	September 27	October 30	5	34
2011	September 26	October 30	5	35
2012	September 24	October 25	5	31

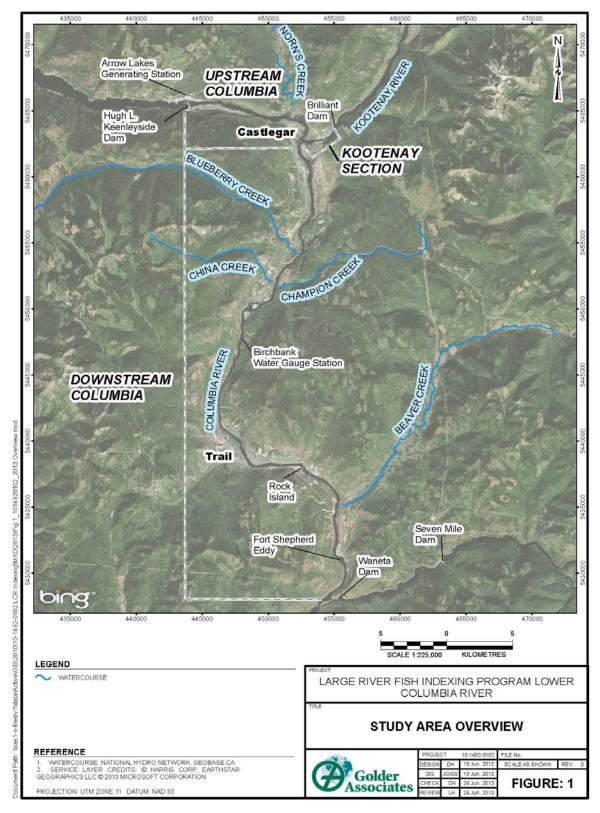


Figure 1: Overview of the Lower Columbia River Fish Population Indexing study area, 2012.

2.0 METHODS

2.1 Data Collection

2.1.1 Discharge

All discharge data were obtained from BC Hydro's Temperature and Discharge database. Data used in this report included discharge for the Columbia River below HLK (combined discharge from HLK and Arrow Lakes Generating Station), the Columbia River at Birchbank (Water Survey of Canada gauging station No. 08NE049), and the Kootenay River [combined discharge through the BRD and Brilliant Expansion (BRX) plants]. Discharges throughout this report are presented as cubic metres per second (m³/s).

2.1.2 Water Temperature

Water temperatures for the mainstem Columbia River from 2001 to 2011 were obtained at hourly intervals using a Lakewood $^{\text{TM}}$ Universal temperature probe (accuracy \pm 0.5°C) from the Water Survey of Canada gauging station at Birchbank. In 2012, water temperature data from the Birchbank station were not available for a large portion of the year because of a malfunctioning data logger. Water temperatures presented for 2012 were measured near Fort Shepherd (used with permission from Columbia Power Corporation; Golder in prep.). Hourly water temperature for the Columbia River near Norn's Creek also was obtained from BC Hydro. Water temperatures for the mainstem Kootenay River were obtained at hourly intervals using an Onset Tidbit temperature data logger (accuracy \pm 0.5°C) installed approximately 1.8 km upstream of the Columbia-Kootenay Rivers confluence.

All available temperature data were summarized to provide daily average temperatures. Spot measurements of water temperature were obtained at all sample sites at the time of sampling using a hull-mounted Airmar® digital thermometer (accuracy \pm 0.2°C).

2.1.3 Habitat Conditions

Several habitat variables were qualitatively assessed at all sample sites (Table 2). Variables selected were limited to those for which information had been obtained during previous study years and were intended as a means to detect gross changes in habitat availability or suitability in the sample sites between study years. The data collected were not intended to quantify habitat availability or imply habitat preferences.

The type and amount of instream cover for fish were qualitatively estimated at all sites. Water velocities were visually estimated and categorized at each site as low (less than 0.5 m/s), medium (0.5 to 1.0 m/s), or high (greater than 1.0 m/s). Water clarity was visually estimated and categorized at each site as low (less than 1.0 m depth), medium (1.0 to 3.0 m depth), or high (greater than 3.0 m depth). To verify water depth measurements, the boat operator called out depths displayed on the boats depth sounder while angling the boat into shore. The netters looked over the bow of the boat to become familiar with how deep they could see based on the depths relayed by the boat operator. Mean and maximum depths were estimated by the boat operator based on the boat's sonar depth display.

Each site was categorized into various habitat types using the Bank Habitat Types Classification System (Appendix B, Table B1; R.L.&L. 1995). Bank type length within each site was calculated using ArcView® GIS software (Appendix B, Table B2). Netters estimated the number of fish by species within each bank habitat type. Bank habitat types less than approximately 100 m in length were combined with adjacent bank habitat types to facilitate the netters' ability to remember observed fish counts.

Table 2: List and description of habitat variables recorded at each sample site in the Lower Columbia River, 2012.

Variable Description			
Date	The date the site was sampled		
Time	The time the site was sampled		
Air Temp	Air temperature at the time of sampling (to the nearest 1°C)		
Water Temp	Water temperature at the time of sampling (to the nearest 1°C)		
Conductivity	Water conductivity at the time of sampling (to the nearest 10 µS)		
Cloud Cover	A categorical ranking of cloud cover (clear=0-10% cloud cover; partly cloudy=10-50% cloud cover; mostly cloudy=50-90% cloud cover; overcast=90-100% cloud cover)		
Weather	A general description of the weather at the time of sampling (e.g., comments regarding wind, rain, or fog)		
Water Surface Visibility	A categorical ranking of water surface visibility (low - waves; medium - small ripples; high - flat surface)		
Boat Model	The model of boat used during sampling		
Range	The range of voltage used during sampling (high or low)		
Percent The estimated duty cycle (as a percent) used during sampling			
Amperes The average amperes used during sampling			
Mode The mode (AC or DC) and frequency (in Hz) of current used during sampling			
Length Sampled The length of shoreline sampled (to the nearest 1 m)			
Time Sampled	The time of electroshocker operation (to the nearest 1 second)		
Mean Depth	The estimated mean depth sampled (to the nearest 0.1 m)		
Maximum Depth	The estimated maximum depth sampled (to the nearest 0.1 m)		
Water Clarity	A categorical ranking of water clarity (high - greater than 3.0 m visibility; medium - 1.0 to 3.0 m visibility; low - less than 1 m visibility)		
Instream	A categorical ranking of water velocity (high - greater than 1.0 m/s; medium - 0.5 to 1.0 m/s;		
Velocity low - less than 0.5 m/s)			
Instream Cover aquatic vegetation; shallow water; deep water) and amount (as a percent) of availating instream cover			
Crew	The field crew that conducted the sample		
Sample Comments Any additional comments regarding the sample			

2.1.4 Fish Capture

Fish were captured and sampled using methods similar to previous years of the project (Golder 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009a, 2010a, Ford and Thorley 2011a, Ford and Thorley 2012). Stress on fish associated with capture and processing is greater at warmer water temperatures (Golder 2002); therefore, sampling in the present study (as in during most other study years) did not commence until after water temperatures decreased below 15°C.

Boat electroshocking was conducted at all sites along the channel margin. Boat electroshocking employed a Smith-Root Inc. high-output Generator Powered Pulsator (GPP 5.0) electroshocker operated out of a 160 HP outboard jet-drive riverboat manned by a three-person crew. The electroshocking procedure consisted of manoeuvring the boat downstream along the shoreline of each sample site. Two crew members positioned on a netting platform at the bow of the boat netted stunned fish, while a third individual operated the boat and electroshocking unit. The two netters attempted to capture all index species. Captured fish were immediately sorted by the Bank Habitat Type they were captured in and placed into an onboard compartmentalized live-well. Index species that avoided capture and all other species that were positively identified but avoided capture were enumerated by Bank Habitat Type and recorded as "observed". Both time sampled (seconds of electroshocker operation) and length of shoreline sampled (in kilometres) were recorded for each sample site. Electroshocking sites ranged from 440 to 3790 m in length. If, because of logistical reasons, a site could not be completed, the difference in distance between what was sampled and the established site length was estimated and recorded on the site form, and then used as the sampled length in the subsequent analyses.

To reduce fish mortalities and stress on the fish associated with capturing and handling, compressed oxygen was pumped into the livewell through an air stone to maintain dissolved oxygen at levels at or above those in the river water.

Amperage output was set at 1.75 A, at a frequency of 30 Hz direct current as these settings produce less electroshocking-induced injuries on Rainbow Trout (Golder 2004, 2005). Although electrical output is variable (i.e., depending on water conductivity, water depth, and water temperature), field crews attempted to maintain electrical output at similar levels for all sites over all sessions.

To reduce the possibility of capturing the same fish at multiple sites in one session, fish were released near the middle of the site where they were captured.

2.1.5 Generalized Random Tessellation Stratified Survey

In 2001, sites selected for inclusion in the LRFIP (Golder 2002) were based on sites established and data collected during surveys conducted in the early 1980's (Ash et al. 1981) and early 1990's (R.L.&L. 1991). During those two programs, virtually all areas of the LCR were surveyed with individual site lengths determined by the length of shoreline traversed by the boat in the amount of time it took netters to fill the livewell with fish (L. Hildebrand, Golder Associates Ltd., pers. comm.). A subsample of sites established during those original programs was selected for inclusion in the LRFIP in 2001 to provide a representative sample of general bank habitat types available throughout the LCR; however, emphasis was placed on sites known to contain higher densities of the three index species. In 2007, this same subsample of sites was selected for annual sampling as part of CLBMON-45 to provide a temporal dataset of comparable data from 2001 onward. Approximately 30% of

the total shoreline habitat available in the LCR was repetitively sampled each year as part of the LRFIP or CLBMON-45.

The stratified sampling design detailed above represents a repeated measures concept, where a mark-recapture program is conducted annually at each site over an approximately five week study period. The same sites are surveyed each year, resulting in annual estimates of abundance with relatively constant temporal and spatial sample design parameters. Stratified sampling programs like this may result in biased estimates because not all portions of a study area are surveyed or potentially available to be surveyed in any particular year. In addition, repetitively sampling the same sites each session (i.e., within a year) may introduce biases due to fish migrating into non-sampled sections of the study areas between sessions.

In 2011 and 2012, additional sites that were selected using the GRTS survey design (Stevens and Olson 2004) were sampled after field crews completed the conventional mark-recapture program. This survey was conducted to identify potential biases and to provide a better understanding of the population dynamics of the three index species.

Portions of shoreline habitat that were not sampled as part of CLBMON-45 prior to 2011 were divided up into potential sites. Upstream and downstream boundaries of each site were established using several different criteria, including historic site delineations (i.e., sites surveyed during the 1990s; R.L.&L. 1991), sampling effectiveness (e.g., overall length, ease of access, etc.), natural breaks in habitat, and the location of obvious geographical boundaries (e.g., islands, tributary mouths, bridges, etc.). Established indexing sites sampled as part of CLBMON-45 range in length from 0.4 to 3.8 km; these lengths were used as general guidelines when establishing new sites. Overall, 62 new sites that ranged in length from 0.6 to 3.9 km, were established in areas of the LCR that were not sampled between 2001 and 2010 (Appendix A, Figures A4 to A9). The same habitat variables recorded for indexing sites also were recorded for GRTS survey sites (Appendix B, Table B3). In general, there was a similar range of habitat types at indexing and GRTS survey sites.

The GRTS sampling design combines the features of stratified sampling with the benefits of a totally random design, ensuring full spatial coverage and randomization so that all potential habitats are surveyed. A unique feature of the GRTS strategy is that new sites may be selected during each study year; therefore, all potential fish habitats are included within the sampling "frame". A detailed description of the GRTS design strategy is available at http://www.epa.gov/nheerl/arm/designing/design_intro.htm. The GRTS methodology was successfully implemented as part of BC Hydro's LCR Mountain Whitefish Spawning Ground Topography Survey (CLBMON-47; Golder 2012a.) and as part of a fish stranding study designed to help determine habitat impacts in the LCR as part of the Waneta Expansion Project (Columbia Power Corporation; Golder in prep.).

Software used to create the GRTS design included the spsurvey package (Kincaid and Olsen 2011) in the statistical program R 2.15.1 (R Core Team 2012), and ArcGIS. The GRTS methodology was used to select a subsample of 20 sites from the 62 newly established sites. In addition, 15 over-sample sites also were selected. Over-sample sites were used to replace selected sites that were excluded from sampling due to logistical concerns. For the current project, excluded sites included those located immediately downstream of HLK, BRD, and Waneta Dam and inside the log booms at Zellstoff Celgar (due to safety concerns), the perimeter of Waldie Island (a nature preserve), and the west shore of Zuckerberg Island (too shallow to safely navigate). Oversample sites also were used if the same site was selected more than once by the software. The use of over-sample sites ensured that both randomness and spatial balance were maintained as part of the study design. Selected sites are presented in Appendix A, Table A2.

A single-pass boat electroshocking survey was conducted at each GRTS survey site between October 19 and 26, 2013 using the same procedures described above. Fish captured during GRTS surveys were processed in the same manner as fish captured during the conventional mark-recapture program (Section 2.1.6).

2.1.6 Fish Processing

A site form was completed at the end of each sampled site. Site habitat conditions and the number of fish observed were recorded before the start of fish processing for life history data (Table 3). Fish were measured for fork length (FL) to the nearest 1 mm and weighed to the nearest 1 g using an A&D Weighing™ digital scale (Model SK-5001WP; accuracy ±1 g). Life history data were entered directly into the LCR Fish Indexing Database (Attachment A) using a laptop computer. All sampled fish were automatically assigned a unique identifying number by the database that provided a method of cataloguing associated ageing structures.

All index species between 120 and 160 mm FL that were in good condition following processing were marked with a Passive Integrated Transponder (PIT) tag (tag model Biomark 8.9 mm BIO9.B.01). These tags were implanted into the abdominal cavity of the fish just off the mid-line and anterior to the pelvic girdle using a single shot applicator (model MK7, Biomark Inc., Boise, Idaho, USA) for larger fish or a No. 11 surgical scalpel for smaller fish. All fish >160 mm FL that were in good condition following processing were marked with a Plastic Infusion Process (PIP) PIT tag (12 mm x 2.25 mm, model T-IP8010 polymer shell food safe Datamars FDX-B, Hallprint Pty Ltd., Australia). These tags were inserted with a single shot 12 mm polymer PIT tag applicator gun (Hallprint Pty Ltd., Australia) into the dorsal musculature on the left side below the dorsal fin near the pterygiophores. All tags, tag injectors, and scalpel blades were immersed in an antiseptic (Super Germiphene™) and rinsed with distilled water prior to insertion. Tags were checked to ensure they were inserted securely and the tag number was recorded in the LCR Fish Indexing Database.

Table 3: List and description of variables recorded for each fish captured in the Lower Columbia River, 2012.

Variable	Description		
Species	The species recorded		
Size Class	A general size class for observed fish (YOY = age-0; Immature = <250 mm FL; Adult = >250 mm FL)		
Length	The fork length to the nearest 1 mm		
Weight	The wet weight to the nearest 1 g		
Sex and Maturity	The sex and maturity (determine where possible through external examination)		
Scale	Whether or not a scale sample was collected for ageing purposes		
Tag Colour/Type	The type (i.e., T-bar anchor, PIT, or PIP tag) and colour (for T bar anchor tags only) of tag applied		
Tag Number	The number of the applied tag		
Condition	The general condition of the fish (e.g., alive, dead, unhealthy, etc.)		
Preserve	serve Details regarding sample collection (e.g., stomach contents, DNA, whole fish, etc.)		
Habitat Type	The bank habitat type where the fish was recorded		
Comments	Any additional comments		

During the 2001 to 2005 studies, fish were marked exclusively with T-bar anchor tags (i.e., PIT tags were not used). Fish captured during the present study that had previously been marked with and retained a T-bar anchor tag did not receive a second tag (i.e., a PIT tag) unless the T-bar anchor tag was not inserted properly, the tag number was illegible, or a large wound was present at the tag's insertion point (on these occasions, the T-bar anchor tag was carefully removed).

Scale samples were collected from Mountain Whitefish and Rainbow Trout in accordance with the methods outlined in Mackay et al. (1990). All scales were stored in appropriately labelled coin envelopes and air-dried before processing. Scale samples were not collected from Walleye because scales are not a preferred ageing structure for Walleye (Mackay et al. 1990), which are primarily seasonal resident in the LCR and use the study area principally for feeding by adult and subadult cohorts. As a result, sensitive early life stages of Walleye are unlikely to be affected by river regulation in the study area.

2.1.7 Stomach Content and Carcass Collection

At BC Hydro's request, stomach content and fish carcasses were collected during sampling and provided to other researchers for other studies (Table 4). Analysis of these samples was not conducted as part of the current program.

Stomach content samples were collected and provided to Ecoscape Environmental Consultants Ltd. for analysis as part of the Lower Columbia River Physical Habitat and Ecological Productivity Monitoring study (CLBMON-44). In total, 101 stomach samples from various species were collected by gastric lavage (Bowen 1989, Brosse et al. 2002, Baldwin et al. 2003, Budy et al. 2007) using an apparatus modified from that described by Light et al. (1983). The apparatus consisted of a pressurised sprayer and wand fitted with a tubing adapter soldered to the adjustable spray nozzle from the bottle. Different sizes of veterinary grade intravenous tubing were selected to match the mouth opening of the fish.

The sprayer reservoir was filled with river water and pressurised using the hand pump. The free end of the tubing was inserted into the fish's mouth and gently inserted down into the stomach. The fish was held, head down, over a 250 µm mesh sieve to capture discharge during lavage. The flow of water was then opened using the flow control lever on the spray handle. The small diameter of the tubing served to regulate the flow at a pressure that did not damage the internal organs of the fish. Each fish's stomach was flushed with river water for approximately 30 seconds until the water exiting the fish's mouth ran clear. The tubing was gently extracted from the stomach and mouth with the water still flowing to ensure that all stomach contents were flushed from the buccal cavity. Sampled fish were returned to the river. Collected samples were washed from the sieve into a collection jar and preserved in PreferTM.

One Northern Pikeminnow, 11 Rainbow Trout, and 12 Walleye were sacrificed and provided to Environment Canada for tissue analysis. In total, 121 fishes (41 Mountain Whitefish, 40 Rainbow Trout, and 40 Walleye) also were sacrificed and provided to Teck Metals Ltd. for tissue analysis.

Table 4: Summary of fish stomach content and carcass samples collected during the Lower Columbia River Fish Population Indexing study and provided to other groups for analysis in 2012.

Species	Ecoscape Environmental Consultants Ltd. (Stomach Content Samples) ^a	Environment Canada (Carcasses)	Teck Metals Ltd. (Carcasses)
Bull Trout	3		
Cutthroat Trout	1		
Brook Trout	1		
Brown Trout	1		
Kokanee	4		
Lake Whitefish	2		
Mountain Whitefish	41		41
Northern Pike		1	
Northern Pikeminnow	3		
Peamouth	5		
Rainbow Trout	40	11	40
Walleye		12	40
Total	101	24	121

^a Stomach contents were collected using gastric lavage. Fish were released after processing.

2.1.8 Ageing

Scales were processed in accordance with procedures described in Mackay et al. (1990). Samples were temporarily mounted between two slides and examined using a microfiche reader. Where possible, several scales were examined and the highest quality scale was digitally scanned and saved as a JPEG-type picture file in the LCR Fish Indexing Database.

A subsample of approximately 54% (n = 499) of all collected Mountain Whitefish scale samples were examined independently by three experienced readers and ages assigned. If assigned ages differed between readers, the sample was re-examined jointly by all readers to establish a final age.

Rainbow Trout that were captured during an earlier year of the project (2001 to 2011) and recaptured during the current year (n = 66) were aged using scale samples from both years to increase ageing accuracy. Both scale samples were examined by three experienced readers and ages were assigned. If assigned ages differed between the three readers, or if a scale sample from 2012 was not the appropriate number of years older than the corresponding 2001 to 2011 scale sample, both samples were re-examined jointly by all readers to establish a final age.

A digital copy of all scale images is provided in Attachment A. The actual scale samples collected from Mountain Whitefish and Rainbow Trout during the 2012 study have been provided to BC Hydro for archiving.

2.1.9 Historical Data

In addition to the data collected between 2001 and 2012, data collected in the study area between 1990 and 1996 (R.L.&L. 1995, 1997) also were used in some analyses. Studies conducted during this period involved boat electroshocking and mark-recapture programs, with protocols very similar to the 2001-2012 monitoring studies, including many of the same sample sites. There were some differences in sampling methodology between the 1990s and the current sampling program including different electrofisher settings and tag types. Despite these relatively minor differences, the 1990s data were considered comparable to data collected between 2001 and 2012 and were combined for many of the analyses in this report. Count data (i.e., fish that were observed and identified to species but not captured) were not recorded in the 1990s; therefore, this dataset was not included in count-based analyses. Limited mark-recapture data from the 1990s dataset prevented its inclusion in survival and growth related analyses. Due to relatively low numbers of captures, the 1990s data were pooled for the purposes of estimating length-at-age. For catch curve estimates of survival (Section 2.2.12) data from studies conducted from 1990 to 1996 were included in the analysis. Incorporating data from the 1990s in the analysis provided a longer time series and historical context to better address management questions about fish population trends in the LCR.

2.2 Data Analyses

2.2.1 Data Compilation and Validation

Data were entered directly into the LCR Fish Indexing Database (Attachment A) using Microsoft® Access 2007 software. The database has several integrated features to ensure that data are entered correctly, consistently, and completely.

Various input validation rules programmed into the database checked each entry to verify that the data met specific criteria for that particular field. For example, all species codes were automatically checked upon entry against a list of accepted species codes that were saved as a reference table in the database; this feature forced the user to enter the correct species code for each species (e.g., Rainbow Trout had to be entered as "RB"; the database would not accept "RT" or "rb"). Combo boxes were used to restrict data entry to a limited list of choices, which kept data consistent and decreased data entry time. For example, a combo box limited the choices for Cloud Cover to: Clear; Partly Cloudy; Mostly Cloudy; or Overcast. The user had to select one of those choices, which decreased data entry time (e.g., by eliminating the need to type out "Partly Cloudy") and ensured consistency in the data (e.g., by forcing the user to select "Partly Cloudy" instead of typing "Part Cloud" or "P.C."). The database contained input masks that required the user to enter data in a pre-determined manner. For example, an input mask required the user to enter the Sample Time in 24-hour short-time format (i.e., HH:mm:ss). Event procedures ensured that data conformed to the underlying data in the database. For example, after the user entered the life history information for a particular fish, the database automatically calculated the body condition of that fish. If the body condition was outside a previously determined range for that species (based on the measurements of other fish in the database), a message box would appear on the screen informing the user of a possible data entry error. This allowed the user to double-check the species, length, and weight of the fish before it was released. The database also allowed a direct connection between the PIT tag reader (AVID PowerTracker VIII) and the data entry form, which eliminated transcription errors associated with manually recording a 15-digit PIT tag number.

Various metrics were used to provide background information and to help set initial parameter value estimates in some of the HBMs. Although these summaries are important, they are not presented or specifically discussed in detail in this report. However, these metrics are provided in the Appendices for reference purposes and are referred to when necessary to support or discount results of the HBMs. Metrics presented in the appendices include:

- captured and observed fish count data by site and Bank Habitat Type (Appendix B, Table B4), 2012;
- catch-rates for all sportfish (Appendix E, Table E2) and non-sportfish (Appendix E, Table E3), 2012;
- length-frequency histograms by section for Mountain Whitefish (Appendix F, Figure F1), Rainbow Trout (Appendix F, Figure F2), and Walleye (Appendix F, Figure F3), 2012;
- length-frequency histograms by year for Mountain Whitefish (Appendix F, Figure F4), Rainbow Trout (Appendix F, Figure F5), and Walleye (Appendix F, Figure F6), all years combined; and,
- length-weight relationships by year for Mountain Whitefish (Appendix F, Figure F7), Rainbow Trout (Appendix F, Figure F8), and Walleye (Appendix F, Figure F9), all years combined.

All raw data collected as part of the program between 2001 and 2012 are included in the LCR Fish Indexing Database (Attachment A).

For all figures in this report, sites are ordered by increasing distance from HLK (RKm 0.0) based on the upstream boundary of each site. Unless stated otherwise, black plots represent sites located on the left bank (as viewed facing downstream) and red plots represent sites located on the right bank (as viewed facing downstream).

2.2.2 Hierarchical Bayesian Analyses

The temporal and spatial variation in abundance, growth, body condition, and survival were analyzed using Hierarchical Bayesian Models (HBMs). The book 'Bayesian Population Analysis using WinBUGS: A hierarchical perspective' by Kery and Schaub (2011) provides an excellent reference for hierarchical Bayesian methods and is considered the companion text for the following analyses. In short, a hierarchical Bayesian approach:

- allows complex models to be logically defined using the BUGS language (Kery and Schaub 2011; p.41);
- permits the incorporation of prior information (Kery and Schaub 2011; p.41);
- readily handles missing values;
- provides readily interpretable parameter estimates whose reliability does not depend on the sample size;
- allows derived quantities, such as the percent change in the expected weight of a 250 mm FL Mountain Whitefish at a particular site in a typical year, to be calculated (Kery and Schaub 2011; p.41);
- enables the efficient modelling of spatial and temporal variations and correlations (Kery and Schaub 2011; p.78-82); and,
- permits the separation of ecological and observational processes (Kery and Schaub 2011; p.44).

The technical aspects of the analyses, including the general approach and model definitions in the JAGS (Just Another Gibbs Sampler; Plummer 2003) dialect of the BUGS language, are provided in Appendix C. The resultant parameter estimates are tabulated in Appendix G.

The statistical significance of all fixed parameters was assessed from their two-sided Bayesian p-values (Bochkina and Richardson 2007; Lin et al. 2009). The results were displayed graphically by plotting the modeled relationship between a particular variable(s) and the estimated median response (with 95% credibility intervals; CRIs) while the remaining variables were held constant. Unless stated otherwise, continuous and discrete fixed variables were held constant at their mean and first level values, respectively, while random variables were held constant at their typical values (i.e., the expected values of the underlying hyperdistributions; Kery and Schaub 2011, p.77-82). Where informative, the influence of particular variables was expressed in terms of the effect size (i.e., the percent change in the response variable) with 95% CRIs (Bradford et al. 2005).

2.2.3 Length-At-Age

The length-at-age of Mountain Whitefish and Rainbow Trout was estimated from annual length-frequency distributions using a finite mixture distribution model (MacDonald and Pitcher 1979). Due to low numbers of captures, the historical 1990s data were pooled.

Key assumptions of the length-at-age model included:

- there were three distinguishable age-classes for each species: age-0, age-1 and age-2, and older;
- body length increased with age-class;
- body length varied randomly by year within age-class;
- body length varied as a second-order polynomial of date;
- the proportion of individuals belonging to each age-class remained constant over the course of the study;
 and,
- individual variations in body length were normally distributed.

Length-at-age models were used to estimate the most appropriate cut-offs between age-0, age-1 and age-2 and older individuals by year. For the purposes of estimating other population parameters by life stage, age-0 individuals were classified as fry, age-1 individuals were classified as subadult, and age-2 and older individuals were classified as adult. Walleye could not be separated by life stage due to a lack of discrete modes in the length-frequency distributions for this species. Consequently, all captured Walleye were considered adults.

2.2.4 **Growth**

Annual growth was estimated from inter-annual recaptured fish using the Fabens (1965) method for estimating the von Bertalanffy (1938) growth curve. For simplicity, only recaptured fish that were at large for a single year were included in the model.

Key assumptions of the growth model included:

- mean maximum length (L_{∞}) varied randomly with year; and,
- observed growth (change in length) was normally distributed.

Plots of annual growth show the estimated annual growth for a 300 mm FL Mountain Whitefish, a 350 mm FL Rainbow Trout and a 400 mm FL Walleye. These fork lengths were selected as representative examples to illustrate changes in fork length over time for a standard size fish.

2.2.5 Count Density

Counts of each species were obtained by summing all fish captured or observed at a particular site and sampling session. Count data were analysed using an overdispersed Poisson model (Kery and Schaub 2011, p.55-56). Unlike Kery and Schaub (2011), who used a log-normal distribution to account for the extra-Poisson variation, the current model used a gamma distribution with identical shape and scale parameters because it has a mean of 1 and therefore, no overall effect on the expected count. The model did not distinguish between abundance and observer efficiency (i.e., it estimated the count, which is the product of the two). As such, it was necessary to assume that changes in observer efficiency were negligible in order to interpret estimates as relative abundance. The model estimated the number of fish expected to be captured or observed at each site per river kilometre based on the sample data, the influence of other variables in the model, and the prior distributions of model parameters. These estimates were used as an indicator of relative density and are referred to in this report as count density, in fish counted per kilometre (count/km).

Key assumptions of the count model included:

- count density (count/km) varied with flow regime (period) and season;
- count density (count/km) varied randomly with site, year, and the interaction between site and year;
- expected counts were the product of the count density (count/km) and the length of bank sampled;
- sites were closed (i.e., the expected count at a site was constant for all the sessions in a particular season of a year); and,
- observed counts were described by a Poisson-gamma distribution.

2.2.6 Catch Density

Catch data included all fishes captured during electroshocking but did not include observed fishes. The catch data were analyzed using the same overdispersed Poisson model as the count data (Section 2.2.5). Estimates of relative density from this model are referred to as catch density, in fishes captured per kilometre (catch/km).

2.2.7 Site Fidelity

Site fidelity was the estimated probability of a recaptured fish being caught at the same site at which it was previously encountered. These estimates were used to evaluate the extent to which sites were closed within a sample period (i.e., whether fish remained at the same site between sessions) and also to adjust the capture efficiencies in the analysis of densities using mark-recapture data (see Section 2.2.8).

A key assumption of the site fidelity model was that observed site fidelity was described by a Bernoulli distribution.

2.2.8 Absolute Density

Catch data also were analyzed using a mark-recapture-based binomial mixture model (Kery and Schaub 2011, p.134-136, 384-388) to provide estimates of capture efficiency and absolute density. Site fidelity (Section 2.2.7) was used to adjust capture efficiency for marked fish. Estimates of absolute abundance per kilometre from this model are referred to as absolute density, in the number of fish per kilometre (fish/km).

Key assumptions of the abundance model included:

- absolute density (fish/km) varied randomly with site, year, and the interaction between site and year;
- efficiency (the probability of capture) varied randomly by session within year;
- the proportion of marked fishes remaining at a site is described by the median estimates from the site fidelity model;
- marked and unmarked fishes had the same probability of capture;
- there was no tag loss, mortality, or misidentification of fish;
- other than the straying of marked fish, sites were closed (i.e., emigration of unmarked fish was accounted for by immigration of unmarked fish);
- the abundance at a site was described by a Poisson distribution; and,
- the number of marked and unmarked fish caught at a site was described by a binomial distribution.

2.2.9 Capture Efficiency

In order to estimate capture efficiency independent of abundance, a recapture-based binomial model (Kery and Schaub 2011, p.134-136, 384-388) was fitted only to marked fish. This model was equivalent to the abundance model without the estimation of the numbers of unmarked fish.

Key assumptions of the capture efficiency model included:

- efficiency (the probability of capture) varied randomly by session within year and season;
- the proportion of marked fish remaining at a site by season was described by the median estimates from the site fidelity model;

- there was no tag loss, mortality, or misidentification of fish; and,
- the number of marked fish caught at a site was described by a binomial distribution.

2.2.10 Survival

The annual survival rate was estimated by fitting a Cormack-Jolly-Seber model (Kery and Schaub 2011, p.172-177) to inter-annual recaptures. A key assumption of the survival model was that log-odds survival (i.e., the logarithm of the ratio between the probability of surviving and not surviving) varied with year and life stage (i.e., subadult versus adult).

2.2.11 Body Condition

Condition was estimated via an analysis of weight-length relations (He et al. 2008).

Key assumptions of the condition model included:

- weight varied with length and a second-order polynomial of day of the year;
- weight varied randomly with site, year, and the interaction between site and year; and,
- weight was log-normally distributed.

Only previously untagged fish were included in models to avoid potential effects of tagging on body condition.

2.2.12 Catch Curve Analysis

Catch curve analysis was used as a supplementary method of estimating fish survival in the LCR and corroborate estimates produced by the Cormack-Jolly-Seber model (Section 2.2.10). Catch curve analysis is a common technique that is widely applied for stock assessments in fisheries biology (Hilborn and Walters 1992). The analysis estimates the annual survival probability of fish based on the age distribution of a random sample of individuals from the studied population.

Data collected in the LCR during the early 1990s were used to produce catch curves for adult Mountain Whitefish as a proxy to estimate inter-cohort survival. Due to the high variability in sample timing, captured cohort abundances were not compared between years, but within years, which required the assumption of no yearly variability in survival. In the Bayesian implementation of the model, the number of fish captured in each age cohort, N[year, age], was binomially distributed as a function of the number of fish present in the preceding age cohort, N[year, age-1] and survival (S). In addition to within-year analysis of the data, an analysis also was performed on combined-year data, where the number of Mountain Whitefish captured between 1990 and 1996 were summed within their respective age cohorts to create a single stratum of cohorts.

Catch curve analysis also was performed using data from 2001 to 2012, where inter-year, inter-cohort survival of adult Mountain Whitefish was estimated separately for each sample section (Upper, Lower, Kootenay). In the Bayesian implementation of the model, the number of fish captured in each year and each age cohort N[year, age] was binomially distributed as a function of the number of fish present in the preceding year

and the preceding age cohort N[year - 1, age - 1] and survival (S). Survival was modeled as a hierarchical variable (i.e., a random factor that varied among years). Details, including the prior distributions, model specification, and code, are provided in Appendix D.

2.2.13 Environmental Correlations

The second management question of CLBMON-45 is concerned with the effect of inter-annual variability in the Mountain Whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR. In order to address this question and examine other possible effects of environmental variables, correlation analysis was used to assess relationships between water temperature and discharge, and fish population metrics. The discharge of the Columbia River at the Birchbank water gauging station and Columbia River water temperatures near Norn's Creek were broken into bimonthly periods for each year (e.g., January to February, March to April, May to June, etc.). As discharge can affect fish populations through a range of different mechanisms, three different measures of Columbia River discharge were calculated for each bi-monthly period:

- 1) mean of hourly discharge;
- 2) mean of the hourly absolute difference in discharge, as a measure of hour-to-hour variability; and,
- 3) variance of the hourly discharge, as a measure of overall discharge variability.

Only the mean of water temperature was calculated for each bi-monthly period. The November to December discharge and temperature time series were lagged by one year such that fish data in a given year were correlated with discharge or temperature data from the year prior to fish sampling. This time lag was done to account for the fact that the months of November and December occur after the fall surveys and reflect habitat conditions that could impact the fish populations sampled in the fall of the following year.

Relationships between absolute density, growth, length-at-age, condition, survival, and the discharge and temperature variables were assessed using Pearson correlation. Instead of comparing absolute values of fish population metrics and environmental variables each year, the analysis assessed correlations between the year-to-year differences in these values (i.e., correlations were assessed between the changes in fish metrics and environmental variables from one year to the next). This approach was less likely to result in spurious correlations caused by time series data that followed similar trends by chance. To partially account for multiple comparisons, significance was assessed at the 0.001 level. Only significant correlations that included fish population metrics selected for analysis are presented and discussed in this report (i.e., correlated environmental variables are not presented).

3.0 RESULTS

3.1 Physical Habitat

3.1.1 Columbia River

3.1.1.1 Discharge

Discharge in the LCR was greater in 2012 than during any previous study year (Figure 2). Mean daily discharge in the Columbia River at the Birchbank water gauging station was greater than average from January to May, but was extremely high from mid-June through August, when discharge reached the highest levels observed since the closure of HLK in 1968. Discharges recorded from mid to late July were more than double the average values recorded from 2001 to 2011 (Appendix D, Figures D1 and D2). These higher discharges were due to above average rainfalls during the spring and larger than normal snowpacks in the Columbia Basin (Province of British Columbia River Forecast Centre 2013). As in previous years of the study, discharge in the LCR followed a bimodal pattern with a peak during spring freshet and a smaller second peak during early winter associated with hydropower generation.

During the 2012 sample period, discharge decreased during Session 1, remained at similar levels in Sessions 2 and 3, increased in Session 4, and remained stable in Session 5 (i.e., the GRTS survey; Figure 2).

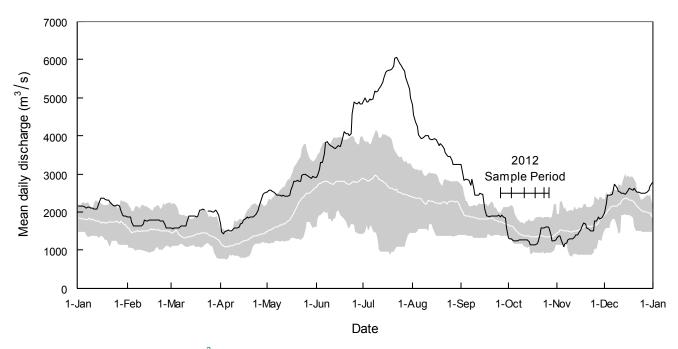


Figure 2: Mean daily discharge (m³/s) for the Columbia River at the Birchbank water gauging station, 2012 (black line).

The shaded area represents minimum and maximum mean daily discharge values recorded at Birchbank from 2001 to 2011. The white line represents average mean daily discharge values over the same time period.

In 2012, peak discharge from HLK also was much greater than previous years of the study during July and August (Figure 3). However, during the 2012 sample period, discharge was similar to average values and within the range recorded between 2001 and 2011 (Appendix D, Figure D2).

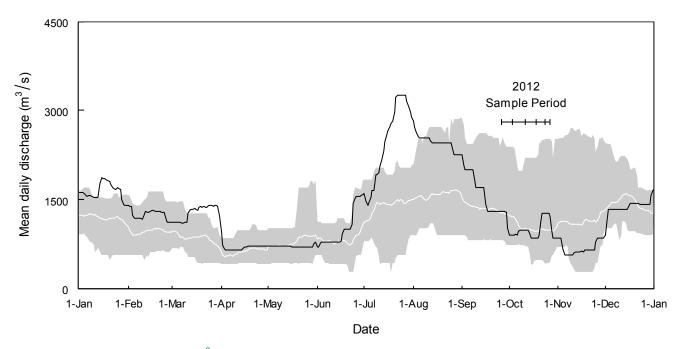


Figure 3: Mean daily discharge (m³/s) for the Columbia River at Hugh L. Keenleyside Dam, 2012 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at the dam from 2001 to 2011. The white line represents average mean daily discharge values over the same time period.

3.1.1.2 Temperature

Water temperature in the Columbia River was lower than average from mid-June to mid-September (Figure 4), which coincided with the period of higher than normal discharges (Figure 2). During the 2012 sample period, water temperatures were similar to average values recorded between 2001 and 2011 (Appendix D, Figure D3). Water temperatures measured at Fort Shepherd decreased from ~15°C to ~ 11°C during the fall sample period. Spot temperature readings for the Columbia River taken at the time of sampling ranged between 10.5°C and 15.3°C (Appendix B, Table B3).

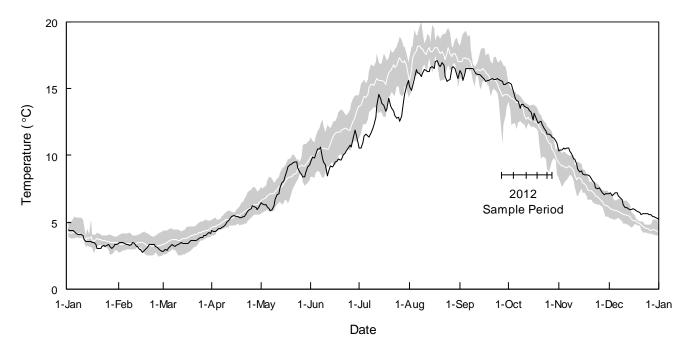


Figure 4: Mean daily water temperature (°C) for the Columbia River at Fort Shepherd, 2012 (black line). The shaded area represents the minimum and maximum mean daily water temperature values recorded in the Columbia River at Hugh L. Keenleyside Dam (HLK) from 2001 to 2011. The white line represents the average mean daily water temperature during the same time period. Temperature data from Fort Shepherd were used in 2012 because temperature data were not available near HLK in 2012.

3.1.2 Kootenay River

3.1.2.1 Discharge

From April to September 2012, mean daily discharge for the Kootenay River downstream of BRD was higher than the average discharge recorded over the same period between 2001 and 2011 (Figure 5). Between 2001 and 2011, peak flows in the Kootenay were reached by early June for most years (Appendix D, Figure D4), whereas in 2012, high discharges during the spring freshet persisted over a longer duration and peaked in early July. Although Kootenay River flows were greater than average for most of 2012, discharge during the fall sample period was near average at the start of the sample period, declined to below the previous minimum discharge recorded between 2001 and 2011, and then rose to near average conditions at the end of the sample period.

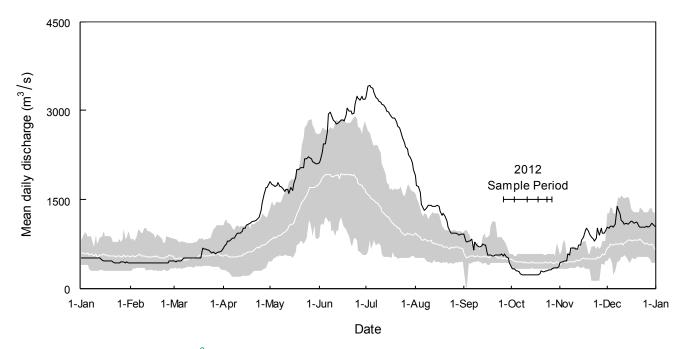


Figure 5: Mean daily discharge (m³/s) for the Kootenay River at Brilliant Dam (BRD), 2012 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at the dam from 2001 to 2011. The white line represents average mean daily discharge values over the same time period.

3.1.2.2 Temperature

Water temperatures in the Kootenay River (downstream of BRD) generally increased from mid-February to mid-August and decreased from mid-August to mid-February (Appendix D, Figure D5). In 2012, water temperatures were lower than recorded in most other study years from June to September but similar to previous years during the fall sample period (Figure 6).

Spot temperature readings for the Kootenay River taken at the time of sampling ranged between 7.0°C and 15.5°C (Appendix B, Table B3).

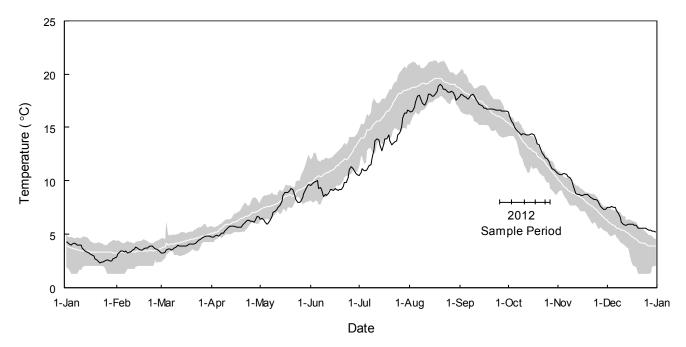


Figure 6: Mean daily water temperature (°C) for the Kootenay River downstream of Brilliant Dam (BRD), 2012, (black line). The shaded area represents minimum and maximum mean daily water temperature values recorded at the dam from 2001 to 2011. The white line represents average mean daily water temperature values over the same time period.

3.1.3 Habitat Variables

Reach habitat descriptions for the LCR are provided by Golder (2002). Habitat data collected since 2001 indicates a gradual increase in aquatic vegetation (dominantly Eurasian watermilfoil; *Myriophyllum spicatum*) has occurred in low water velocity areas throughout the LCR (Appendix B, Table B3). Sites with higher water velocities continue to support low levels of aquatic vegetation. Although aquatic vegetation cover data were not recorded during programs conducted in the early 1990s (R.L.&L. 1995), vegetation was not a common cover type in any sections of the LCR (L. Hildebrand, Golder Associates Ltd., pers. comm.).

3.2 Catch

In 2012, 40,838 fishes were recorded in the LCR (Appendix E, Table E1). This includes captured and observed fishes that were identified to species. Catch was greatest in the downstream section of the Columbia River (51% of the total catch), followed by the upstream section of the Columbia River (36%), and the Kootenay River (14%; Table 5).

Table 5: Number of fishes caught and observed during boat electroshocking surveys and their frequency of occurrence in sampled sections of the Lower Columbia River, September 24 to October 25, 2012.

Species	Columbia River Upstream		Kootenay River		Columbia River Downstream		All Sections	
	n ^a	% ^b	n ^a	% ^b	nª	% ^b	nª	% ^b
Sportfish								
Mountain whitefish (Prosopium williamsoni)	1,833	61	774	49	2,041	31	4,648	41
Rainbow trout (Oncorhynchus mykiss)	878	29	547	35	3,976	60	5,401	48
Walleye (Sanders vitreus)	210	7	207	13	464	7	881	8
Brook trout (Salvelinus fontinalis)					15	<1	15	<1
Brown trout (Salmo trutta)					2	<1	2	<1
Bull trout (Salvelinus confluentus)	6	<1			7	<1	13	<1
Burbot (Lota lota)	2	<1	1	<1	36	<1	39	<1
Cutthroat trout (Oncorhynchus clarki)					4	<1	4	<1
Kokanee (Oncorhynchus nerka)	74	2	45	3	37	<1	156	1
Lake whitefish (Coregonus clupeaformis)	3	<1	4	<1	54	<1	61	<1
Northern pike (Esox lucius)	11	<1					11	<1
White sturgeon (Acipenser transmontanus)	3	<1	2	<1	4	<1	9	<1
Sportfish Subtotal	3,020	27	1,580	14	6,640	59	11,240	100
Non-sportfish								
Dace spp. ^c (<i>Cyprinidae</i>)					1	<1	1	<1
Northern pikeminnow (Ptychocheilus oregonensis)	417	4	205	6	59	<1	681	3
Peamouth (Mylocheilus caurinus)	473	5	12	<1	3	<1	488	2
Redside shiner (Richardsonius balteatus)	3851	38	474	14	955	8	5280	21
Sculpin spp. ^c (<i>Cottidae</i>)	3,629	36	1,972	58	10,429	86	16,030	62
Sucker spp. ^c (<i>Catostomidae</i>)	1,772	17	765	22	657	5	3194	12
Non-Sportfish Subtotal	10,142	40	3,428	13	12,104	47	25,674	100
All Species	13,162		5,008		18,744		36,914	

^a Includes fish observed and identified to species; does not include inter-year recaptured fish.

3.3 Length-At-Age and Growth Rate

Output from the length-at-age model are presented in Table 6 and represent the most appropriate cut-offs between age-0 (fry), age-1 (subadult), and age-2 and older (adult) Mountain Whitefish and Rainbow Trout during each sample year. All Walleye were classified as adults by the HBMs.

^b Percent composition of sportfish or non-sportfish catch.

^c Not identified to species or species combined for analysis.

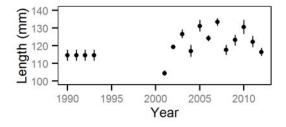


Table 6: Hierarchical Bayesian model generated estimates of minimum and maximum fork lengths (in mm) for each life stage by year for Mountain Whitefish and Rainbow Trout in the Lower Columbia River, 1990 to 1993, 2001 to 2012.

Year	Mountain Whitefish			Rainbow Trout			
	Fry	Subadult	Adult	Fry	Subadult	Adult	
1990	≤152	153-250	≥251	≤148	149-329	≥330	
1991	≤148	149-247	≥248	≤146	147-325	≥326	
1992	≤155	156-253	≥254	≤153	154-331	≥332	
1993	≤140	141-243	≥244	≤145	146-316	≥317	
2001	≤137	138-225	≥226	≤128	129-315	≥316	
2002	≤157	158-232	≥233	≤154	155-326	≥327	
2003	≤159	160-233	≥234	≤161	162-338	≥339	
2004	≤159	160-249	≥250	≤149	150-336	≥337	
2005	≤169	170-257	≥258	≤169	170-353	≥354	
2006	≤167	168-264	≥265	≤167	168-362	≥363	
2007	≤171	172-261	≥262	≤169	170-367	≥368	
2008	≤170	171-273	≥274	≤150	151-339	≥340	
2009	≤165	166-262	≥263	≤151	152-342	≥343	
2010	≤174	175-273	≥274	≤147	148-338	≥339	
2011	≤162	163-261	≥262	≤153	154-345	≥346	
2012	≤157	158-259	≥260	≤161	162-344	≥345	

3.3.1 Mountain Whitefish

Results of the hierarchical Bayesian mixture analysis of length-frequency distributions indicate annual variability in the length of Mountain Whitefish fry (Figure 7). Mountain Whitefish fry were substantially smaller in 2001 when compared to all other study years. On average, Mountain Whitefish fry grew rapidly until approximately mid-October, at which point growth slowed considerably (Figure 7).

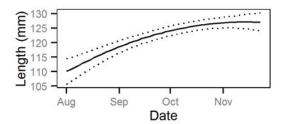
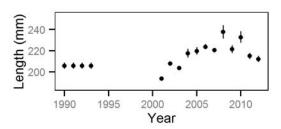



Figure 7: Length-at-age (median with 95% CRIs) by year (left) and date (right) for Mountain Whitefish fry in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

The length-at-age of subadult Mountain Whitefish generally increased between 2001 and 2008 and generally decreased between 2008 and 2012 (Figure 8). Similar to results presented for Mountain Whitefish fry (Figure 7), subadult Mountain Whitefish were substantially smaller in 2001 when compared to all other study years. Subadult Mountain Whitefish continued to grow throughout the fall study period (Figure 8).

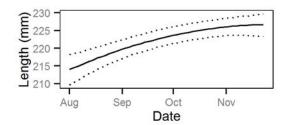
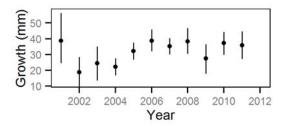
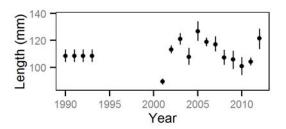


Figure 8: Length-at-age (median with 95% CRIs) by year (left) and date (right) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

The length of adult Mountain Whitefish (i.e., age-2 and older) is not presented here because this group consists of multiple age-classes.

Results of the hierarchical Bayesian analysis of annual growth of recaptured individuals indicated an increase in average annual growth between 2002 and 2006, and variable annual growth between 2006 and 2012, although credibility intervals overlapped between most estimates (Figure 9). The average annual growth of fish initially marked in 2001 (i.e., annual growth between 2001 and 2002) was noticeably greater than growth rates recorded during immediately subsequent study years.




Figure 9: Expected inter-annual growth (median with 95% CRIs) for a 300 mm FL Mountain Whitefish in the Lower Columbia River, 2001 to 2012.

3.3.2 Rainbow Trout

Results of the hierarchical Bayesian mixture analysis of length-frequency distributions indicate a gradual decrease in the average fork length of Rainbow Trout fry between 2005 and 2010 (Figure 10) followed by a rapid increase between 2011 and 2012. Rainbow Trout fry were substantially smaller in 2001 when compared to all other study years. This result is consistent with results for fry and subadult Mountain Whitefish (Figure 7 and Figure 8, respectively). Length-at-age of Rainbow Trout fry exhibited a seasonal U-shaped curve with greater length-at-age in August and November and lower length-at-age in October (Figure 10). It is unlikely that the length-at-age of Rainbow Trout fry declined between August and October and that their period of highest growth occurred in November. Possible explanations for this pattern in length-at-age estimates are discussed in Section 4.1.2.

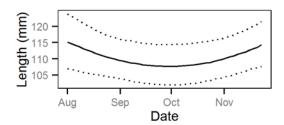
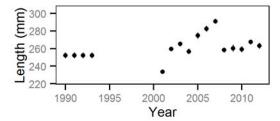



Figure 10: Length-at-age (median with 95% CRIs) by year (left) and date (right) for Rainbow Trout fry in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

The length-at-age of subadult Rainbow Trout increased between 2001 and 2007, declined substantially between 2007 and 2008, and was similar from 2008 to 2012 (Figure 11). Similar to results presented for other species and age-classes, subadult Rainbow Trout were substantially smaller in 2001 when compared to all other study years (Figure 15). During a typical study year, growth declined through October and virtually stopped by early November (Figure 11).

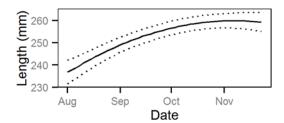


Figure 11: Length-at-age (median with 95% CRIs) by year (left) and date (right) for subadult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

Length-at-age was not assessed in detail for adult Rainbow Trout (i.e., age-2 and older) because this group consists of multiple age-classes.

Results of the hierarchical Bayesian analysis of annual growth of recaptured individuals indicated slower growth from 2002 to 2004 when compared to latter study years (Figure 12). Overall, annual growth for this species was variable, changing by as much as 25% during a one year period.

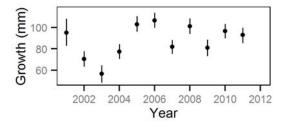


Figure 12: Expected inter-annual growth for a 350 mm FL Rainbow Trout in the Lower Columbia River, 2001 to 2012.

3.3.3 Walleye

Results of the hierarchical Bayesian analysis of annual growth of recaptured Walleye indicated variable growth rates for this species; however, credibility intervals overlapped for most estimates (Figure 13). Annual growth for this species generally declined between 2006 and 2012.

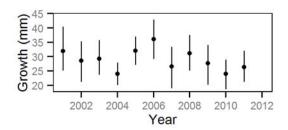


Figure 13: Expected inter-annual growth for a 400 mm FL Walleye in the Lower Columbia River, 2001 to 2012.

3.4 Spatial Distribution and Abundance

3.4.1 Site Fidelity

There were no substantial differences in site fidelity between subadult (53%) and adult (42%) Mountain Whitefish. The probability of both these life stages being recaptured within the same site where they were initially marked was approximately 50% (Figure 14). Site fidelity exhibited by subadult Rainbow Trout (75%) was higher than adult Rainbow Trout (59%). The probability of recapturing a Walleye within its original release site was 67%.

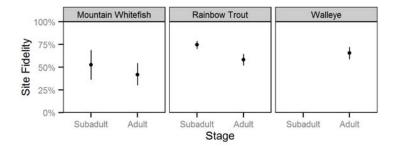


Figure 14: Expected probability that a fish is recaptured at the same site where it was marked by species and life stage in the Lower Columbia River, 2001 to 2012. The point estimates are median expected values while lower and upper 95% CRIs are the 2.5% and 97.5% quantiles, respectively.

3.4.2 Mountain Whitefish

The count density of Mountain Whitefish (all age-classes combined) in the LCR decreased by 68% between 2001 and 2005, increased by 24% between 2005 and 2007, and remained relatively stable between 2008 and 2012 (Figure 15). The same pattern was observed for catch density and absolute density estimates for subadult Mountain Whitefish (Figure 16). For subadult Mountain Whitefish, estimates of catch density and absolute

density from early 1990s data were within the range of values observed from 2001 to 2012; however, the 1992 estimates were greater and more variable when compared to all other study years (Figure 16). The estimated number of subadult Mountain Whitefish in the LCR in 2010 to 2012 was approximately half of what it was a decade earlier.

Estimates of absolute density for adult Mountain Whitefish were greater and more variable in the 1990s (range = 1724 to 3150 fish/km) when compared to estimates from 2001 to 2012 (range = 533 to 1090 fish/km; Figure 17). Estimates for adult Mountain Whitefish between 2001 and 2012 had wide credibility intervals which limited the strength of conclusions about trends over time. However, catch density and absolute density estimates suggest a steady decline in adult Mountain Whitefish abundance since the 1990, with lower densities in 2010 and 2012 compared all previous study years (Figure 17).

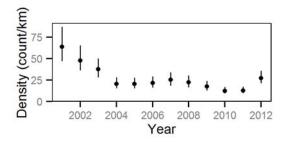


Figure 15: Count density estimates (median with 95% CRIs) for Mountain Whitefish (all age-classes combined) in the Lower Columbia River, 2001 to 2012.

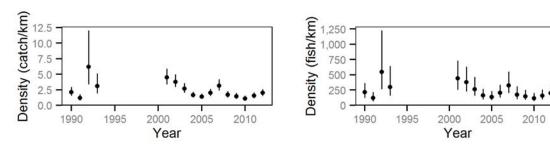


Figure 16: Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

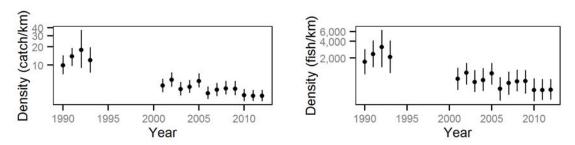


Figure 17: Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for adult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012. Note that the y-axis shows density on a log-scale because adult Mountain Whitefish estimates were substantially higher in the early 1990s when compared to 2001 to 2012 estimates.

Count density estimates for Mountain Whitefish (all age-classes combined) were highest near the confluence of the Columbia and Kootenay rivers and lowest close to the Canada-US border (Figure 18). Subadult Mountain Whitefish densities were highest in low water velocity areas, such as Balfour Bay (RKm 2.8), just downstream of the log booms near Zelstoff-Celgar (both banks; RKm 4.5), upstream and downstream of Norn's Creek Fan (RKm 7.4), and along the left bank between Waldie Island and Tin Cup Rapids (RKm 9.2; Figure 19). In comparison, subadult Mountain Whitefish densities were low in the Kootenay River and in the Columbia River downstream of the Kootenay River confluence, river sections which typically have higher water velocities.

Adult Mountain Whitefish site-level density estimates (Figure 20) were more uncertain than estimates generated for subadult Mountain Whitefish. However, estimates were generally higher in sites known to contain suitable spawning habitat for this species. These areas include Norn's Creek Fan (RKm 7.4) downstream to CPR Island, the Kootenay River, between the Kootenay River confluence (RKm 10.6) and Kinnaird Bridge (RKm 13.4), the Genelle area (RKm 27.0), and upstream of Fort Shepherd Eddy (RKm 49.0).

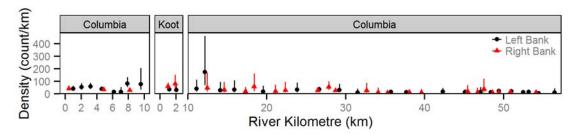


Figure 18: Count density estimates (median with 95% CRIs) for Mountain Whitefish (all age-classes combined) in the Lower Columbia River, 2001-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

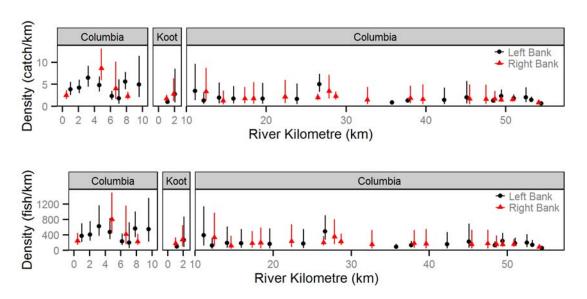


Figure 19: Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for subadult Mountain Whitefish in the Lower Columbia River, 1990-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

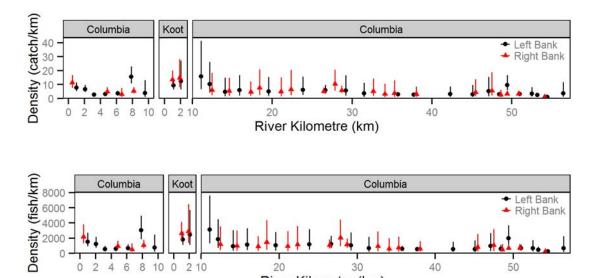


Figure 20: Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for adult Mountain Whitefish in the Lower Columbia River, 1990-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

River Kilometre (km)

Plots of density by site and year did not suggest any changes in the spatial distribution of subadult or adult Mountain Whitefish over time (Appendix H, Figures H1 to H3).

The capture efficiency of subadult Mountain Whitefish was similar across sample sessions and years (~1.0%; Appendix H, Figure H4). Capture efficiency was slightly lower for subadults Mountain Whitefish (~0.5%) but was similar among sessions and sample years with no obvious seasonal or temporal trends (Appendix H, Figure H5). Overall, results indicate low capture efficiency for this species but no substantial changes in efficiency over time.

3.4.3 Rainbow Trout

Count density estimates for Rainbow Trout decreased from 53 fish/km in 2001 to 16 fish/km in 2005, then gradually increased to 39 fish/km in 2012 (Figure 21). The decrease in count density for Rainbow Trout between 2001 and 2005 was likely related to the density of subadult Rainbow Trout, which also decreased during this time period (Figure 22); adult density and absolute density estimates were fairly stable during this time (Figure 23). For adult Rainbow Trout, estimates of catch density and absolute density varied little between 1990 and 2012. Estimates of catch density and absolute density for subadult Rainbow Trout increased during the early 1990s. Catch density in the 1990s was greater than from 2001 to 2012 (Figure 23).

Rainbow Trout site-level density estimates had large credibility intervals (Figure 24), particularly at sites that were only sampled in 2012. Despite the uncertainty, the analysis suggests higher densities of subadult Rainbow Trout in most sites between the Kootenay River confluence (RKm 10.6) and Beaver Creek (RKm 47.8) than in other sections of the study area (the top panels of Figure 25 and Figure 26). Adult Rainbow Trout densities were noticeably higher in the Columbia River between the Kootenay River confluence and the Beaver Creek confluence and were lower in the Columbia River upstream of the Kootenay River confluence (the bottom panels

of Figure 25 and Figure 26). Adult Rainbow Trout densities were substantially higher near the Bear Creek confluence (Site C44.7-R), between the Champion Creek and Jordan Creek confluences (Site C23.4-L), and immediately downstream of the Kootenay River confluence (both banks; Sites C10.7-R and C10.9-L) when compared to neighbouring sites.

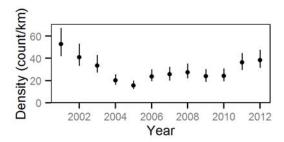


Figure 21: Count density estimates (median with 95% CRIs) for Rainbow Trout (all age-classes combined) in the Lower Columbia River, 2001 to 2012.

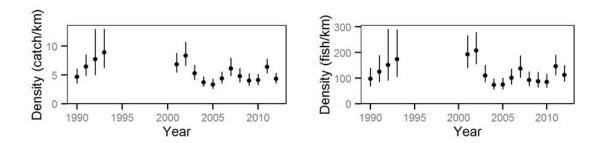


Figure 22: Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

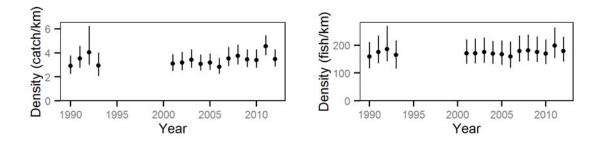


Figure 23: Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for adult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

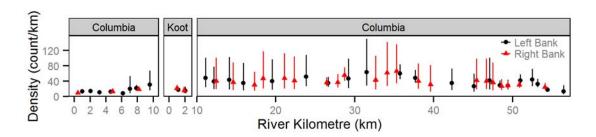
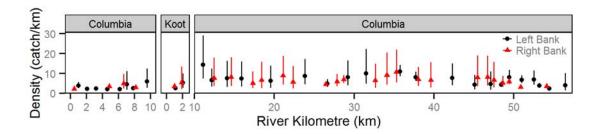



Figure 24: Count density estimates (median with 95% CRIs) for Rainbow Trout (all age-classes combined) in the Lower Columbia River, 2001-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

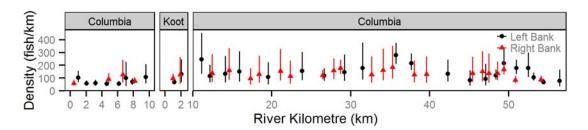


Figure 25: Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for subadult Rainbow Trout in the Lower Columbia River, 1990-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

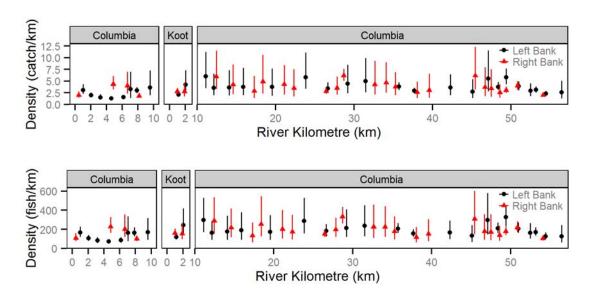


Figure 26: Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for adult Rainbow Trout in the Lower Columbia River, 1990-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

Plots of density by site and year suggested few changes in the spatial distribution of subadult or adult Rainbow Trout over time (Appendix H, Figures H6 to H8). One exception was that the density of subadult and adult Rainbow Trout between Sullivan Creek and the Birchbank water gauging station (Site C28.2-R; Appendix H, Figures H6 to H8) was greater in the 2000s than in the 1990s.

Capture efficiency for subadult Rainbow Trout was similar among years (~2 to 7%) but decreased in subsequent sample sessions during many study years (Appendix H, Figure H9). Adult Rainbow Trout capture efficiency was lower than that of subadult Rainbow Trout, but values were consistent among years between 1990 and 2012 (~1 to 2%) and did not decline in subsequent sessions of a given year (Appendix H, Figure H10).

3.4.4 Walleye

Walleye count, catch, and absolute density estimates all showed a substantial increase between 2002 and 2003 followed by a gradual decline between 2003 and 2007 (Figure 27 and Figure 28). Densities estimates for Walleye were similar with some fluctuations between 2008 and 2012. These results likely indicate a strong year-class of Walleye that migrated into the study area between 2002 and 2003 and gradually decreased in abundance over the next four years. Estimates of catch density and absolute density indicate greater densities in 1990 to 1993 when compared to 2001 to 2012, although credibility intervals for estimates from the 1990s were large.

Count, catch, and absolute density estimates for Walleye were greatest in the Kootenay River and at the three sites closest to HLK (Figure 29 and Figure 30). Density estimates for all other areas were similar and did not suggest differences in Walleye densities among sites.

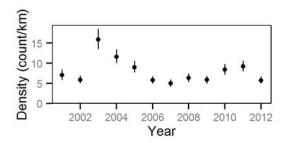


Figure 27: Count density estimates (median with 95% CRIs) for Walleye (all age-classes combined) in the Lower Columbia River, 2001 to 2012

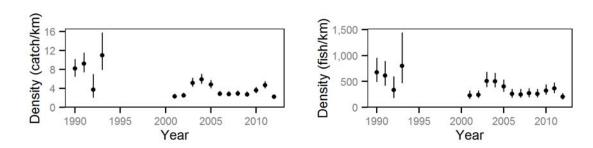


Figure 28: Catch density (left panel) and absolute density (right panel) estimates (median with 95% CRIs) for Walleye in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

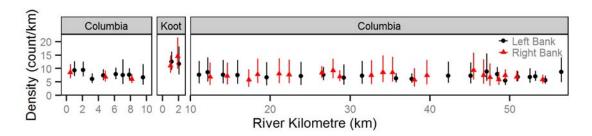


Figure 29: Count density estimates (median with 95% CRIs) for Walleye (all age-classes combined) in the Lower Columbia River, 2001-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

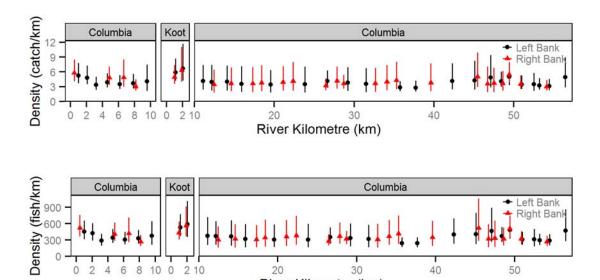


Figure 30: Catch density (top panel) and absolute density (bottom panel) estimates (median with 95% CRIs) for Walleye in the Lower Columbia River, 1990-2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

River Kilometre (km)

20

30

40

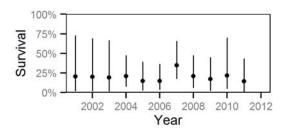
50

Plots of Walleye density by site and year did not suggest any changes in spatial distribution over time (Appendix H, Figures H11-H12). The greater densities of Walleye observed in the 1990s when compared to the 2000s was partly related to very high densities between Beaver and Hayward creeks (Sites C49.0-L and C49.0-R) in the 1990s; densities at these sites were low in recent years.

Capture efficiency for Walleye ranged from 0.7% to 1.6% across all sessions and years (Appendix H, Figure H13). Capture efficiency declined in successive sample sessions in many years (e.g., 2002, 2004 to 2008) but not in other years (e.g., 2001, 2011, and 2012).

3.5 Survival

3.5.1 **Mountain Whitefish**


10 0

6 8 2 10

Survival estimates for subadult Mountain Whitefish had wide credibility intervals and did not indicate substantial changes over time (Figure 31). For adult Mountain Whitefish, survival estimates varied widely, ranging from 32% to 80% but suggested generally increasing survival between 2001 and 2012 but with substantial year-to-year variations and large estimate uncertainties (Figure 31). Survival estimates were greater for adult Mountain Whitefish (32 to 80%) than for subadults (14 to 35%). Survival estimates for Mountain Whitefish were less precise than corresponding estimates for Rainbow Trout (see Section 3.5.2).

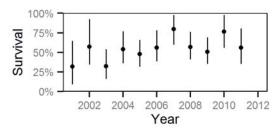
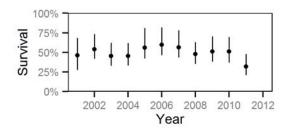



Figure 31: Inter-annual survival estimates (median with 95% CRIs) for subadult (left panel) and adult (right panel) Mountain Whitefish in the Lower Columbia River, 2001-2012.

3.5.2 Rainbow Trout

Estimates of inter-annual survival for subadult Rainbow Trout remained stable between 45% and 60% from 2001 to 2011, but declined to 32% between 2011 and 2012 (Figure 32). The survival of adult Rainbow Trout increased gradually from <30% in 2001 to 56% in 2011, but sharply declined to 28% in 2012. On average, survival was slightly greater for subadult Rainbow Trout when compared to adult life stages (Figure 32).

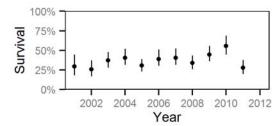


Figure 32: Inter-annual survival estimates (median with 95% CRIs) for subadult (left panel) and adult (right panel) Rainbow Trout in the Lower Columbia River, 2001-2012.

3.5.3 Walleye

Inter-annual survival estimates could not be estimated for Walleye for individual years due to insufficient data. However, the estimated inter-annual survival from 2001 to 2012 combined was 52% (credibility interval = 43 to 61%).

3.7 Catch Curve Analysis

Catch curve analysis was used as a supplementary method of assessing temporal and spatial trends in survival in the LCR. Catch curve analysis was the only method used for estimating survival for data collected in the 1990s, as these data were not appropriate for the analysis using the Cormack-Jolly-Seber (CJS) model. Mountain Whitefish were the only species with enough data to conduct the catch curve analyses.

Mountain Whitefish survival estimates between 2001 and 2012 fluctuated between ~40% and 92% (Figure 33). These estimates were similar but slightly higher than survival estimates based the CJS model of inter-annual recaptures (32-80%; Section 3.5.1). Both the catch curve analysis and the CJS model had wide credibility intervals associated with estimates, and did not indicate any trends over time. Based on the results of the catch curve analysis, survival was greater, on average, during the early 1990s (between 70% and 80%: Figure 34) compared to 2001 to 2012 (between 40% and 92%; Figure 33).

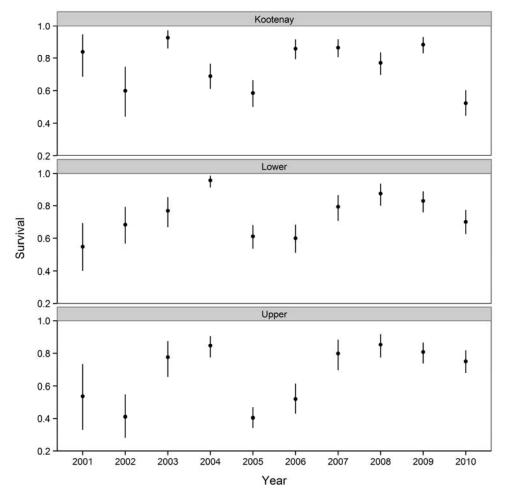


Figure 33: Survival estimates for Mountain Whitefish based on catch curve analysis (median with 95% CRIs) in the Lower Columbia River, 2001-2012.

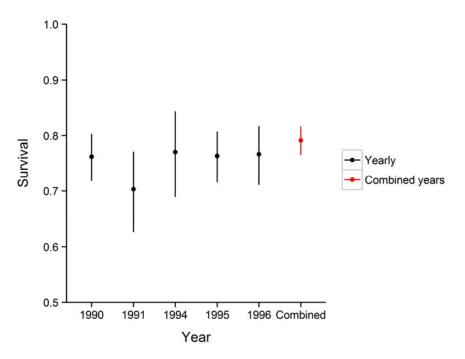
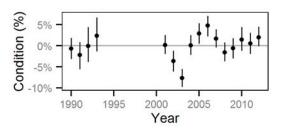


Figure 34: Survival estimates for Mountain Whitefish based on catch curve analysis (median with 95% CRIs) in the Lower Columbia River, 1990 to 1996.

3.6 Body Condition

3.6.1 Mountain Whitefish


Between 1990 and 2012, estimates of body condition for Mountain Whitefish varied. However, both subadult and adult fish followed the same general pattern. Body condition increased during the early 1990s, decreased between 2001 and 2003, and increased between 2003 and 2006 (the left panels of Figure 35 and Figure 36). Body condition increased for subadult Mountain Whitefish between 2008 and 2012 but was stable during this time period for adult Mountain Whitefish. The body condition of subadult Mountain Whitefish declined linearly between August and November of a typical year (*P*=0.01) but uncertainty around these estimates was large (the left panel of Figure 35). Adult Mountain Whitefish body condition estimates were greatest in late September and lowest in August and November (the right panel of Figure 36). For the month of October, the body condition of subadult and adult Mountain Whitefish declined slightly.

Site-level estimates suggested greater body condition for Mountain Whitefish in the Kootenay River relative to all other sites for both subadult (Figure 37) and adult (Figure 38) cohorts. Mountain Whitefish body condition was lowest at sites nearest to HLK (Rkm 0.0 to 6.0). There were no apparent differences in body condition in Mountain Whitefish among sites in the Columbia River downstream of the Kootenay River confluence.

Plots of Mountain Whitefish body condition by site and year did not suggest any substantial changes in spatial patterns of body condition over time (Appendix H, Figures H14 to H15). Low body condition for adult Mountain Whitefish in the early 1990s appeared to be related to low body condition at sites in the downstream portions of the Columbia River (RKm 25.0 to 50.0) between 1990 and 1992, whereas body condition was more similar among years at other sites (Appendix H, Figures H15).

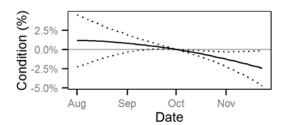
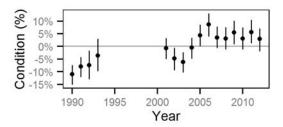



Figure 35: Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

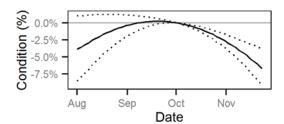


Figure 36: Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for adult Mountain Whitefish in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

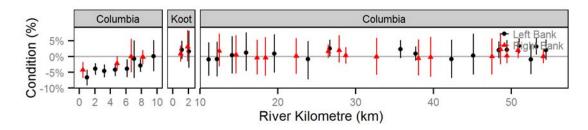


Figure 37: Body condition effect size estimates (median with 95% CRIs) by site for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 1993, 2001 to 2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

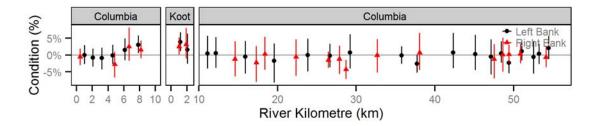
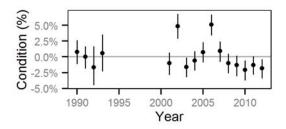



Figure 38: Body condition effect size estimates (median with 95% CRIs) by site for adult Mountain Whitefish in the Lower Columbia River, 1990 to 1993, 2001 to 2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

3.6.2 Rainbow Trout

The body condition of a subadult and adult Rainbow Trout was substantially higher in 2002 and 2006 compared to other study years (Figure 39 and Figure 40, respectively). Body condition was similar in all other study years with no substantial increasing or decreasing trends over time for either life stage. In a typical year, the body condition of subadult Rainbow Trout decreased slowly between August and November (*P*=0.002; Figure 39, right panel) whereas the body condition of adult Rainbow Trout increased during those months (Figure 40, right panel).

Site-level estimates of body condition for Rainbow Trout suggested lower body condition in the Columbia River upstream of the Kootenay River confluence, higher body condition in the Kootenay River, and intermediate but variable body condition in the Columbia River downstream of the Kootenay River confluence (Figure 41 and Figure 42).

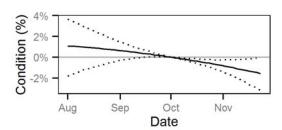
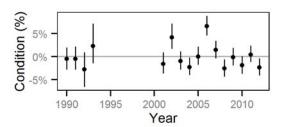



Figure 39: Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for subadult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

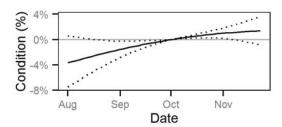


Figure 40: Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for adult Rainbow Trout in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

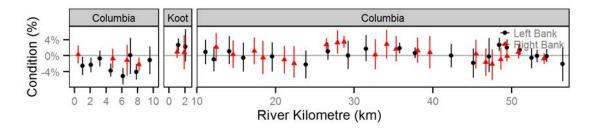


Figure 41: Body condition effect size estimates (median with 95% CRIs) by site for subadult Rainbow Trout in the Lower Columbia River, 1990 to 1993, 2001 to 2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

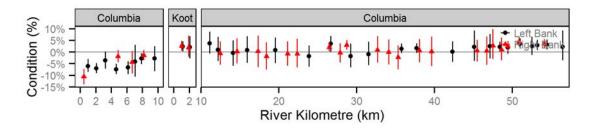
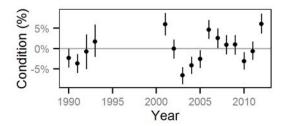


Figure 42: Body condition effect size estimates (median with 95% CRIs) by site for adult Rainbow Trout in the Lower Columbia River, 1990 to 1993, 2001 to 2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.


Plots of Mountain Whitefish body condition by site and year did not suggest any substantial changes in the spatial patterns of body condition over time (Appendix H, Figures H16 to H17). In 2002 and 2006, Rainbow Trout body condition was higher at nearly all sites within the study area.

3.6.3 Walleye

Walleye body condition showed a similar fluctuating trend to that observed for Mountain Whitefish and Rainbow Trout. Body condition of Walleye increased in the early 1990s, decreased between 2001 and 2003, increased between 2003 and 2006, decreased from 2006 to 2010 and then increased from 2010 to 2012 (the left panel of Figure 43). Body condition increased between August and November (the right panel of Figure 43). Walleye body condition was higher in the Kootenay River, and lower near HLK and downstream of RKm 50; however, differences were small (<2%), suggesting similar body condition in different river sections (Figure 44).

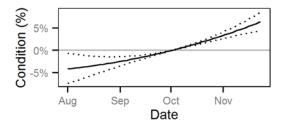


Figure 43: Body condition effect size estimates (median with 95% CRIs) by year (left panel) and date (right panel) for Walleye in the Lower Columbia River, 1990 to 1993 and 2001 to 2012.

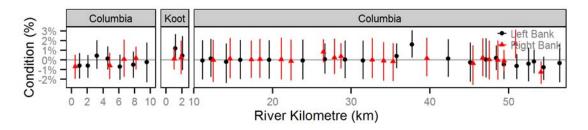


Figure 44: Body condition effect size estimates (median with 95% CRIs) by site for Walleye in the Lower Columbia River, 1990 to 1993, 2001 to 2012. The Kootenay River is coded as Koot; the Columbia River is split by sites located upstream (left panel) and downstream (right panel) of the Kootenay River confluence. River kilometres refer to the distance downstream of Hugh L. Keenleyside Dam.

3.7 Environmental Correlations

Cross-correlations of the year-to-year differences in density, condition, growth, survival, water temperature, and discharge revealed nine relationships that were significant at the *P*<0.001 level (Table 7)). There were six significant correlations for Rainbow Trout population metrics, four of which included discharge during fall or winter months (the remaining two correlations related condition to growth). The absolute density of subadult Rainbow Trout was negatively correlated with mean discharge (November and December) and variance in discharge (January and February). The length-at-age of Rainbow Trout fry was positively correlated with mean discharge (September and October). The growth of Rainbow Trout was negatively correlated with variance in discharge (January and February). For Mountain Whitefish, growth was negatively correlated with variance in discharge during January and February. Walleye growth was positively correlated with variance in discharge (November and December). None of the significant correlations included water temperature in the Columbia River.

Table 7: Cross-correlations among fish abundance, condition, life-history, and environmental variables from the Lower Columbia River, 2001-2012. Only correlations significant at the 0.001 level are presented.

Variable 1	Variable 2	Coefficient	P-Value
Condition (Adult Rainbow Trout)	Condition (Subadult Rainbow Trout)	0.90	0.00003
Discharge (Variance, JanFeb.)	Growth (Mountain Whitefish)	-0.90	0.00004
Discharge (Mean, NovDec.)	Absolute Density (Subadult Rainbow Trout)	-0.86	0.00014
Discharge (Variance, NovDec.)	Growth (Walleye)	0.84	0.00031
Discharge (Variance, JanFeb.)	Absolute Density (Subadult Rainbow Trout)	-0.83	0.00040
Discharge (Mean, SepOct.)	Length-at-age (Rainbow Trout Fry)	0.82	0.00056
Condition (Adult Rainbow Trout)	Growth (Rainbow Trout)	0.81	0.00071
Discharge (Variance, JanFeb.)	Growth (Rainbow Trout)	-0.81	0.00086
Condition (Adult Walleye)	Absolute Density (Adult Walleye)	-0.80	0.00097

3.8 Other Species

Northern Pike were not captured or observed in the LCR prior to 2010. In 2010, seven Northern Pike were recorded (4 captured; 3 observed); nine Northern Pike were recorded in 2011 (8 captured; 1 observed). In 2012, 11 Northern Pike (*Esox Lucius*) were recorded in the LCR (1 captured; 10 observed). All of these fish were recorded in the Columbia River upstream of the Kootenay River confluence. As requested by the Ministry of Forests, Lands and Natural Resource Operations (J. Burrows, pers. comm.), all captured Northern Pike were killed.

In 2012, 51 Burbot were recorded in the LCR, which was within the range recorded between 2001 and 2012 (minimum = 3; maximum = 247). Although Burbot have been recorded in all portions of the study area, in 2012, 88% of all burbot were recorded downstream of RKm 40.

Eleven White Sturgeon (4 adults and 7 juveniles) were recorded (all observed; none captured) during the 2012 survey. Observational information for these fish is provided in Attachment A.

4.0 DISCUSSION

The status of each of the specific management questions and hypotheses to be addressed by CLBMON-45 is summarized in the Executive Summary under Table I.

4.1 Length-At-Age and Growth

4.1.1 Mountain Whitefish

In the LCR, the length-at-age of fry and subadult Mountain Whitefish increased between 2001 and 2007. The growth of Mountain Whitefish, based on the model using inter-year recaptures, also increased between 2002 and 2006. This period of increasing length-at-age and growth corresponded with declining abundance of subadult Mountain Whitefish, which suggested an inverse relationship between abundance and growth. Density-dependent growth suggests there may be competition for food, habitat or other resources when the abundance of subadult Mountain Whitefish is high in the LCR. Body condition (a short-term proxy for growth) also was higher from 2004 to 2006 when abundance was low.

However, Mountain Whitefish fry growth may also be related to water levels. In 2001, discharge was very low during the spring/summer season when compared to other study years; water temperatures also were lower than normal. Naesje et al. (1995) noted that the hatching of Mountain Whitefish eggs can be delayed due to a lack of a thermal, chemical, and/or mechanical stimulus on the eggs. Lower discharges in 2001 may have delayed hatching, which would have reduced the amount of time that fry could have grown between emergence and the fall sample season.

Another possibility is that lower discharges in 2001 resulted in less nutrients entering the system from upstream sources (i.e., Arrow Lakes Reservoir and Kootenay Lake), which would, in turn, have resulted in less food available to Mountain Whitefish fry. The median length-at-age of subadult Mountain Whitefish also was lower in 2001, which may provide some support for the latter hypothesis. Mountain Whitefish fry also were smaller than average in 2004 and 2008; discharge during the spring/summer was lower than average in these two years.

While lower discharges during the spring/summer months may reduce the growth of Mountain Whitefish fry, higher discharges did not appear to result in higher growth rates. During the three study years in which Mountain Whitefish fry size-at-age were the highest (i.e., 2005, 2007, and 2010), discharge was near average, and in 2012 when flows were extremely high, length-at-age decreased when compared to the previous two study years. During high discharge years, growth could be lower because of greater energy expenditures from swimming in the higher water velocities, relative to a year with lower discharge. In the Columbia River near Revelstoke Dam, higher mean hourly discharges were significantly correlated with greater swimming muscle activity in Bull Trout (Taylor et al. 2012). Mean discharge was not significantly correlated with the growth or length-at-age of Mountain Whitefish but variance in discharge during the winter (January and February) was negatively correlated with growth. Growth would be expected to be low during the winter due to low water temperatures and low food availability, but in general, more variable flows could result in greater energy expenditure and slower growth.

The seasonal trend in length-at-age was similar for fry and subadult Mountain Whitefish, with rapid growth in August and September and slower growth in November. Stomach content data collected from Mountain Whitefish in 2008 indicated that fry fed primarily on cladocerans (*Daphnia* species and *Eurycercus* species) and copepods (*Cyclops* species) during the fall study period, whereas subadults and adults fed primarily on mayflies

(Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) during the fall season (Golder 2009a). Over the duration of the fall study period, water temperatures in the LCR decrease and are generally around 12°C by mid-October. Low water and air temperatures could reduce zooplankton productivity rates and availability of insect prey, which would likely contribute to decreased Mountain Whitefish growth rates during the fall. Growth slowed in October more for fry than for subadults, which could be because zooplankton productivity decreased with decreasing water temperature, whereas caddisfly hatches occur frequently during the fall surveys, which indicates this food source is still abundant for subadult fish during this period.

Among watersheds in Idaho, USA, Meyer et al. (2009) found that Mountain Whitefish growth was positively correlated with mean annual water temperature. However, results from the current study indicate that mountain whitefish growth is not significantly correlated with water temperatures in the LCR study area.

4.1.2 Rainbow Trout

During the program's 12-year study period, median length-at-age for Rainbow Trout fry during the fall season ranged from 90 to 130 mm FL. Length-at-age of Rainbow Trout fry decreased from 2005 to 2010, followed by small increases in 2011 and 2012. The trend in length-at-age of subadult Rainbow Trout was different than for fry, with increasing length-at-age from 2001 to 2007 then smaller but stable length-at-age from 2008 to 2012. Annual growth of Rainbow Trout, based on data from recaptured fish, did not indicate any consistent trends over time, and did not seem to correspond closely to trends observed in length-at-age estimates. Trends in length-at-age for fry and subadult Rainbow Trout may have been different because of different habitat or food preferences of these life stages. One similarity among trends in growth and length-at-age of fry and subadult Rainbow Trout was that all these metrics increased during the early 2000s, a period when the density of subadults was decreasing. These trends suggest density-dependent growth rates which could indicate competition for resources among juvenile Rainbow Trout in the LCR.

Environmental variables were not strongly associated with trends in length-at-age and growth of Rainbow Trout. Growth was negatively correlated with variance in discharge during January and February but there were no other significant correlations among water temperature and discharge variables, and growth or size metrics for this species. These results do not suggest that flow regime had a substantial effect on the length-at-age and growth of Rainbow Trout in the LCR between 2001 and 2012.

As with Mountain Whitefish, Rainbow Trout fry were substantially smaller in 2001 when compared to other study years. The Rainbow Trout spawning season is protracted in the LCR; as a result, emergence for this species is variable and can occur over a wide time frame. However, peak emergence generally occurs around mid-July (Hildebrand and McKenzie 1995). The reduced size-at-age in 2001 was likely related to lower growth rates during the mid-July and mid-September period. Discharge in the LCR was below average during that time (Appendix D, Figure D2). Lower discharge during the spring/summer of 2001 may have resulted in lower than normal nutrient loads entering the system from upstream (i.e., Arrow Lakes Reservoir and Kootenay Lake) or local tributary sources, which could have reduced food availability for Rainbow Trout fry.

4.1.3 Walleye

Annual growth for this species generally declined between 2006 and 2012. Growth was lowest in 2004, a year with relatively high walleye densities and low body condition, suggesting a density-dependent relationship with lower growth when Walleye abundance is high. However, there was not a consistent relationship between density and growth in other years of the study. The growth of Walleye was positively correlated with variance in discharge during November to December, suggesting a possible effect of flow regime on Walleye growth, although the correlation analysis does not imply a causal relationship. Walleye are thought to feed in the LCR during the fall with a large numbers of individuals migrating out of the LCR and into Lake Roosevelt in the late fall and early winter months (R.L.&L. 1995). Why growth would be related to discharge variance during the winter months, when the bulk of the population resides in Lake Roosevelt, is unknown. For this reason, this correlation should be interpreted with caution, and could be due to chance rather than a real ecological interaction.

Overall, a lack of age data and limited numbers of inter-year recaptured fish hinder detailed growth analyses for Walleye. During future study years, substantially more data will be required to detect significant changes in Walleye growth. Given the seasonal residency of most of the Walleye population (R.L.&L. 1995) and the limited amount of growth-related data available for this species to date, it is unlikely that the program, in its current form, will garner enough data to detect a relationship between Walleye length-at-age or growth, and LCR discharge.

4.2 Abundance

4.2.1 Mountain Whitefish

The estimated density of subadult Mountain Whitefish decreased between 2001 and 2004. Reasons for this decline are unknown, but may in part be attributed to changes in sampling methods. During the initial years of the program (i.e., between 2001 and 2003), compressed oxygen was not pumped into the livewell. Lower oxygen levels in the livewell may have resulted in higher subadult Mountain Whitefish mortality rates after marking and release. Higher delayed mortality rates for marked fish would result in overestimated absolute density estimates during these study years. If subadult Mountain Whitefish density truly declined between 2001 and 2004, one would expect either adult Mountain Whitefish densities to decline between 2002 and 2005 or adult Mountain Whitefish survival to increase between 2001 and 2004. Neither adult density nor survival changed enough over that time period to support an approximately 68% reduction in the density of subadult Mountain Whitefish. This discrepancy could be partly explained by migration of Mountain Whitefish out of the study area, and the subsequent effect on survival and density estimates, which is discussed in further detail in Section 4.4.1. The fact that count density estimates for Mountain Whitefish (all age-classes combined) declined between 2001 and 2004 supports a real decline in Mountain Whitefish abundance, and not just bias due to changes in sampling protocols in 2004. Count density estimates consist primarily of unmarked fish and would not be seriously affected by changes in fish handling and sampling procedures. Estimates of subadult Mountain Whitefish density from the early 1990s were within the range of values observed from 2001 to 2012.

Estimates of density for adult Mountain Whitefish were approximately three times greater in the 1990s compared to 2001 to 2012 estimates. Densities generally declined between 2001 and 2012 and were lower in 2010 to 2012 than in all previous study years. Although the trends in density over time were not identical for subadult and adult Mountain Whitefish, both age-classes generally declined during the current monitoring period and were low when compared to estimates generated using data from the early 1990s.

Little is known about the factors influencing the abundance of Mountain Whitefish in the LCR, but there is some information to suggest that predation on Mountain Whitefish by piscivorous fish species could play a role. Walleye feed on Mountain Whitefish (Wydoski and Bennett 1981), and densities of subadult Mountain Whitefish decreased from 2001 to 2005, while Walleye densities generally increased during that time period. Walleye stomach content data collected in the fall of 2009 (Golder 2010a) and 2010 (Ford and Thorley 2011a) did not indicate that young Mountain Whitefish are a major food source for Walleye. However, young of the year Mountain Whitefish may be more susceptible to Walleye predation during the early to mid-summer (i.e., when they are smaller) than during the fall (i.e., when they are larger). Seasonal Walleye stomach content data are needed to test this idea.

Between 2001 and 2012, 93 524 juvenile White Sturgeon were released into the LCR (Hildebrand and Parsley 2013). Although most of these fish would have been too small to prey on Mountain Whitefish during the early 2000s, predation by White Sturgeon may have influenced Mountain Whitefish abundance in more recent years. White Sturgeon are capable of feeding on both subadult and adult Mountain Whitefish, and as many as 12 adult Mountain Whitefish have been recorded in the stomach contents of a single adult White Sturgeon (R.L.&L. 2000). White Sturgeon become piscivorous at approximately 500 mm FL (Scott and Crossman 1973). In the LCR, this equates to an approximately age-3 individual (Golder 2009b); therefore, predation by White Sturgeon on Mountain Whitefish is expected to have increased since approximately 2005.

One of the management questions concerns the effects of variation in flow regime on Mountain Whitefish abundance. The correlation analysis did not reveal any significant relationships between Mountain Whitefish densities in the LCR and river discharge or water temperature. The effects of discharge variations on spawning and early life-history of Mountain Whitefish in the LCR are currently being investigated in greater detail as part of other BC Hydro studies (i.e., CLBMON-47 and CLBMON-48; Golder 2012a, 2012b).

4.2.2 Rainbow Trout

The density of subadult Rainbow Trout decreased between 2001 and 2004. This decline correlated with a decline in subadult Mountain Whitefish densities over the same time period and could partly be explained by changes in fish handling techniques in 2004 (see Section 4.2.1). However, count densities of Rainbow Trout, which would not be drastically influenced by tagging and handling effects, also declined from 2001 to 2005, followed by increasing densities until 2012, factors that suggest fluctuations in the abundance of subadult Rainbow Trout during the study are real.

Estimated densities of adult Rainbow Trout fluctuated little between 2001 and 2012, but suggested a very small, gradual increase in abundance during this time period. This pattern is not supported by the number of Rainbow Trout spawners in the LCR based on visual observations and area-under-the-curve estimates, which more than doubled between 1999 and 2012 (Thorley and Baxter in prep.). There are several possible reasons for the discrepancy between trends in the estimated number adults based on electroshocking surveys and spawner surveys. One explanation could be that some of the Rainbow Trout classified as adults in this study based on the HBM of length-at-age were not actually mature spawners during the preceding spring spawning season, leading to overestimates of the number of adults during earlier years, when the minimum length-at-age for adults was lower. Although this is possible, it is unlikely that relatively small differences in the estimated minimum length-at age for an adult Rainbow Trout resulted in the large differences observed in the adult and spawner estimates. Another possibility is that catches, counts, and density estimates were biased by sampling or

analytical methodologies. For example, for absolute density estimates based on mark-recapture, capture efficiency for adults was always low (<3%), which provided little information about annual or inter-session variation in recapture rates, and could have masked real changes in Rainbow Trout abundance. Another potential sampling bias could be saturation of the ability of netters' to catch and count fish, whereby counts and catches of fish would comprise a smaller proportion of the total number of fish present when densities were high. This would result in underestimated densities when abundance was high. To test whether saturation of netters at high fish densities could bias estimates, additional sampling could be conducted during which fish would be enumerated and immediately recorded (but not captured). The potential benefits of an enumeration pass are discussed more in Section 4.6.

During a typical year, capture efficiency of subadult Rainbow Trout decreased during each successive sample session. This result is disconcerting, as it may indicate a violation of the HBMs closed population assumption. By comparison, the capture efficiency of adult Rainbow Trout remained stable within each study year. Capture efficiency between study years remained constant for both age-classes.

The probability of a fish being recaptured in the same site was highest for subadult Rainbow Trout, among all index species and cohorts. This indicates that subadult Rainbow Trout exhibited a higher site-fidelity than all other index species and life stages. In addition, estimated capture efficiencies were highest for subadult Rainbow Trout, which indicates that this cohort also was the easiest to catch.

There was some indication that the abundance of Rainbow Trout could be affected by variation in the LCR flow regime. The absolute density of subadult Rainbow Trout was negatively correlated with mean discharge in November and December and variance in discharge in January to February. The Rainbow Trout flow management plan for HLK and BRD pertains primarily to flows during spawning and emergence in the spring and summer and aim to avoid the dewatering of redds during flow reductions. The correlation results presented here suggest that flow variations during the overwintering period could affect survival of subadult Rainbow Trout in the LCR.

4.2.3 Walleye

Walleye densities increased substantially between 2002 and 2003 and declined between 2003 and 2007. These results likely reflect a strong year-class of Walleye that migrated into the study area between 2002 and 2003; these individuals gradually decreased in abundance over the next four years. Walleye migrate into the LCR to feed, but spawn and complete early life history in downstream regions (e.g., Lake Roosevelt and its tributaries). Abundance in the LCR depends on suitable feeding conditions, but also largely on factors that influence spawning and early life history outside of the study area. Based on length-frequency data and Lake Roosevelt length-at-age data (WDFW Unpublished Data), the age-1 cohort is the most dominant age-class present in the study area during most study years; therefore, the abundance of this species in the study area during any particular year is strongly influenced by the spawning success of this species during the previous spring.

Estimates of Walleye density were greater in the early 1990s compared to between 2001 and 2012. Data collected during the 1990s suggests substantially greater Walleye densities in that period compared to recent years. However, the possibility that differences in sampling contributed to this difference cannot be ruled out.

The absolute density of Walleye was negatively correlated with body condition, suggesting density-dependent growth and resource competition in years of high abundance in the LCR. There was no evidence to suggest significant effects of discharge or temperature variation on Walleye densities between 2001 and 2012.

4.2.4 Other Species

The CLBMON-45 management questions refer only to the three index species; numbers of non-index species are generally too low to draw conclusions about population trends in any case. However, electroshocking results during this program clearly demonstrate the recent colonization of non-native Northern Pike in the study area. Northern Pike were not documented in the study area prior to 2010, but this species has been captured or observed during electroshocking surveys every year since 2010. Anecdotal reports from anglers indicate that Northern Pike are now common in the portion of the LCR near HLK, and that angling catches have increased between 2010 and 2012 (D. Ford, personal communication). Northern Pike likely migrated into the LCR from the Pend d'Oreille River, where established populations exist. Very high water levels in 2012 resulted in many areas with flooded terrestrial vegetation, which may have provided suitable spawning habitat for Northern Pike and further facilitated an increase in their local abundance. Beyond limited electroshocking data from CLBMON-45, and anecdotal reports from anglers, nothing is known about the abundance, life-history, habitat use, spawning, or movement patterns of Northern Pike in the LCR. This highly efficient piscivore has the potential to alter the populations of index species and other fishes in the LCR. The introduction of a non-native species such as Northern Pike is a large factor contributing to the decline of salmonids in portion of the Columbia River in the USA (Sanderson et al. 2009). As control or eradication are most effective close to the time of introduction, when abundance and spatial distribution are low (Myers et al. 2000), additional information regarding Northern Pike in the LCR is urgently needed if resource managers wish to control or prevent further invasion by this species. Such studies are beyond the scope of CLBMON-45, but would provide valuable information to help interpret trends and answer management questions regarding index species.

4.3 Spatial Distribution

4.3.1 Mountain Whitefish

Subadult Mountain Whitefish densities were greatest in the 10 km reach between HLK and the Kootenay River confluence. This result is likely related more to channel morphology than the presence or operation of the dam. Large bays and backwater areas, which are preferred habitats for subadult Mountain Whitefish, are more common near HLK than downstream of the Kootenay River confluence. Specific examples include Balfour Bay (RKm 2.6), downstream of the log booms near Zelstoff-Celgar (RKm 5.1), and upstream of Norn's Creek Fan (i.e., Lions Head RKm 7.4). These areas have exhibited increases in aquatic vegetation abundance (dominantly Eurasian watermilfoil) between 2001 and 2012 (Attachment A). Most recently, Northern Pike have been captured in increasing numbers in these same areas. Whether these fish were present in these locations to feed on subadult Mountain Whitefish or whether this predation will have a detectable effect on subadult Mountain Whitefish survival is unknown.

The spatial distribution of adult Mountain Whitefish during the fall sample period is related to the location of key spawning areas for this species. Densities of this age-class were highest near Norn's Creek Fan, in the downstream portions of the Kootenay River, upstream of Sullivan Creek, and near the City of Trail Airport.

Norn's Creek Fan, the Kootenay River, and the City of Trail Airport area are known Mountain Whitefish spawning locations (Golder 2012b), whereas the site located upstream of Sullivan Creek is close to a known spawning area (i.e., Lower Cobble Island), which may indicate that Mountain Whitefish use these areas for holding purposes prior to spawning.

There were no discernible temporal changes in the spatial distributions of subadult and adult Mountain Whitefish between 2001 and 2012.

4.3.2 Rainbow Trout

Subadult Rainbow Trout densities were noticeably higher in the Columbia River between the Kootenay River confluence and Genelle, and from Birchbank downstream to the Beaver Creek confluence, compared to other portions of the study area. Ford and Thorley (2011a) suggested that these areas supported higher Rainbow Trout densities due to the more suitable habitat characteristics of these areas for this life stage and the existence of major spawning areas immediately upstream (i.e., Norn's Creek Fan, the Kootenay River, and the Genelle area; Thorley and Baxter 2012).

The densities of subadult and adult Rainbow Trout at synoptic sites (i.e., sites that were not systematically sampled prior to 2011) were generally similar to indexing sites, except at synoptic sites near the Columbia-Kootenay river confluence were densities were very high. This result was not expected. During the initial year of the LRFIP, index site selection was partially based on past capture results; selected sites provided a greater probability of capturing high numbers of each index species. Therefore, lower densities in the synoptic sites compared to index sites were expected. Criteria included in the site selection process are described in Section 2.1.5, but index species catch-rates encountered during the 1990s and the known habitats preferences of each index species were considered during the selection process. If densities are truly as great or greater in synoptic sites compared to index sites and results are not an artefact of sample design, some possible reasons are discussed below.

One hypothesis is a behavioural change that reflects fish avoiding the electroshocker (i.e., fish in repetitively sampled sections leave the index sites and move to adjacent areas to avoid the effects of repetitive electroshocking). In 2012, only one of the 299 Rainbow Trout captured in synoptic sites was a marked individual that was initially captured in 2012 in an index site. This result does not suggest that large numbers of marked fish are leaving the indexing sites over the course of the survey and is further supported by site fidelity estimates for Rainbow Trout (which were higher than Mountain Whitefish and Walleye estimates).

Another hypothesis is that over the last 12 years, the habitat suitability of some portions of the study area (including index and synoptic sites) has changed for some index species life stages. Since 2001, aquatic vegetation has become more dominant in low water velocity areas, Northern Pike have been recorded in the study area with increased frequency during each successive study year, and large numbers of juvenile White Sturgeon have been released into the study area. One or more of these factors may have resulted in shifts in Rainbow Trout distribution in the LCR since 2001.

Regardless of the reasons, the high densities of Rainbow Trout present in previously unsampled portions of the study area indicate that a large portion of the overall Rainbow Trout population is potentially unsampled during the typical annual mark-recapture program. Higher densities in these areas than in index sites would result in underestimates of overall population density in the LCR.

4.3.3 Walleye

Walleye densities were high immediately downstream of HLK. Sculpin species and Redside Shiner are a common prey fish for Walleye based on stomach sample analyses (Ford and Thorley 2011a). In 2010, results from the spatial density HBM indicated higher Sculpin species and Redside Shiner densities in this portion of the study area (Ford and Thorley 2011a). In addition, Walleye densities are probably higher immediately downstream of HLK because they are feeding on fishes entrained through the dam. Walleye densities also were high in the Kootenay River downstream of Brilliant Dam.

Walleye densities were similar throughout the remaining sections of the LCR. Their wide distribution throughout the study area indicates an ability to utilize a wide variety of habitats and tolerate a wide range of habitat conditions. This reflects the primary use of the LCR as a summer and fall feeding area, and as a result, this species is generally found wherever prey fish are present.

The only change observed in the spatial distribution of Walleye over time was that there were higher densities of Walleye at sites C49.0-L and C49.0-R (between Beaver and Hayward creeks) in the 1990s, whereas densities were low at these sites in recent study years. These changes are likely real, as it is unlikely that the differences in methods or analyses between the two programs would only affect these two sites. Credibility intervals were wide for all estimates. There were no discernible temporal changes in the spatial distribution of walleye between 2001 and 2012.

4.4 Survival

4.4.1 Mountain Whitefish

Estimated survival was greater for adult Mountain Whitefish (32-80%) than for subadults (14-35%). Greater survival for adults is not unexpected, as Mountain Whitefish are known to be a relatively long-lived species with most populations containing individuals greater than 10 years of age (McPhail 2007; Meyer et al. 2009).

Currently, each of the management hypotheses is tested using separate HBMs, which simplifies the assessment of the hypotheses. This approach also allows the model outputs to be checked for inconsistencies. When this check was conducted on subadult and adult Mountain Whitefish density estimates, the estimates generated were not compatible with survival estimates. Specifically, it is not possible for adult population densities of 538 fish/km (2012) to be supported by subadult densities of 158 fish/km (2011) with only 14% subadult survival (22 fish/km to be recruited to adult population) and adult survival of 56% (301 fish/km remaining in adult population). This suggests that either the abundance or survival model (or possibly both) make at least one unreliable assumption concerning Mountain Whitefish biology or behaviour that biases the estimates.

One possible explanation for this inconsistency between the different HBMs is that the large-scale spawning migrations by adult Mountain Whitefish during the study period results in the loss of tagged fish from sample sites at a substantially greater rate than estimated by the movement model. The movement model estimates the probability that a recaptured fish is caught at the same site as encountered previously, as opposed to being recaptured at a different site. Consequently, if a fish moved from the shallow water margins, where sampling occurred, into the main channel, or moved into an area of the river where sampling was not conducted, that fish would not be available for recapture and the movement model would underestimate the losses of tagged fish. This bias would result in an underestimation of capture efficiency and a concomitant overestimation of absolute density.

Mountain Whitefish recapture probabilities are less than half of those for Rainbow Trout and Walleye, which suggests that fish movements could be influencing recapture estimates. In addition, during BC Hydro's MCR Fish Population Indexing Program (CLBMON-16), recapture rates for adult Mountain Whitefish were greater in the spring than in fall in 2011 and 2012, possibly because Mountain Whitefish were moving into and out the study area in the fall study period for spawning migrations (Ford and Thorley 2011b; Golder and Poisson 2012 in prep.) Based on telemetry data collected under CLBMON-48 (Golder 2009c), a substantial proportion of the adult Mountain Whitefish population in the LCR undertakes spawning related movements, often to other areas of the river during the fall study period. This would explain why density estimates are inconsistent with estimates of survival in the LCR and would account for lower recapture estimates for Mountain Whitefish when compared to other species in the LCR.

Catch curve analysis provided a method to corroborate survival estimates generated by the CJS model and made it possible to estimate survival during the early 1990s. Between 2001 and 2012, the range of survival estimates from catch curve analysis (~40-85%) generally agreed with CJS survival estimates (32-80%). Catch curve analysis indicated higher survival rates of adult Mountain Whitefish in the early 1990s (between 70% and 80%) compared to between 2001 and 2012 (between 40% and 92%). Catch and absolute density estimates for adult Mountain Whitefish were approximately three times greater in the 1990s than between 2001 and 2012 and catch curve analysis suggests that greater survival in the early 1990s could explain the difference.

4.4.2 Rainbow Trout

Survival estimates for subadult Rainbow Trout between 2001 and 2011 were fairly stable, fluctuating between 45% and 60%. This trend generally agreed with subadult densities that fluctuated among years with no consistent increasing or decreasing trend. For adult Rainbow Trout, both survival and absolute density increased gradually between 2001 and 2011. Survival declined sharply in 2012 for both subadult and adult Rainbow Trout. Lower Rainbow Trout survival in 2012 could have been related to high river discharge in 2012 that was the highest recorded since the construction of HLK (approximately 40 years). Based on these data, it is not possible to ascertain how or if high water levels may have reduced Rainbow Trout survival or if the decline could possibly be related to other factors like changes in fish behaviour (e.g. greater movement out of the study sites). The substantial decline in estimated survival of subadult or adult Rainbow Trout in 2012 did not correspond with a decrease in density these cohorts, or with the number of spawners estimated based on visual surveys in 2012 (Thorley and Baxter in prep.).

4.4.3 Walleye

Annual survival of Walleye based on the combined dataset from 2001 to 2012 was 52% (credibility interval = 43 to 61%). Survival during each year for Walleye could not be estimated due to insufficient data; therefore, trends in survival over time could not be assessed. As a large portion of the Walleye population is thought to be migratory and spend only part of the year in the LCR before moving downstream into Lake Roosevelt (R.L.&L. 1995), interpretation of annual survival would likely be confounded by fish movements. More information regarding Walleye migrations and their degree of residency in the LCR is needed to better understand factors driving abundance and survival.

4.5 Body Condition

4.5.1 Mountain Whitefish

The body condition of subadult and adult Mountain Whitefish fluctuated between 1990 and 2012 with no consistent increasing or decreasing trend over this time period. The changes in body condition of adult Mountain Whitefish varied from -10% to 8% (compared to a typical year) between 1990 and 2012 (Figure 36). Fluctuations in body condition are known to affect reproductive potential and population productivity in other fish species (Ratz and Lloret 2003). However, it is not known what percent change in body condition is biologically significant and could affect populations of Mountain Whitefish. The Canadian Environmental Effects Monitoring (EEM) program for mining and pulp and paper effluents considers a 10% change in fish body condition to be the critical threshold for higher risk to the environment (Munkittrick et al. 2009; Environment Canada 2012). This criterion suggests that the 8-10% variation in adult Mountain Whitefish body condition could be biologically significant. Studies of the effects of body condition on reproduction and other life-history processes are required to understand the implications of body condition variation in Mountain Whitefish and other index fish species in the LCR.

Body condition was not correlated with water temperature or discharge. Little is known about what factors influence changes in body condition or growth of Mountain Whitefish in the LCR. In the Skeena River, another large river in British Columbia, food abundance was the main factor limiting growth and abundance for Mountain Whitefish (Godfrey 1995 as cited by Ford et al. 1995). Mountain Whitefish body condition also is likely related to the abundance of invertebrate prey in the LCR. Larval trichoptera and larval diptera are major food sources for Mountain Whitefish in the LCR (Golder 2009a). Invertebrate abundance data are available through BC Hydro's LCR Physical Habitat and Ecological Productivity Monitoring Program (CLBMON-44), but only after 2007, with most sites concentrated between the Norn's Creek confluence and the Kootenay River confluence (TG Eco-Logic 2009, 2010, 2011). To date, data are not sufficient to detect a relationship between food availability and Mountain Whitefish body condition.

During the fall, the body condition of adult Mountain Whitefish in the Columbia River increased until approximately late September after which time body condition decreased by 7%. During that time however, the body condition of adult Mountain Whitefish would be expected to increase as adults produce gametes and subadults and adults put on weight for the winter. The decrease in body condition during the fall suggested by the model is suspect and could have been the result of sexually mature fish migrating out of some sample sites prior to the spawning season, thereby reducing the body condition of the remaining population. This possibility is supported by the increase in body condition of adult Mountain Whitefish recorded over the surveyed period in the Kootenay River (Ford and Thorley 2011a), which is a known spawning and staging location for this species.

The body condition of subadult Mountain Whitefish was lowest in the Columbia River upstream of the Kootenay River confluence. The higher body condition of subadult Mountain Whitefish observed in the Kootenay River and in the Columbia River downstream of the Kootenay River confluence could be due to warmer water temperatures and/or higher nutrients loads in the Kootenay River when compared to the Columbia River. The spatial differences in body condition were similar but less pronounced for adult Mountain Whitefish compared to subadults. Increases in body weight due to increased gamete production and/or pre-spawning movement patterns may have influenced spatial patterns in body condition for adults.

The spatial patterns in the body condition of Mountain Whitefish did not change substantially between 1990 and 2012. One exception was that body condition was lower in downstream sections of the LCR (RKm 25-50) in the early 1990s compared to recent years. Habitat conditions or food availability in the downstream section may have changed since the 1990s and contributed to the difference in Mountain Whitefish body condition.

4.5.2 Rainbow Trout

Although there was no sustained temporal trend in body condition for Rainbow Trout, body condition was greater in 2002 and 2006 compared to other study years. Both water temperature and discharge in the Columbia River were near historical averages in 2002 and 2006, and body condition was not significantly correlated with either of these variables. Thus, the results do not suggest that variations in flow regime explain the inter-annual differences in Rainbow Trout body condition. The body conditions of subadult and adult Rainbow Trout were highly correlated, suggesting that similar factors may influence the condition of both of these cohorts.

Results suggest body condition of subadult Rainbow Trout decreased between August and November. This result may indicate that energy resources are being put toward increasing length instead of increasing weight. Rainbow trout length-at-age data suggest increasing length during the late fall season, supporting this hypothesis. Body condition values of Rainbow Trout in the LCR were generally higher than those recorded downstream of Revelstoke Dam during the same time of the year (CLBMON-16; Ford and Thorley 2011b).

As was reported for Mountain Whitefish, the body condition of Rainbow Trout was relatively low in the Columbia River upstream of the Kootenay River and higher in the Kootenay River. This result could be due to warmer water temperatures and higher nutrient loads in the Kootenay River when compared to the Columbia River. The high body condition values for subadult Rainbow Trout in middle portion of the LCR (~Rkm 25-35) suggests that this area had environmental conditions that were favourable for juvenile rearing. The spatial patterns of body condition of Rainbow Trout were similar between 1990 and 2012.

4.5.3 Walleye

Body condition of Walleye in the study area fluctuated between 1990 and 2012 but trends were not related to river discharge or water temperature based on correlation analysis. The body condition of Walleye was negatively correlated with their absolute density, suggesting density-dependent growth which could be due to intraspecific competition for food and cover, similar to that reported for this species by other researchers (Hartman and Margraf 1992; Porath and Peters 1997; Forney 2011).

Walleye body condition increased over the fall study period. This result was expected, as this species is in the study area during this time period to feed prior to migrating downstream to overwinter in Lake Roosevelt (R.L.&L. 1995).

There was little difference in Walleye body condition among different river sections, although condition was slightly greater in the Kootenay River than in the Columbia River. A large portion of the LCR Walleye population migrates into the study area from Lake Roosevelt during the late spring and summer to feed (R.L.&L. 1995); this could result in low site fidelity if most Walleye do not remain at one site long enough for habitat characteristics to influence their body condition.

4.6 Summary

The sampling program conducted since 2001 provides a high-quality, long-term dataset to address the management question regarding monitoring key fish population metrics over time in the LCR. Hierarchical Bayesian models suggested that abundance, spatial distribution, survival and growth of the three index species have fluctuated during the 2001 to 2012 monitoring period. For instance, between 2001 and 2007 the abundance of Mountain Whitefish decreased while growth, length and condition all increased at some point during this time. Historical data from a similar fish sampling program in 1990-1993 were incorporated into the analyses to assess longer term trends in fish populations. These analyses suggested substantial differences in the abundance and survival of index species, including much higher abundance and lower survival of Mountain Whitefish in the early 1990s. Greater abundance of Mountain Whitefish prior to the protection flows (i.e., in 1990 to 1993) was not expected as the flow management plan was intended to increase survival and abundance. However, conclusions based on these comparisons of different datasets should be viewed with caution because of the potential influence of differences in data collection.

The second management question for this monitoring program pertains to the effects of inter-annual variability in flow regimes on fish population metrics of the index species. Overall, discharge did not seem to be strongly associated with the fish population metrics assessed, although there were some associations between the mean or variance in discharge in the fall/winter months, and growth or density of all three index species. Although discharge in the Columbia River was anomalously high in 2012, the effects of high discharge on fish populations was not clear, but could have been related to the sharp decline in estimated Rainbow Trout survival observed between 2011 and 2012. Additional years of data may provide further insight.

Although water temperature is known to be one of the most important factors influencing the ecology of fishes (Coutant 1976), water temperature was not correlated with any of the fish population metrics. Correlation analysis in this study used mean temperature values from bimonthly periods, and it could be that the upper or lower temperatures experienced could have a greater influence on fishes. With regard to the management questions, the effects of the flow management plan on water temperature are unknown, but the inter-annual variations in water temperature observed in this study were not likely drivers of change in fish population metrics in the LCR.

Understanding the effects of local movement patterns of the index species on estimates of the model parameters should be the focus of future studies. The present monitoring program provides important information on abundance, growth and survival of index species but data regarding local movements and seasonal migrations of these species are required to better interpret and understand their population trends. Further understanding of the migratory behaviour of index species will provide more insight into addressing CLBMON-45 management questions.

Another key focus of future years of the study should be to further identify and address which assumptions are being violated in the data analyses. For example, it may be possible to use body condition information to identify sexually mature fish and to test whether sexually mature fish are recaptured less frequently than non-spawners. Alternatively it may be possible to refine movement models to take into account the date and distance moved by a fish between captures to identify whether broader scale movements are taking place, although such an approach may be limited by the relatively low numbers of recaptured individuals.

One finding that could indicate potential violation of assumptions or room for improvement in the study methodology was that the absolute density of adult Rainbow Trout varied little between 2001 and 2012 whereas

subadult density and survival from this study, and estimates of spawner abundance from CLBMON-46 all suggested substantial fluctuations over this same time period. The consistently low recapture rates may provide little information about annual or seasonal variation in capture efficiency, which could make it difficult to detect large changes in efficiency or abundance over time. One possible change to the sampling program that could potentially improve count data and density estimates would be an additional electroshocking pass at each site during which fish would be enumerated but not captured. This enumeration pass would allow the collection of fine-scale spatial distribution data (by geo-referencing the location of fish within the site using a hand-held GPS) and more accurate count data (observers would focus on counting instead of capturing). This approach would not only improve count data, but also provide valuable information on the fine-scale distribution of fish. In addition, if several years of enumeration are conducted in parallel with mark-recapture, it may eventually prove possible to calibrate the efficiency of the method and reduce the number of mark-recapture passes needed during each sample season. In addition, more of the river could be surveyed in any given year since the enumerated fish do not need to be processed, which would be an advantage when examining long-term distributional changes.

Overall, the HBMs have outlined the difficulty of interpreting population dynamics in a large study area when sample sites are limited to specific areas. In 2011 and 2012, portions of the river that were unsampled during the previous ten study years were sampled for the first time. Results from these portions of the river (Appendix H, Figures H1 to H3, H6 to H8, H11, and H12) were very informative and suggest that these areas are used intensively by all three index species during the fall season. Reverting back to the original study design (i.e., repetitively sampling the same sites five times) and continuing to exclude the remaining ~66% of the study area may limit the HBMs ability to detect significant changes in the parameters of interest.

5.0 RECOMMENDATIONS

In consideration of the findings above and the overall objectives of the CLBMON-45, a field sampling program should be conducted in 2013 using the same methodologies employed in 2012. In addition to further sampling, the following recommendations are provided:

- Explore the use of body condition to identify sexually mature Mountain Whitefish and to test whether sexually mature fish are recaptured less frequently than their non-spawning equivalents.
- Continue to use age-data to estimate adult survival from a catch-curve analysis to confirm that survival estimates generated by the HBM are unbiased.
- Continue the GRTS survey following the completion of the fall mark-recapture indexing program. This survey could be conducted within the same budget by reducing the number of annual sessions to four (i.e., four mark-recapture sessions with one GRTS session instead of five mark-recapture sessions).
- An additional electroshocking pass should be conducted at each site during which fish would be enumerated but not captured. This enumeration pass would allow the collection of fine-scale spatial distribution data (by geo-referencing the location of fish within the site using a hand-held GPS) and more accurate count data (observers would focus on counting instead of capturing). This approach would provide valuable information on the fine-scale abundance, diversity, and distribution of fish. In addition, if several years of enumeration are conducted in parallel with mark-recapture, it may eventually prove possible to calibrate the efficiency of the method and reduce the number of mark-recapture passes needed during each sample season.
- Conduct a small-scale telemetry program to monitor local movement patterns and their effect on fish population parameters.
- Conduct a mark-recapture program during the spring season to provide insight into the seasonal movements of each index species (particularly Mountain Whitefish and Walleye).
- Investigate whether data gaps in the study can be addressed or data analysis can be supplemented with data collected under other BC Hydro programs (e.g., Walleye prey fish abundance through CLBMON-43, invertebrate abundance through CLBMON-44, Mountain Whitefish movement patterns through CLBMON-48, or Rainbow Trout spawner abundance through CLBMON-46).
- Continue analyses using data collected in the 1990s in the HBMs to provide a longer time series of data (i.e., data prior to the implementation of Mountain Whitefish and Rainbow Trout spawning protection flows).
- The feasibility of not implementing Mountain Whitefish and Rainbow Trout protection flows for a single spawning season should be examined. This would provide an opportunity to monitor changes in the parameters of interest under significantly different flow regimes.
- Use results from other WUP programs to develop hypotheses about potential causes for change in fish populations, and test these hypotheses using HBMs that combine the relevant data. Such analyses depend on the availability and suitability of long-term datasets from the other WUP programs.

6.0 LITERATURE CITED

- Ash, G., W. Luedke, and B. Herbert. 1981. Fisheries inventory and impacts assessment in relation to the proposed Murphy Creek Project on the Columbia River, B.C. Prepared for BC Hydro by R.L.&L. Environmental Services Ltd. (Revised January 1984). 329 p.
- Baldwin, CM, JG McLellan, MC Polacek, and K. Underwood. 2003. Walleye Predation on Hatchery Reared Rainbow Trout in Lake Roosevelt, Washington. North American Journal of Fisheries Management. 23:660-676.
- BC Hydro. 2005. Columbia River Project, Water Use Plan. 41 p. + 1 appendix.
- Bochkina, N. and S. Richardson. 2007. Tail Posterior Probabilities for Inference in Pairwise and Multiclass Gene Expression Data. Biometrics 63: 1117-1125.
- Bowen, SH. 1989. Quantitative Description of the Diet. In: Nielsen, LA and DL Johnson (eds). Fisheries Techniques, Third Edition. American Fisheries Society. Bethesda, Maryland.
- Bradford, M. J., J. Korman and P. S. Higgins. 2005. Using confidence intervals to estimate the response of salmon populations (*Oncorhynchus* spp.) to experimental habitat alterations. Canadian Journal of Fisheries and Aquatic Sciences 62: 2716-2726.
- Brosse, L., P. Dumont, M. Lepage, and E. Rochard. 2002. Evaluation of a Gastric Lavage Method for Sturgeons. North American Journal of Fisheries Management. 22:955-960.
- Budy, P., R. Al-Chokhachy, and GP Thiede. 2007. Bull Trout Population Assessment in Northeastern Oregon: A Template for Recovery Planning. USGS Utah Cooperative Fish and Wildlife Research Unit. Department of Aquatic, Watershed, and Earth Resources Utah State University, Logan, Utah. 84322-5210.
- Coutant, C. 1976. Thermal effects on fish ecology. In: J.R. Pfaffline and E.N. Ziegler (Eds.), Encyclopedia of Environmental Science and Engineering. NY: Gordon and Breach Publishers. p. 891-896.
- Environment Canada. 2012. Metal mining technical guidance for environmental effects monitoring. Environment Canada, Ottawa, Ontario. 550 pp.
- Fabens, A.J. 1965. Properties and fitting of the von Bertalanffy growth curve. Growth. 1965 Sep; 29:265-289.
- Ford, B.S., P.S. Higgins, A.F. Lewis, K.L. Cooper, T.A. Watson, C.M. Gee, G.L. Ennis, and R.L. Sweeting. 1995. Literature reviews of the life history, habitat requirements and mitigation/compensation strategies for thirteen sport fish species in the Peace, Liard, and Columbia River drainages of British Columbia. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2321: xxiv + 342 p.
- Ford, D. And J.L. Thorley. 2011a. CLBMON-45 Lower Columbia River Fish Population Indexing Surveys 2011 Investigations. Report prepared for BC Hydro Generations, Water Licence Requirements, Castlegar, BC. Golder Report No. 10-1492-0102F: 54 p. + 5 app.
- Ford, D. And J.L. Thorley. 2011b. CLBMON-16 Middle Columbia River Fish Population Indexing Surveys 2010 Investigations. Report prepared by BC Hydro Generations, Water Licence Requirements, Revelstoke, BC. Golder Report No. 10-1492-0079F: 54 p. + 5 app.
- Forney, J.L. 2011. Evidence of Inter- and IntraSpecific Competition as Factors Regulating Walleye (Stizostedion vitreum vitreum) Biomass in Oneida Lake, New York. Journal of the Fisheries Research Board of Canada, 1977, 34: 1812-1820, 10.1139/f77-247.
- Godfrey, H. 1955. On the ecology of the Skeena River whitefishes *Coregonus* and *Prosopium*. Journal of the Fisheries Research Board of Canada 12: 488-527.

- Golder Associates Ltd. 2002. Lower Columbia River Fish Community Indexing Program. 2001 Phase 1 investigations. Report prepared for BC Hydro, Burnaby, B.C. Golder Report No. 012-8007F: 52p + 6 app.
- Golder Associates Ltd. 2003. Large River Fish Indexing Program Lower Columbia River 2002 Phase 2 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 022-8023F: 47p + 5 app.
- Golder Associates Ltd. 2004. Large River Fish Indexing Program Lower Columbia River 2003 Phase 3 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 03-1480-021F: 54p + 6 app.
- Golder Associates Ltd. 2005. Large River Fish Indexing Program Lower Columbia River 2004 Phase 4 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 04-1480-047F: 57p + 6 app.
- Golder Associates Ltd. 2006. Large River Fish Indexing Program Lower Columbia River 2005 Phase 5 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 05-1480-034F: 56p + 6 app.
- Golder Associates Ltd. 2007. Large River Fish Indexing Program Lower Columbia River 2006 Phase 6 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 06-1480-031F: 70p + 6 app.
- Golder Associates Ltd. 2008. Large River Fish Indexing Program Lower Columbia River 2007 Phase 7 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 07-1480-067F: 78p + 6 app.
- Golder Associates Ltd. 2009a. Large River Fish Indexing Program Lower Columbia River 2008 Phase 8 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 08-1480-046F: 58p + 6 app.
- Golder Associates Ltd. 2009b. Monitoring of juvenile white sturgeon habitat use and movements of sonic-tagged sturgeon: 2008 investigations. Report prepared for BC Hydro, Revelstoke, B.C. Golder Report No. 08-1480-0030F: 34 p. + 3 app.
- Golder Associates Ltd. 2009c. Lower Columbia River whitefish life history and egg mat monitoring program: 2008 2009 investigations data report. Report prepared for BC Hydro, Castlegar, BC Golder Report No. 08-1480-0054F: 42 p. + 6 app.
- Golder Associates Ltd. 2010a. Large River Fish Indexing Program Lower Columbia River 2009 Phase 9 Investigations. Report prepared for B.C. Hydro, Castlegar, B.C. Golder Report No. 09-1480-049F: 80p + 6 app.
- Golder Associates Ltd. 2010b. Lower Columbia River Whitefish Life History and Egg Mat Monitoring Program: 2009 2010 Investigations Data Report. Report prepared for BC Hydro, Castlegar, B.C. Golder Report No. 08-1480-054F: 59p + 7 app.
- Golder Associates Ltd. 2012a. Lower Columbia River Whitefish spawning ground topography survey: Year 2 data report. Report prepared for BC Hydro, Castlegar, BC Golder Report No. 10-1492-0142d: 32 p. + 1 app.

- Golder Associates Ltd. 2012b. Lower Columbia River whitefish life history and egg mat monitoring program: Year 4 data report. Report prepared for BC Hydro, Castlegar, BC. Golder Report No. 11-1492-0111F: 48p + 3 app.
- Hartman, K.J. and J.F., Margraf. 1992. Effects of Prey and Predator Abundances on Prey Consumption and Growth of Walleyes in Western Lake Erie. Transactions of the American Fisheries Society, 121:245 260.
- He, J. X., J. R. Bence, J. E. Johnson, D. F. Clapp and M. P. Ebener. 2008. Modeling Variation in Mass-Length Relations and Condition Indices of Lake Trout and Chinook Salmon in Lake Huron: a Hierarchical Bayesian Approach. Transactions of the American Fisheries Society 137: 801-817.
- Hilborn, R., and C.J. Walters. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Routledge, Chapman & Hall, Inc. New York. 570 p.
- Hildebrand, L. and McKenzie, S. 1995. Rainbow Trout Spawning in the Columbia River, B.C. with Emphasis on the Norn's Creek Area 1990 to 1993. 382D. BC Hydro, Castlegar, BC.
- Hildebrand, L. R. and M. Parsley. 2013. Upper Columbia White Sturgeon Recovery Plan 2012 Revision. Prepared for the Upper Columbia White Sturgeon Recovery Initiative. 129p. + 1 app. Available at: www.uppercolumbiasturgeon.org.
- Kery, M. and M. Schaub. 2011. Bayesian population analysis using WinBUGS a hierarchical perspective. Academic Press, Burlington.
- Kincaid, T.M. and A.R. Olsen. 2011. spsurvey: Spatial Survey Design and Analysis. R package version 2.2.
- Light, RW, PH Adler, and DE Arnold. 1983. Evaluation of Gastric Lavage for Stomach Analyses. North American Journal of Fisheries Management. 3:81-81.
- Lin, Y., S. Lipsitz, D. Sinha, A. A. Gawande, S. E. Regenbogen and C. C. Greenburg. 2009. Using Bayesian p-values in a 2 x 2 table of matches pairs with incompletely classified data. Journal of the Royal Statistical Society Series C 58: 237-246.
- Macdonald, P.D.M. and T.J. Pitcher. 1979. Age-groups from size-frequency data: a versatile and efficient method of analysing distribution mixtures. Journal of the Fisheries Research Board of Canada 36: 987-1001.
- Mackay, W.C., G.R. Ash and H.J. Norris. 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in association with Alberta and Wildlife Division and University of Alberta, Edmonton. 133p.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia. University of Alberta Press, Edmonton, AB. pp. 620.
- Meyer, K. A., F. S. Elle, and J. A. Lamansky Jr. 2009. Environmental factors related to the distribution, abundance, and life history characteristics of mountain whitefish in Idaho. North American Journal of Fisheries Management 29:753-767.
- Munkittrick, K.R., C.J. Arens, R.B. Lowell, and G.P. Kaminski. 2009. A review of potential methods of determining critical effect size for designing environmental monitoring programs. Environmental Toxicology and Chemistry 28: 1361-1371.

- Naesje T., B. Jonsson, and J. Skurdal. 1995. Spring flood: a primary cue for hatching of river spawning Coregoninae. Canadian Journal of Fisheries and Aquatic Sciences 52: 2190-2196.
- Plummer, Martyn. 2003. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22, Vienna, Austria. ISSN 1609-395X.
- Porath, M.T., and E.J. Peters. 1997. Use of Walleye Relative Weights (Wr) to Assess Prey Availability. North American Journal of Fisheries Management, Volume 17, Issue 3, 1997, Pages 628 637.
- Ratz H.J. and J. Lloret. 2003. Variation in fish condition between Atlantic cod (*Gadus morhua*) stocks, the effect on their productivity and management implications. Fisheries Research 60: 369-380.
- R Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- R.L. & L. Environmental Services Ltd. 1991. Lower Columbia Development. Lower Columbia River Fisheries Inventory – 1990 Studies. Volume I Main Report. Submitted to BC Hydro Environmental Resources. (Revised March 1992). 170p & 7 app.
- R.L. & L. Environmental Services Ltd. 1995. Columbia Basin Development Lower Columbia River. Fisheries Inventory Program 1990 to 1994. Report Prepared for BC Hydro, Environmental Affairs, Vancouver, B.C., by R.L. & L. Environmental Services Ltd., Castlegar, B.C. R.L. & L. Report No. 381 95D: 156p + 7 app.
- R.L. & L. Environmental Services Ltd. 1997. Lower Columbia River mountain whitefish monitoring program. 1994-1996 investigations. Draft Report prepared for BC Hydro, Kootenay Power Supply/Power Facilities. R.L. & L. Report No. 514D: 101 p. + 8 app.
- R.L. & L. Environmental Services Ltd. 2000. 13 October 2000. Memo to Colin Spence, MOE, from Louise Porto, R.L.&L. Environmental Services. Re: White Sturgeon Mortality.
- Sanderson, B.L., K. A. Barnas, and A.M.W. Rub. 2009. Nonindigenous species of the Pacific Northwest: an overlooked risk to endangered salmon? BioSience 59: 245-256.
- Scott, W.B. and E.J. Crossman 1973. Freshwater Fishes of Canada. Bulletin 184. ISBN 0-660-10239-0. Fisheries Research Board of Canada, Ottawa.
- Stevens, D. L., Jr. and A. R. Olsen 2004. Spatially-balanced sampling of natural resources. Journal of American Statistical Association 99(465): 262-278.
- Taylor, M.K., K.V. Cook, C.T. Hasler, D.C. Schmidt, S.J. Cooke. 2012. Behaviour and physiology of Mountain Whitefish (*Prosopium williamsoni*) relative to short-term changes in river flow. Ecology of Freshwater Fish 21: 609-616.
- T.G. Eco-Logic, LLC. 2009. Lower Columbia River Physical Habitat and Ecological Productivity Monitoring Program 2008 Report. Report prepared for B.C. Hydro, Castlegar, B.C. 52p + 7 app.
- T.G. Eco-Logic, LLC. 2010. Lower Columbia River Physical Habitat and Ecological Productivity Monitoring Program 2009 Report. Report prepared for B.C. Hydro, Castlegar, B.C. 58p + 11 app.
- T.G. Eco-Logic, LLC. 2011. Lower Columbia River Physical Habitat and Ecological Productivity Monitoring Program 2010 Report. Report prepared for B.C. Hydro, Castlegar, B.C. 92p + 13 app.

- Thorley, J. L. and J. T. A. Baxter 2012. Lower Columbia River Rainbow Trout Spawning Assessment 2011: WLR Monitoring Study No. CLBMON-46 (Year 4). Columbia River Water Use Plan. BC Hydro, Castlegar. Mountain Water Research and Poisson Consulting Ltd.
- Thorley, J. L. and J. T. A. Baxter. In prep. Lower Columbia River Rainbow Trout Spawning Assessment 2012: WLR Monitoring Study No. CLBMON-46 (Year 5). Columbia River Water Use Plan. BC Hydro, Castlegar. Mountain Water Research and Poisson Consulting Ltd.
- von Bertalanffy, L. 1938. A quantitative theory of organic growth. Hum. Biol. 10: 181–213.
- Wydoski, R.S. and D.H. Bennett. 1981. Forage Species in Lakes and Reservoirs of the Western United States. Transactions of the American Fisheries Society. Volume 110, Issue 6. 764-771.

7.0 CLOSURE

We trust that this report meets your current requirements. If you have any further questions, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

ORIGINAL SIGNED

Dustin Ford, B.Sc., R.P.Bio. Fisheries Biologist, Project Manager Larry Hildebrand, R.P.Bio. Principal, Senior Fisheries Biologist

ORIGINAL SIGNED

David Roscoe, M.Sc. Fisheries Biologist

POISSON CONSULTING

ORIGINAL SIGNED

Dr. Joseph Thorley, R.P.Bio. Fish Population Biologist

DF/LH/tc

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

r:\active_2010\1492 biosciences\10-1492-0102 lcr fish indexing\reports\2012 report\final report\1014920102-r-rev0_lcr indexing 2012 final report_04dec_13.docx

APPENDIX A

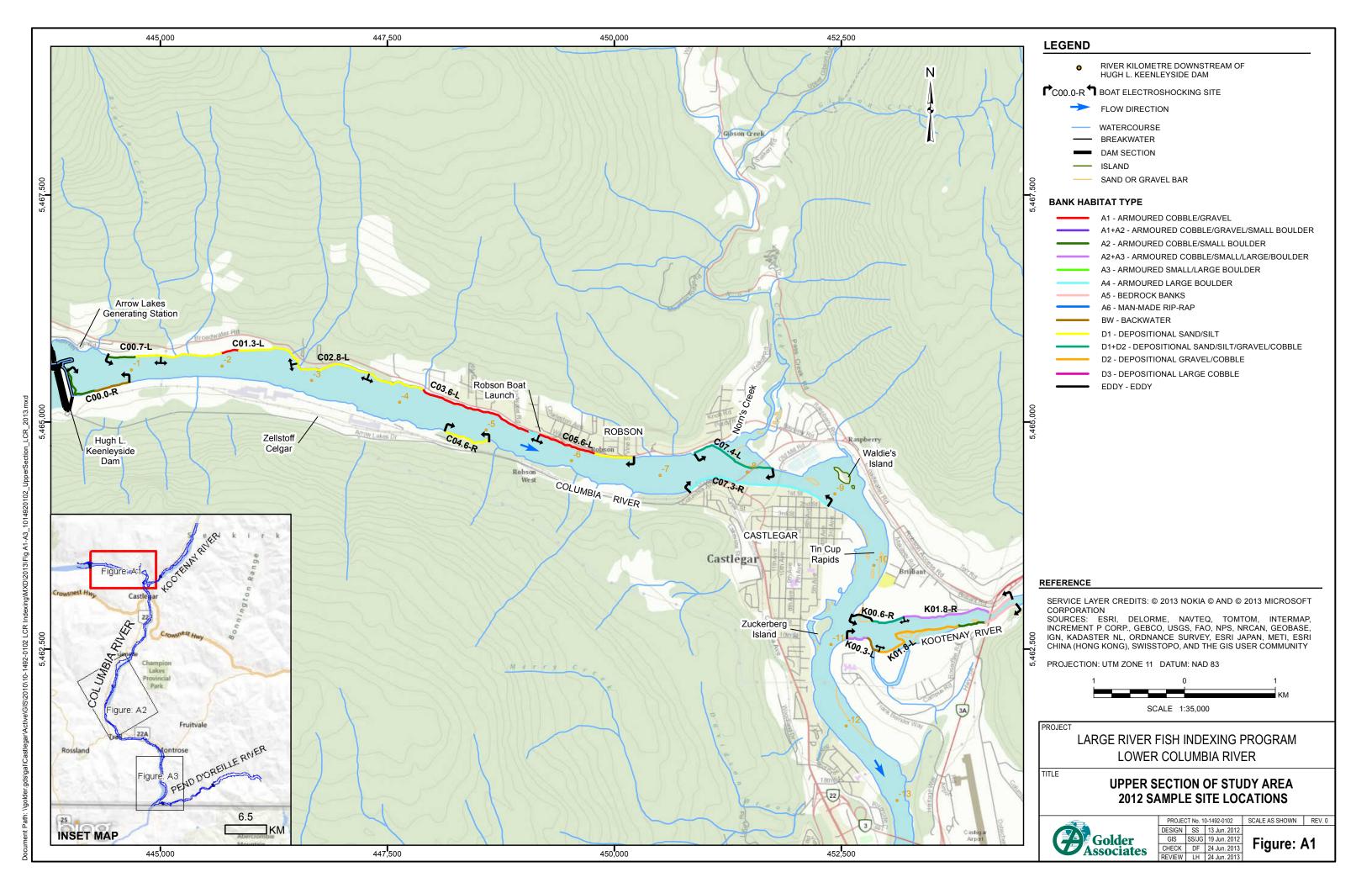
Maps and UTM Coordinates

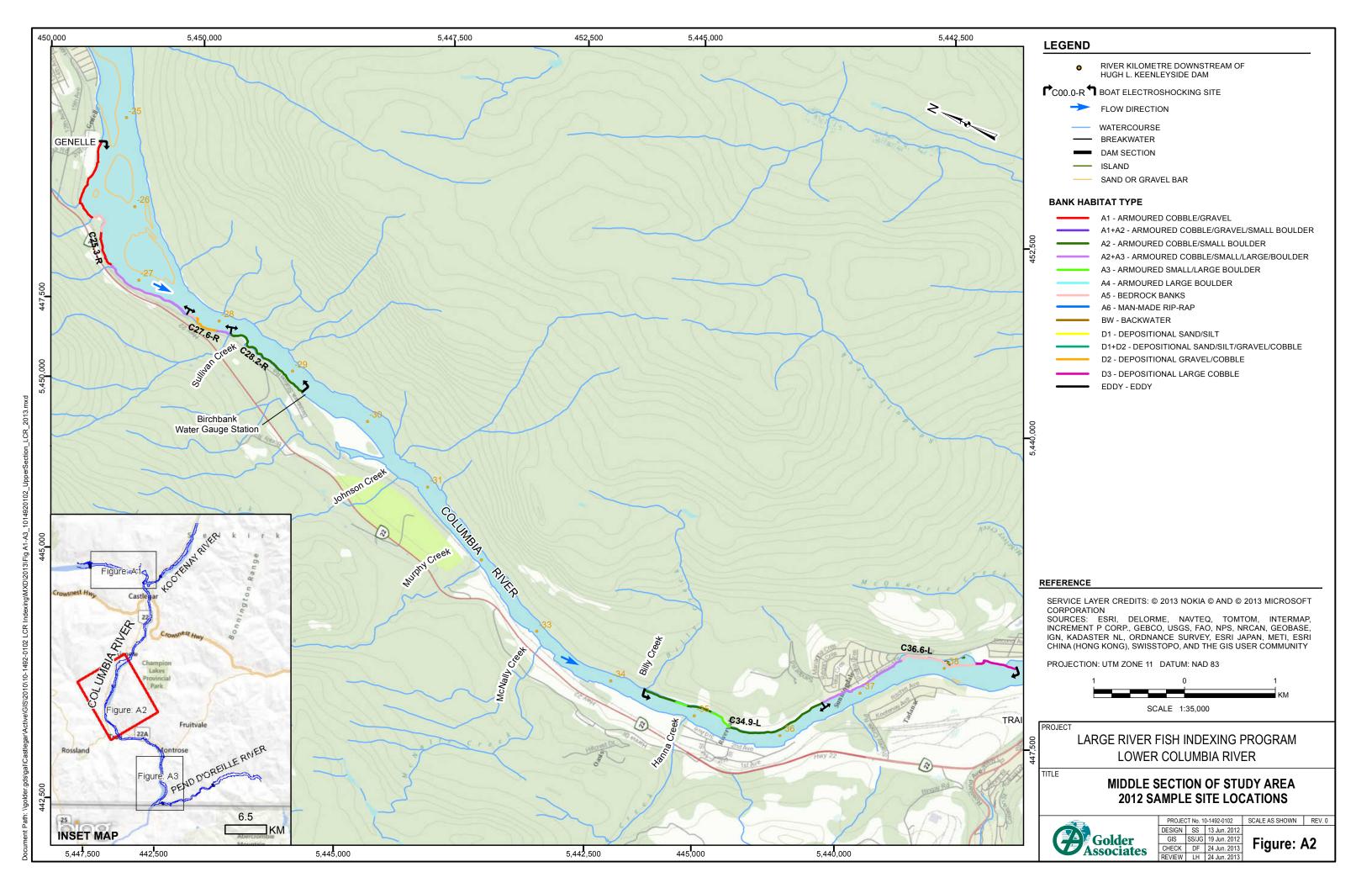
Table A1 Locations and distances from Hugh L. Keenleyside Dam of boat electroshocking sites in the Lower Columbia River, 2012.

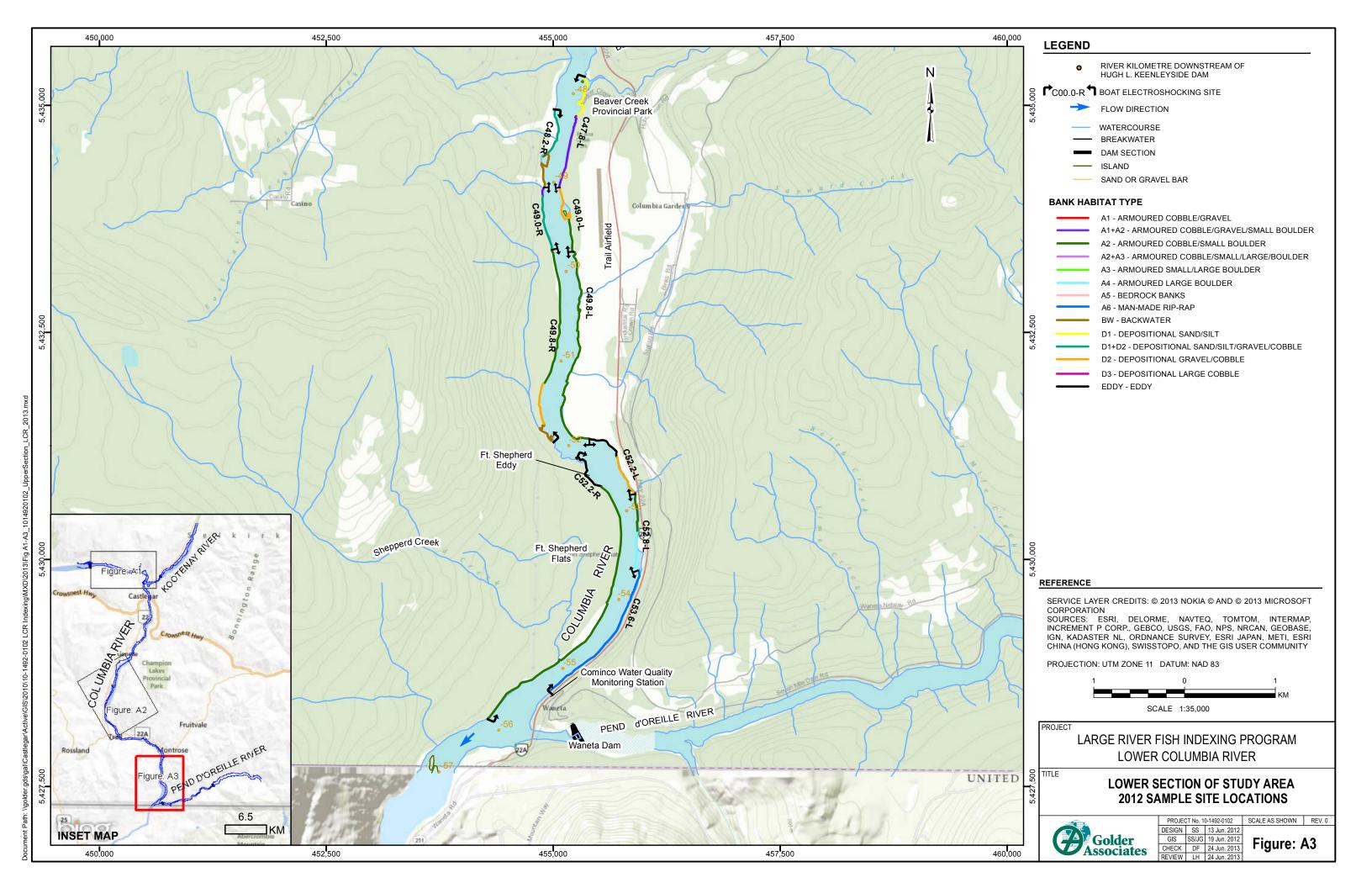
~				UTM Coordinates	.
Site Designation ^a	Location (km) ^b	Bank ^c	Zone	Easting	Northing
Columbia River Upstream					
C00.0-R U/S	0.0	RDB	11U	443996	5465466
C00.0-R D/S	0.9	RDB	11U	444649	5465448
C00.7-L U/S	0.7	LDB	11U	444387	5465734
C00.7-L D/S	1.3	LDB	11U	445015	5465719
C01.3-L U/S	1.3	LDB	11U	445015	5465719
C01.3-L D/S	2.8	LDB	11U	446504	5465652
C02.8-L U/S	2.8	LDB	11U	446504	5465652
C02.8-L D/S	3.6	LDB	11U	447294	5465482
C03.6-L U/S	3.6	LDB	11U	447294	5465482
C03.6-L D/S	5.6	LDB	11U	449206	5464833
C04.6-R U/S	4.6	RDB	11U	448162	5464921
C04.6-R D/S	5.1	RDB	11U	448614	5464820
C05.6-L U/S	5.6	LDB	11U	449206	5464833
C05.6-L D/S	6.7	LDB	11U	450212	5464594
C07.3-R U/S	7.3	RDB	11U	450808	5464265
C07.3-R D/S	9.0	RDB	11U	452366	5464096
C07.4-L U/S	7.4	LDB	11U	450892	5464632
C07.4-L D/S	8.3	LDB	11U	451742	5464481
Kootenay River					
K00.3-L U/S	0.3	LDB	11U	453656	5462748
K00.3-L D/S	0.0	LDB	11U	452578	5462650
K00.6-R U/S	0.6	RDB	11U	453151	5462849
K00.6-R D/S	0.0	RDB	11U	452627	5462822
K01.8-L U/S	1.8	LDB	11U	454451	5462972
K01.8-L D/S	0.3	LDB	11U	453656	5462748
K01.8-R U/S	1.8	RDB	11U	454398	5463053
K01.8-R D/S	0.6	RDB	11U	453151	5462849
Columbia River Downstream					
C25.3-R U/S	25.3	RDB	11U	449606	5450670
C25.3-R D/S	27.6	RDB	11U	448277	5450106
C27.6-R U/S	27.6	RDB	11U	448277	5450106
C27.6-R D/S	28.1	RDB	11U	447985	5448428
C28.2-R U/S	28.2	RDB	11U	447985	5448428
C28.2-R D/S	29.2	RDB	11U	447749	5447453
C34.9-L U/S	34.9	LDB	11U	446321	5442589
C34.9-L D/S	36.6	LDB	11U	447116	5440687
C36.6-L U/S	36.6	LDB	11U	447116	5440687
C36.6-L D/S	38.8	LDB	11U	448286	5438982
C47.8-L U/S	47.8	LDB	11U	455317	5435244
C47.8-L D/S	49.0	LDB	11U	455121	5434301
C48.2-R U/S	48.2	RDB	11U	455021	5434885
C48.2-R D/S	49.0	RDB	11U	455177	5434013
C49.0-L U/S	49.0	LDB	11U	455121	5434301
C49.0-L D/S	49.8	LDB	11U	455204	5433379
C49.0-R U/S	49.0	RDB	11U	455177	5434013
C49.0-R D/S	49.8	RDB	11U	454993	5433410
C49.8-L U/S	49.8	LDB	11U	455204	5433379
C49.8-L D/S	52.2	LDB	11U	455385	5431291
C49.8-R U/S	49.8	RDB	11U	454993	5433410
C49.8-R D/S	51.9	RDB	11U	454976	5431377
C52.2-L U/S	52.2	LDB	11U	455385	5431291
C52.2-L D/S	52.8	LDB	11U	455888	5430887
C52.2-R U/S	52.2	RDB	11U	455350	5431088
C52.2-R D/S	56.0	RDB	11U	454287	5428238
C52.8-L U/S	52.8	LDB	11U	455888	5430887
C52.8-L D/S	53.6	LDB	11U	455898	5429799

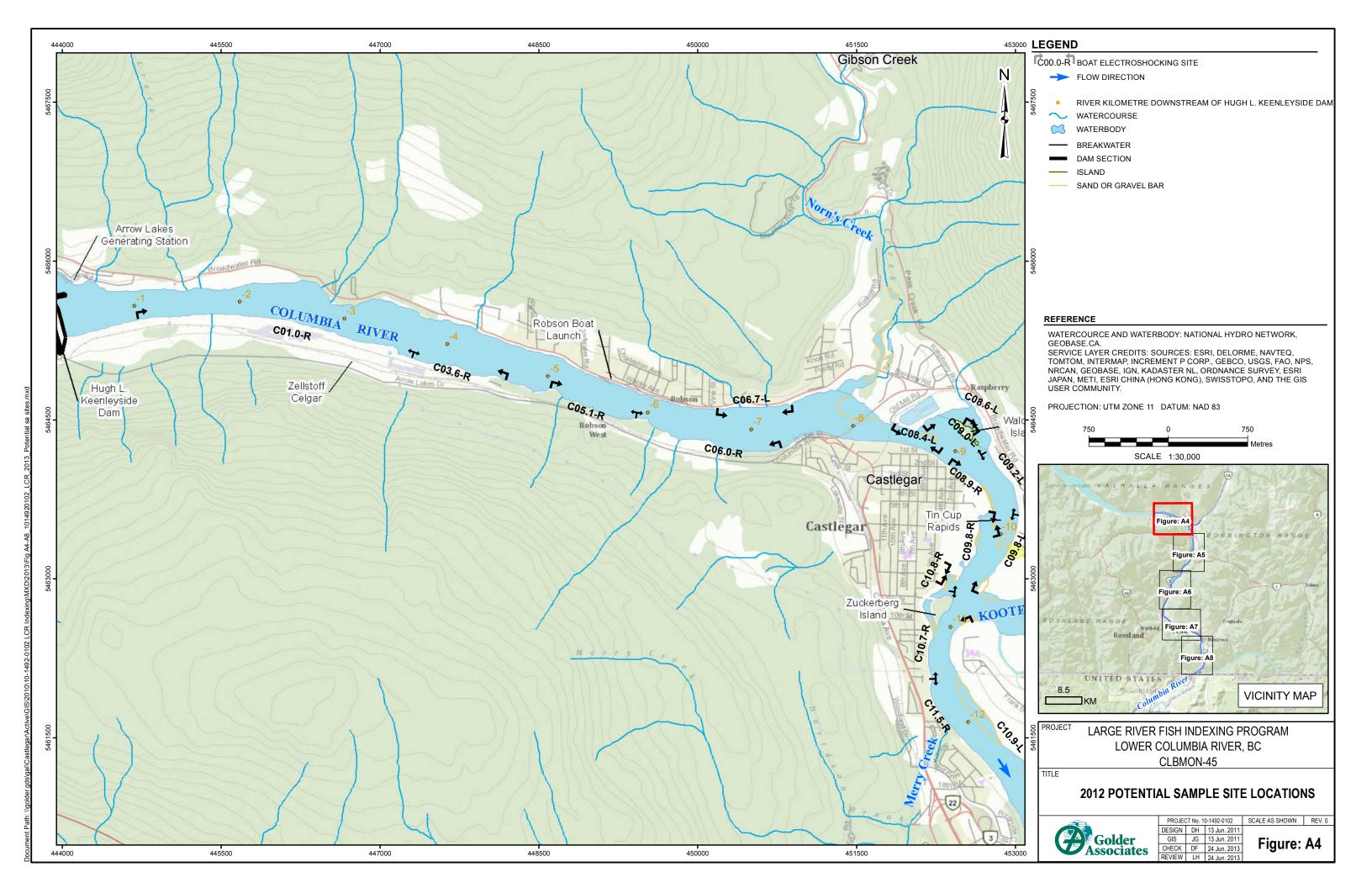
^a U/S = Upstream limit of site; D/S = Downstream limit of site.

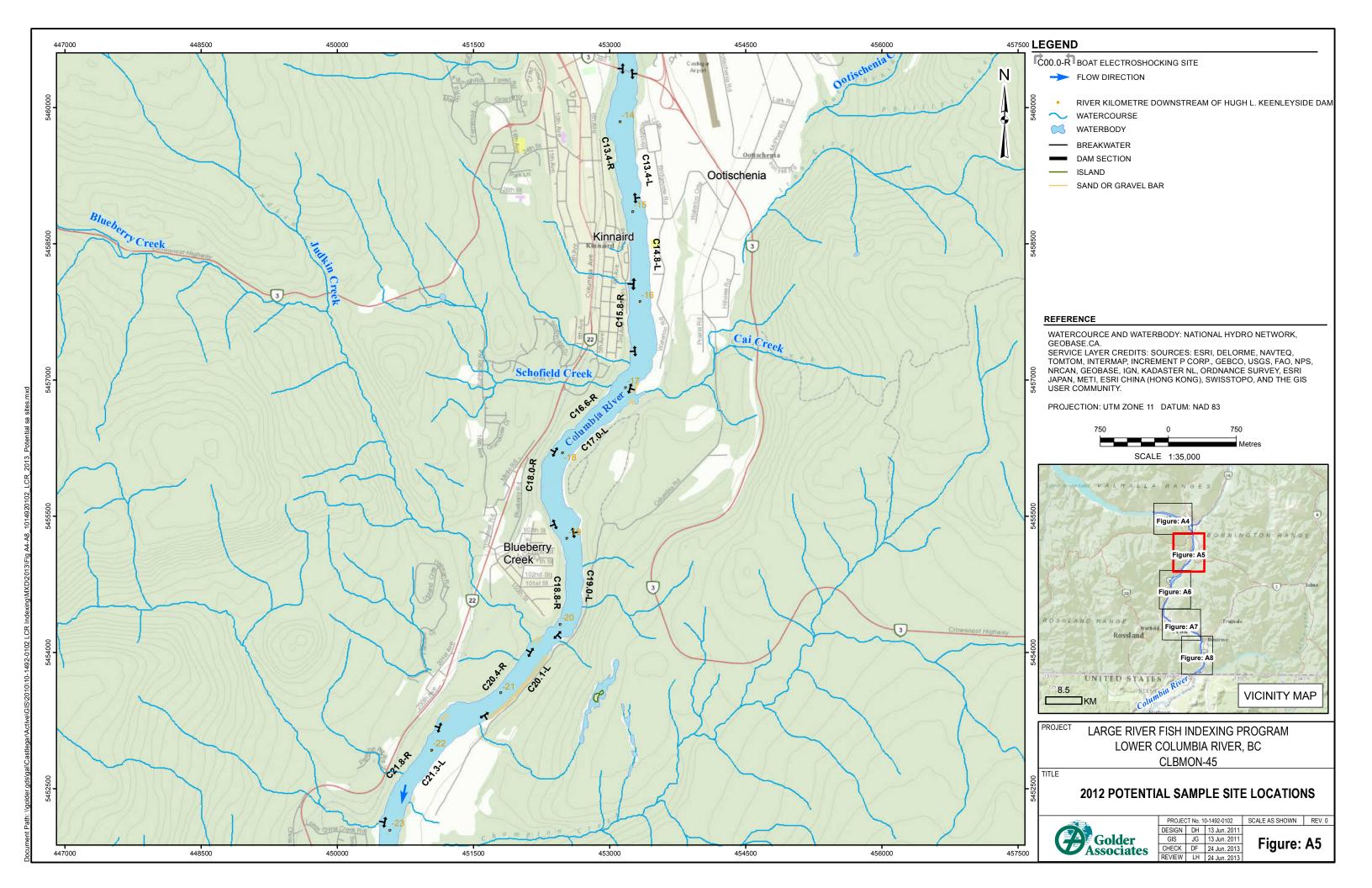
^b River kilometres downstream from Hugh L. Keenleyside Dam.

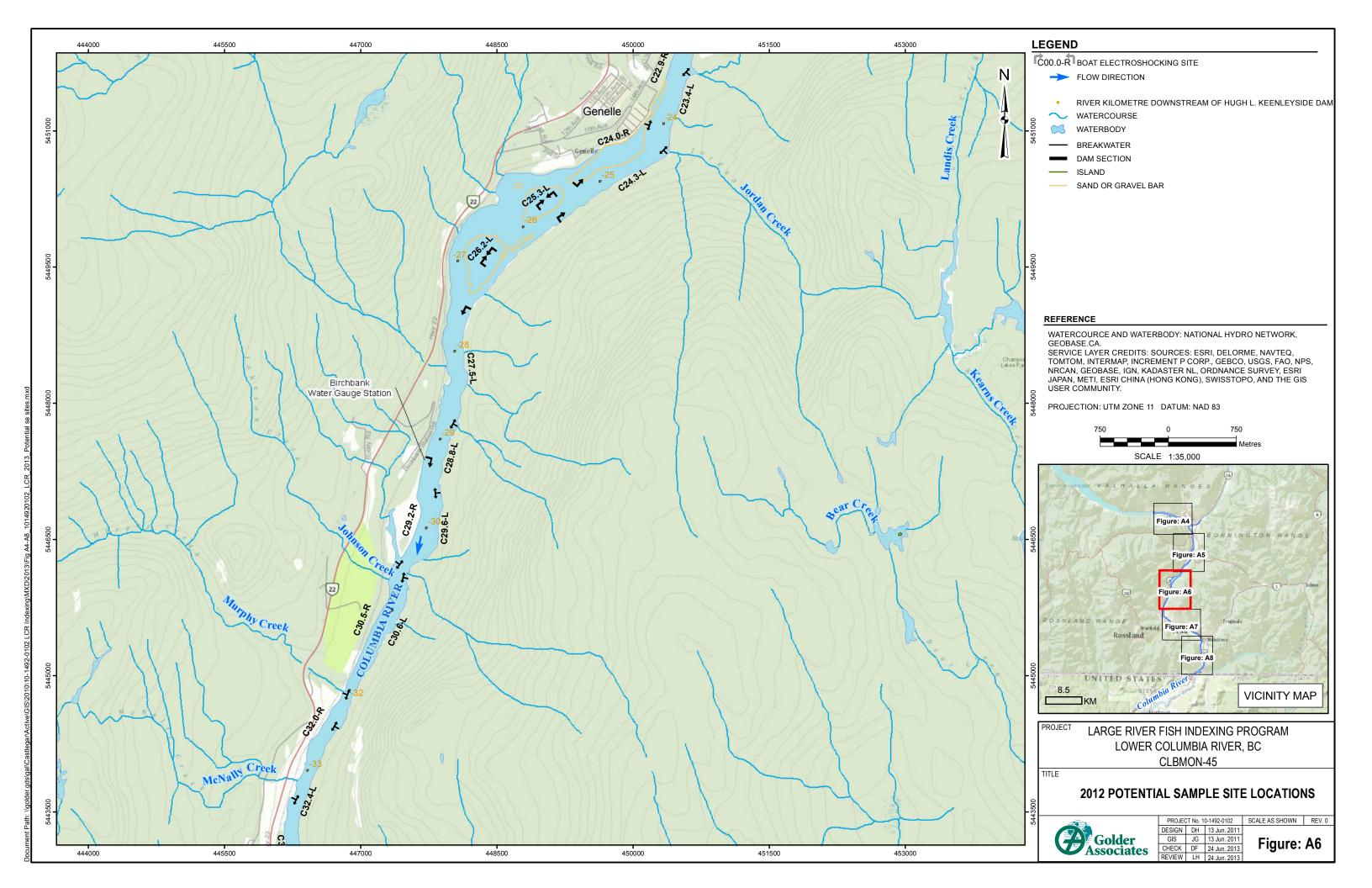

^c LDB=Left bank as viewed facing downstream; RDB=Right bank as viewed facing downstream.

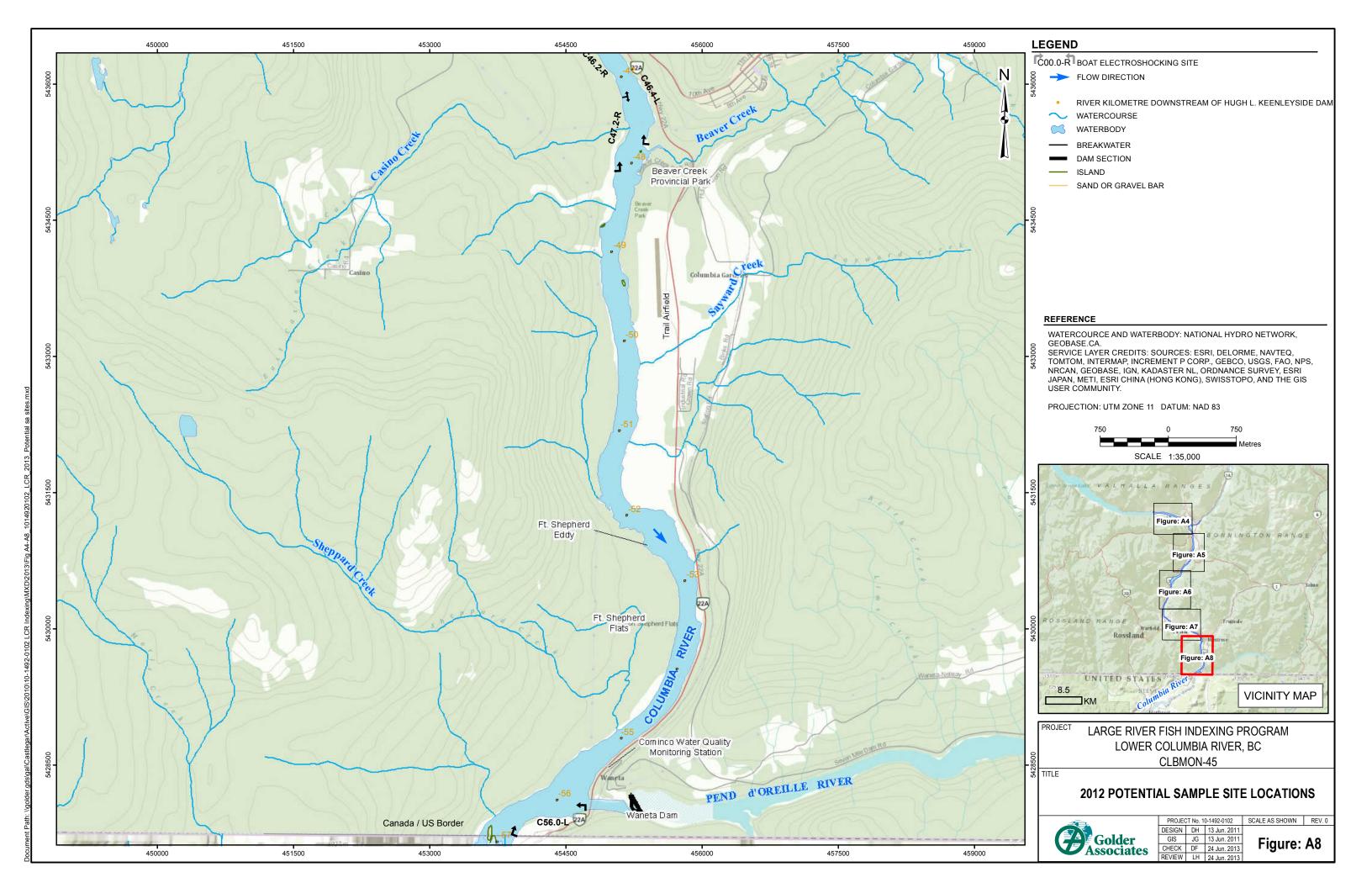

Table A2 Locations of selected sites and available sites included in the Generalized Random Tessellation Stratified (GRTS) survey, 2012.

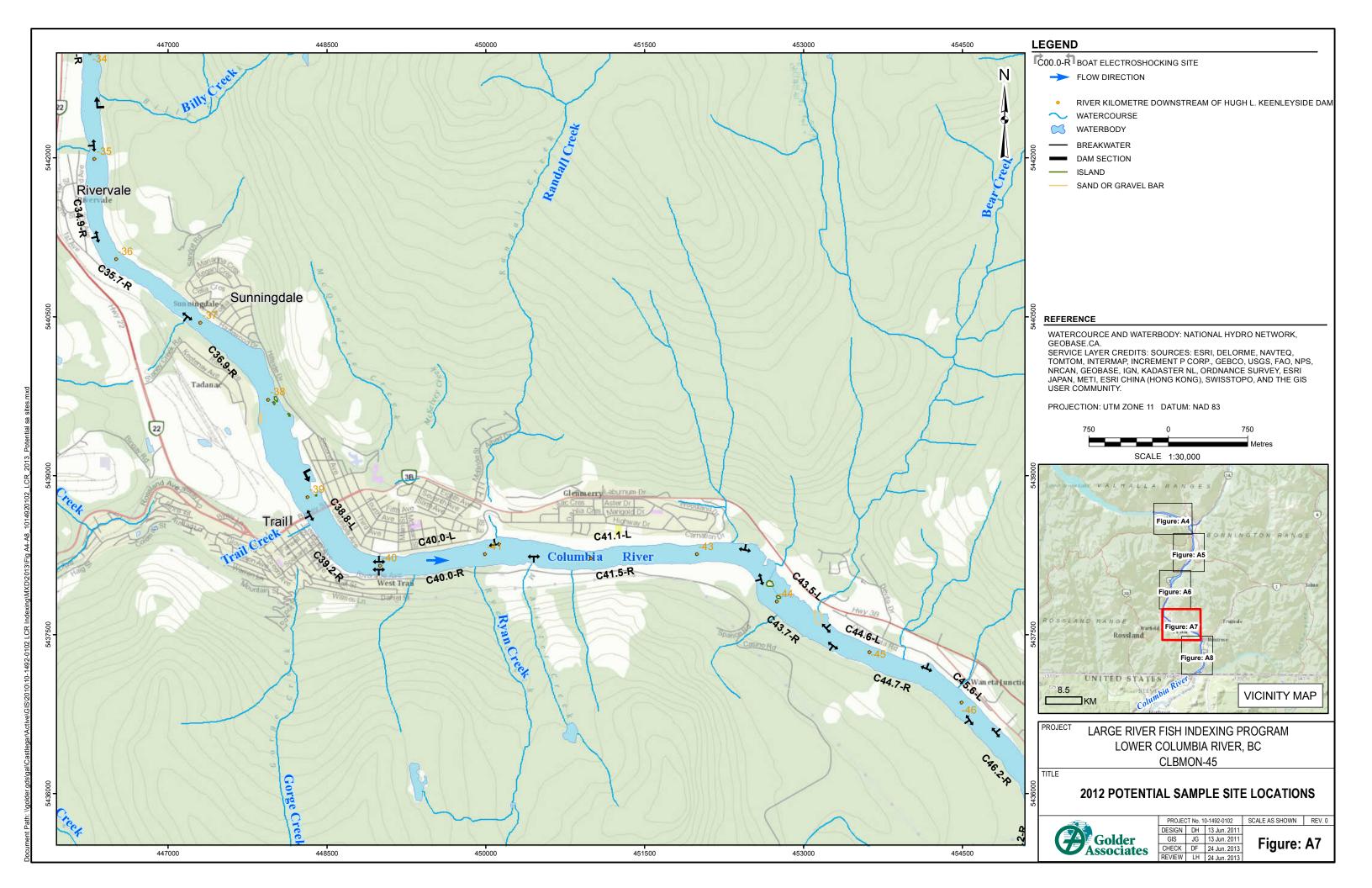

Site Designation	GRTS
COLO-R	Selection Order
COLO-R	
C05.1-R	
COBO-R	
COR-7-L	
COR.4-1. 8.4 LDB 11U 45183 5464445 11U 45230 5464246 COR.9-R 8.9 RDB 11U 452315 5464464 11U 452797 5464206 COR.9-R 8.9 RDB 11U 452315 5464074 11U 452797 5464206 COR.9-R 8.9 RDB 11U 452315 5464074 11U 452797 5464366 COR.9-R 8.9 RDB 11U 45270 5463604 11U 452286 5462718 COR.9-R 8.9 RDB 11U 45270 5463604 11U 45286 5462718 COR.9-R 10.7 RD 11U 452216 5463604 11U 45220 546386 COR.9-R 10.7 RD 11U 452216 5463604 11U 45220 546286 COR.9-R 10.7 RD 11U 452216 5463604 11U 452216 546286 COR.9-R 10.7 RD 11U 452216 5463608 11U 45216 546286 COR.9-R 10.7 RD 11U 452216 5463608 11U 45216 546286 COR.9-R 10.8 RDB 11U 45216 546286 11U 45216 546286 COR.9-R 10.8 RDB 11U 45216 546286 11U 45217 546286 COR.9-R 10.9 LDB 11U 45214 5462718 11U 45216 546286 COR.9-R 10.9 LDB 11U 452217 5462050 TIU 45230 5460373 COR.9-R 10.8 RDB 11U 452217 5462050 TIU 45230 5460373 COR.9-R 10.8 RDB 11U 452217 5462050 TIU 453103 546026 COR.9-R 10.8 RDB 11U 452217 5462050 TIU 453103 546026 COR.9-R 10.8 RDB 11U 452217 5462050 TIU 45320 5460373 COR.9-R 10.8 RDB 11U 453213 5459007 TIU 453214 5458057 COR.9-R 10.8 RDB 11U 453213 5459007 TIU 453214 5458057 COR.9-R 10.8 RDB 11U 453215 5459007 TIU 453214 5458057 COR.9-R 10.8 RDB 11U 453215 5459007 TIU 453214 5458057 COR.9-R 10.9 RDB 11U 453215 5459007 TIU 453214 5458057 COR.9-R 10.9 RDB 11U 453215 5459007 TIU 453214 545801 COR.9-R 10.9 RDB 11U 452351 5459007 TIU 453214 545801 COR.9-R 10.9 RDB 11U 452351 5459007 TIU 453214 545801 COR.9-R 10.9 RDB 11U 452351 545900 TIU 452351	
COR.6-L. 8.6 LDB 11U 452122 5464468 11U 452720 5464206 COR.9-R. 8.9 RDB 11U 452255 5464074 11U 452275 5464076 COR.0-L. 9.0 LDB 11U 452265 5462718 11U 45286 5462718 COR.2-L. 9.2 LDB 11U 45226 5463604 11U 45286 5462718 COR.8-R. 9.8 RDB 11U 45226 5463604 11U 45286 546280 COR.8-R. 9.8 RDB 11U 45276 5463608 11U 45286 546280 COR.8-R. 9.8 RDB 11U 45276 5463608 11U 45286 546280 COR.8-R. 9.8 RDB 11U 45276 5463608 11U 45286 546280 COR.8-R. 9.8 RDB 11U 45226 5463604 11U 452620 546280 COR.8-R. 9.8 RDB 11U 452164 5462781 11U 452164 546280 COR.8-R. 9.8 RDB 11U 452164 546280 COR.9-L. 10.9 LDB 11U 452545 5462718 11U 452164 5462718 COR.9-L. 10.9 LDB 11U 452547 5462050 11U 453103 5460426 COR.3-R. 11.5 RDB 11U 453201 5460373 11U 453201 5450075 COR.8-R. 13.4 LDB 11U 453201 5460373 11U 453201 5450075 COR.8-R. 13.4 LDB 11U 453201 545007 11U 453201 5450075 COR.8-R. 15.8 RDB 11U 453221 545007 11U 453201 5450075 COR.8-R. 15.8 RDB 11U 453221 545007 11U 452324 5450075 COR.8-R. 15.8 RDB 11U 452321 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452321 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452321 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452321 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545001 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545001 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452324 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 452325 5450075 COR.8-R. 18.0 RDB 11U 452325 545007 11U 442326 5450075 COR.8-R. 18.0 RDB 11U 450005 545007 11U 440005 5450075 COR.8-R. 18.0 R	20
COB.9-R	
COP-01-	
COP 2-1 9-2 LDB	
COD. S.	
Columbia River Downstream	6
Columbia River Downstream	
C10.7-R	
C10.8-R	
C10.9-L	7
C11.5-R	
C13.4-L	16
C13.4-L	
C13.4-R	
C15.8-R	18
C15.8-R	10
C16.6-R	
C17.0-L	14
C18.0 R 18.0 RDB 11U 452358 5456216 11U 452351 54554012 C18.8-R 18.8 RDB 11U 452351 5455401 11U 452122 5454012 C19.0-L 19.0 LDB 11U 452622 5455322 11U 452444 5454182 C20.1-L 20.1 LDB 11U 452444 5454182 11U 451645 5453285 C20.4-R 20.4 RDB 11U 451645 5453285 11U 450603 545191 11U 450603 545191 11U 450693 5452148 11U 450495 5452148 11U 450495 5452148 11U 450495 5452148 11U 450495 5450148 11U 450495 5450148 11U 450495 5450148 11U 450495 5452148 11U 450495 5450148 11U 450495 5450148 11U 440356 54501418 14U 450368 5450764 <	
C18.8 R	3
C19.0-L	
C20.1-L 20.1 LDB 11U 452444 5454182 11U 451645 5453285 C20.4-R 20.4 RDB 11U 452122 5454012 11U 451093 5453191 C21.3-L 21.3 LDB 11U 451645 5453285 11U 450093 5451637 C21.8-R 21.8 RDB 11U 450493 5453191 11U 450495 5452148 C22.9-R 22.9 RDB 11U 450603 5451637 11U 450368 5450764 C24.0-R 24.0 RDB 11U 450603 5451637 11U 449356 5450148 C24.3-L 24.3 LDB 11U 45088 545058 11U 449356 5450148 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448978 5450229 11U 448978 549022	
C20.4-R 20.4 RDB 11U 452122 5454012 11U 451093 5453191 C21.8-R 21.3 LDB 11U 451645 5453285 11U 450603 5451637 C21.8-R 21.8 RDB 11U 451093 5453191 11U 450495 5452148 C22.9-R 22.9 RDB 11U 450495 5452148 11U 450188 5451058 C23.4-L 23.4 LDB 11U 450638 5451058 11U 449366 5450764 C24.0-R 24.0 RDB 11U 45088 5451058 11U 449356 5450418 C24.3-L 24.3 LDB 11U 448038 5450764 11U 449756 5450229 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448978 5440266 11U 449838 5446262	
C21.3-L 21.3 LDB 11U 451645 5453285 11U 450693 5451637 C21.8-R 21.8 RDB 11U 451093 5453191 11U 450495 5452148 C22.9-R 22.9 RDB 11U 450495 5452148 11U 450185 5451058 C23.4-L 23.4 LDB 11U 450603 5451637 11U 450368 5450764 C24.0-R 24.0 RDB 11U 450188 5451058 11U 449356 5450764 C24.3-L 24.3 LDB 11U 450368 5450764 11U 449788 5450229 C25.3-L 25.3 MID 11U 448938 5449626 11U 448978 5450229 C26.2-L 26.2 MID 11U 448938 5449626 11U 448064 5447758 C28.8-L 28.8 LDB 11U 447804 5447758 11U 447320 5446998	
C21.8-R 21.8 RDB 11U 451093 5453191 11U 450495 5452148 C22.9-R 22.9 RDB 11U 450495 5452148 11U 450188 5451058 C23.4-L 23.4 LDB 11U 450188 5451058 11U 450368 5450764 C24.3-L 24.3 LDB 11U 450368 5450764 11U 449785 5450229 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448978 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449626 11U 448904 5447758 C28.8-L 28.8 LDB 11U 448064 5447758 11U 447820 5446998 C29.2-R 29.6 LDB 11U 447820 5446998 11U 447791 5446079	
C22.9-R 22.9 RDB 11U 450495 5452148 11U 450188 5451058 C23.4-L 23.4 LDB 11U 450603 5451637 11U 450368 5450764 C24.0-R 24.0 RDB 11U 450188 5451058 11U 449356 5450418 C24.3-L 24.3 LDB 11U 450368 5450764 11U 449178 5449989 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448938 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449626 11U 447397 5446229 C28.8-L 28.8 LDB 11U 4478136 5447758 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447715 5447420 11U 447397 5446252	13
C23.4-L 23.4 LDB 11U 450603 5451637 11U 450368 5450764 C24.0-R 24.0 RDB 11U 450188 5451058 11U 449356 5450418 C24.3-L 24.3 LDB 11U 448978 5450229 11U 449178 5449989 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448938 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449036 11U 448046 5447758 C28.8-L 28.8 LDB 11U 447715 5447420 11U 447820 5446998 C29.6-L 29.6 LDB 11U 447397 5446252 11U 447817 5446252 C29.6-L 30.5 RDB 11U 447397 5446252 11U 446746 5444824	13
C24.0-R 24.0 RDB 11U 450188 5451058 11U 449356 5450418 C24.3-L 24.3 LDB 11U 450368 5450764 11U 449178 5449989 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448938 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449036 11U 448064 5447758 C28.8-L 28.8 LDB 11U 447715 5447420 11U 447820 5446998 C29.6-L 29.6 LDB 11U 447737 5446252 11U 447491 5446079 C30.5-R 30.5 RDB 11U 447397 5446252 11U 446746 544432 C32.0-R 32.0 RDB 11U 446746 5444824 11U 446535 5443655	9
C24.3-L 24.3 LDB 11U 450368 5450764 11U 449178 5449989 C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448938 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449036 11U 448064 5447758 C28.8-L 28.8 LDB 11U 447715 5447420 11U 447397 5446252 C29.2-R 29.2 RDB 11U 447820 5446998 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447397 5446252 11U 446817 5444824 C30.5-R 30.5 RDB 11U 447491 5446079 11U 446746 5444824 C32.0-R 32.0 RDB 11U 446245 5444824 11U 446256 5443655	
C25.3-L 25.3 MID 11U 448978 5450229 11U 448978 5450229 C26.2-L 26.2 MID 11U 448938 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449036 11U 448064 5447758 C28.8-L 28.8 LDB 11U 448064 5447758 11U 447820 5446998 C29.2-R 29.2 RDB 11U 447715 5447420 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447397 5446252 11U 446817 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444824 C32.0-R 32.0 RDB 11U 446817 5444824 11U 446256 5443655 C33.3-R 33.3 RDB 11U 446746 5444432 11U 446256 5442116	
C26.2-L 26.2 MID 11U 448938 5449626 11U 448938 5449626 C27.5-L 27.5 LDB 11U 448193 5449036 11U 448064 5447758 C28.8-L 28.8 LDB 11U 448064 5447758 11U 447820 5446998 C29.2-R 29.2 RDB 11U 447715 5447420 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447397 5446252 11U 447491 5446079 C30.5-R 30.5 RDB 11U 447397 5446252 11U 446746 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444824 C32.0-R 32.0 RDB 11U 446217 5444824 11U 446255 5443655 C32.4-L 32.4 LDB 11U 446216 5444432 11U 446256 5442572	
C27.5-L 27.5 LDB 11U 448193 5449036 11U 448064 5447758 C28.8-L 28.8 LDB 11U 448064 5447758 11U 447820 5446998 C29.2-R 29.2 RDB 11U 447715 5447420 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447397 5446252 11U 447491 5446079 C30.5-R 30.5 RDB 11U 447397 5446252 11U 446817 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444322 C32.0-R 32.0 RDB 11U 446746 5444824 11U 446353 5442572 C33.3-R 33.3 RDB 11U 446266 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446296 5441253 11U 446290 541253	
C28.8-L 28.8 LDB 11U 448064 5447758 11U 447820 5446998 C29.2-R 29.2 RDB 11U 447715 5447420 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447820 5446998 11U 447491 5446079 C30.5-R 30.5 RDB 11U 447397 5446252 11U 446746 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444432 C32.0-R 32.0 RDB 11U 446746 5444824 11U 446256 5443655 C32.4-L 32.4 LDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446256 5442165 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472	
C29.2-R 29.2 RDB 11U 447715 5447420 11U 447397 5446252 C29.6-L 29.6 LDB 11U 447820 5446998 11U 447491 5446079 C30.5-R 30.5 RDB 11U 447397 5446252 11U 446817 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444432 C32.0-R 32.0 RDB 11U 446817 544824 11U 446256 5443655 C32.4-L 32.4 LDB 11U 446746 5444432 11U 446333 5442572 C33.3-R 33.3 RDB 11U 446256 5443655 11U 446200 5442116 11U 446294 5441253 C34.9-R 34.9 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472	5
C29.6-L 29.6 LDB 11U 447820 5446998 11U 447491 5446079 C30.5-R 30.5 RDB 11U 447397 5446252 11U 446817 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444322 C32.0-R 32.0 RDB 11U 446817 5444824 11U 446256 5443655 C32.4-L 32.4 LDB 11U 446746 5444432 11U 446353 5442572 C33.3-R 33.3 RDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607	3
C30.5-R 30.5 RDB 11U 447397 5446252 11U 446817 5444824 C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444432 C32.0-R 32.0 RDB 11U 446817 5444824 11U 446256 5443655 C32.4-L 32.4 LDB 11U 446746 5444432 11U 446353 5442572 C33.3-R 33.3 RDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 11U 447152 5440472 C35.7-R 35.7 RDB 11U 446294 5441253 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 448305 5438607 C39.2-R 39.2 RDB 11U 448305 5438607 <td< td=""><td></td></td<>	
C30.6-L 30.6 LDB 11U 447491 5446079 11U 446746 5444432 C32.0-R 32.0 RDB 11U 446817 5444824 11U 446256 5443655 C32.4-L 32.4 LDB 11U 446746 5444432 11U 446353 5442572 C33.3-R 33.3 RDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C40.0-L 40.0 LDB 11U 44805 5438067 11U 448995 5438083	
C32.0-R 32.0 RDB 11U 446817 5444824 11U 446256 5443655 C32.4-L 32.4 LDB 11U 446746 5444432 11U 446353 5442572 C33.3-R 33.3 RDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 448340 5439017 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450459 5438222	
C32.4-L 32.4 LDB 11U 446746 5444432 11U 446353 5442572 C33.3-R 33.3 RDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450499 5438222 C41.1-L 41.1 LDB 11U 450499 5438405 11U 452466 5438365	11
C33.3-R 33.3 RDB 11U 446256 5443655 11U 446260 5442116 C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 450459 5438365 11U	11
C34.9-R 34.9 RDB 11U 446260 5442116 11U 446294 5441253 C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C41.1-L 41.1 LDB 11U 450090 5438405 11U 450459 5438222 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 450459 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452466 5438015 11U	
C35.7-R 35.7 RDB 11U 446294 5441253 11U 447152 5440472 C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C40.0-R 40.0 RDB 11U 448995 5438083 11U 450459 5438222 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.7-R 43.7 RDB 11U 452466 5438365 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U	15
C36.9-R 36.9 RDB 11U 447152 5440472 11U 448305 5438607 C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C40.0-R 40.0 RDB 11U 448995 5438083 11U 450459 5438222 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 453245 5437597 11U 454179 5437228	1.3
C38.8-L 38.8 LDB 11U 448340 5439017 11U 449001 5438233 C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C40.0-R 40.0 RDB 11U 448995 5438083 11U 450459 5438222 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	4
C39.2-R 39.2 RDB 11U 448305 5438607 11U 448995 5438083 C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C40.0-R 40.0 RDB 11U 448995 5438083 11U 450459 5438222 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	7
C40.0-L 40.0 LDB 11U 449001 5438233 11U 450090 5438405 C40.0-R 40.0 RDB 11U 448995 5438083 11U 450459 5438222 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	1
C40.0-R 40.0 RDB 11U 448995 5438083 11U 450459 5438222 C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	1
C41.1-L 41.1 LDB 11U 450090 5438405 11U 452466 5438365 C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	
C41.5-R 41.5 RDB 11U 450459 5438222 11U 452579 5438015 C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	8
C43.5-L 43.5 LDB 11U 452466 5438365 11U 453245 5437597 C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	o
C43.7-R 43.7 RDB 11U 452579 5438015 11U 453275 5437384 C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	
C44.6-L 44.6 LDB 11U 453245 5437597 11U 454179 5437228	
	10
C44.7-R 44.7 RDB 11U 453275 5437384 11U 454560 5436673	19
C46.2-R 46.2 RDB 11U 454560 5436673 11U 455141 5435856 C46.4-L LDB 11U 454855 5436623 11U 455310 5425321	17
C46.4-L 46.4 LDB 11U 454855 5436623 11U 455319 5435321 C47.2 PDP 11U 455141 5435956 11U 455017 5424042	17
C47.2-R 47.2 RDB 11U 455141 5435856 11U 455017 5434942 C56.0-L 56.0 LDB 11U 454774 5428024 11U 453949 5427733	12 2


^a River kilometres downstream from Hugh L. Keenleyside Dam.


^b LDB=Left bank as viewed facing downstream; RDB=Right bank as viewed facing downstream.







APPENDIX B

Habitat Summary Information

Table B1 Descriptions of categories used in the Lower Columbia River Bank Habitat Types Classification System.

Category	Code	Description
Armoured/Stable	A1	Banks generally stable and at repose with cobble/small boulder/gravel substrates predominating; uniform shoreline configuration with few/minor bank irregularities; velocities adjacent to bank generally low-moderate, instream cover limited to substrate roughness (i.e., cobble/small boulder interstices).
	A2	Banks generally stable and at repose with cobble/small boulder and large boulder substrates predominating; irregular shoreline configuration generally consisting of a series of armoured cobble/boulder outcrops that produce Backwater habitats; velocities adjacent to bank generally moderate with low velocities provided in BW habitats: instream cover provided by BW areas and substrate roughness; overhead cover provided by depth and woody debris; occasionally associated with C2, E4, and E5 banks.
	A3	Similar to A2 in terms of bank configuration and composition although generally with higher composition of large boulders/bedrock fractures; very irregular shoreline produced by large boulders and bed rock outcrops; velocities adjacent to bank generally moderate to high; instream cover provided by numerous small BW areas, eddy pools behind submerged boulders, and substrate interstices; overhead cover provided by depth; exhibits greater depths offshore than found in A1 or A2 banks; often associated with C1 banks.
	A4	Gently sloping banks with predominantly small and large boulders (boulder garden) often embedded in finer materials; shallow depths offshore, generally exhibits moderate to high velocities; instream cover provided by "pocket eddies" behind boulders; overhead cover provided by surface turbulence.
	A5	Bedrock banks, generally steep in profile resulting in deep water immediately offshore; often with large bedrock fractures in channel that provide instream cover; usually associated with moderate to high current velocities; overhead cover provided by depth.
	A6	Man-made banks usually armoured with large boulder or concrete rip-rap; depths offshore generally deep and usually found in areas with moderate to high velocities; instream cover provided by rip-rap interstices; overhead cover provided by depth and turbulence.
Depositional	D1	Low relief, gently sloping bank type with shallow water depths offshore; substrate consists predominantly of fines (i.e., sand/silt); low current velocities offshore; instream cover generally absent or, if present, consisting of shallow depressions produced by dune formation (i.e., in sand substrates) or embedded cobble/boulders and vegetative debris; this bank type was generally associated with bar formations or large backwater areas.
	D2	Low relief, gently sloping bank type with shallow water depths offshore; substrate consists of coarse materials (i.e., gravels/cobbles); low-moderate current velocities offshore; areas with higher velocities usually producing riffle areas; overhead cover provided by surface turbulence in riffle areas; instream cover provided by substrate roughness; often associated with bar formations and shoal habitat.
	D3	Similar to D2 but with coarser substrates (i.e., large cobble/small boulder) more dominant; boulders often embedded in cobble/gravel matrix; generally found in areas with higher average flow velocities than D1 or D2 banks; instream cover abundantly available in form of substrate roughness; overhead cover provided by surface turbulence; often associated with fast riffle transitional bank type that exhibits characteristics of both Armoured and Depositional bank types.
SPECIAL HABITAT FEA	ATURES	
BACKWATER POOLS	-	These areas represent discrete areas along the channel margin where backwater irregularities produce localized areas of counter-current flows or areas with reduced flow velocities relative to the mainstem; can be quite variable in size and are often an integral component of Armoured and erosional bank types. The availability and suitability of Backwater pools are determined by flow level. To warrant separate identification as a discrete unit, must be a minimum of 10 m in length; widths highly variable depending on bank irregularity that produces the pool. Three classes are identified:
	BW-P1	Highest quality pool habitat type for adult and subadult cohorts for feeding/holding functions. Maximum depth exceeding 2.5 m, average depth 2.0 m or greater; high availability of instream cover types (e.g., submerged boulders, bedrock fractures, depth, woody debris); usually with Moderate to High countercurrent flows that provide overhead cover in the form of surface turbulence.
	BW-P2	Moderate quality pool type for adult and subadult cohorts for feeding/holding; also provides moderate quality habitat for smaller juveniles for rearing. Maximum depths between 2.0 to 2.5 m, average depths generally in order of 1.5 m. Moderate availability of instream cover types; usually with Low to Moderate countercurrent flow velocities that provide limited overhead cover.

Table B1 Concluded.

BW-P3 Low quality pool type for adult/subadult classes; moderate-high quality habitat for y-o-y and small juveniles

for rearing. Maximum depth <1.0 m. Low availability of instream cover types; usually with Low-Nil current

velocities.

EDDY POOL EDDY Represent large (<30 m in diameter) areas of counter current flows with depths generally >5 m; produced by

major bank irregularities and are available at all flow stages although current velocities within eddy are dependent on flow levels. High quality areas for adult and subadult life stages. High availability of instream

cover.

SNYE SN A side channel area that is separated from the mainstem at the upstream end but retains a connection at the

lower end. SN habitats generally present only at lower flow stages since area is a flowing side channel at higher flows: characterized by low-nil velocity, variable depths (generally <3 m) and predominantly depositional substrates (i.e., sand/silt/gravel); often supports growths of aquatic vegetation; very important

areas for rearing and feeding.

Velocity Classifications:

Low: <0.5 m/s

Moderate: 0.5 to 1.0 m/s

High: >1.0 m/s

Table B2 Length of bank habitat types at boat electroshocking sites within the Lower Columbia River, 2012.

g .:	C* . 3					L	ength (n	n) of Ba	nk Habi	itat Typ	oe ^b					Total
Section	Site ^a	A1	A2	A3	A4	A5	A6	A1+A2	A2+A3	D1	D2	D3	D1+D2	BW	Eddy	Length (m)
Upstream	C00.0-R		543											394		937
Columbia	C00.7-L		290							303						593
	C01.3-L	200								1401						1601
	C02.8-L									882						882
	C03.6-L	1276			121					691						2087
	C04.6-R									517						517
	C05.6-L	654								447						1101
	C07.3-R				1705											1705
	C07.4-L												998			998
Upstream Colu	ımbia Total	2130	833		1826					4241			998	394		10 422
Kootenay	K00.3-L								230					207		436
River	K00.6-R												364		232	596
	K01.8-L		304			387					1179					1871
	K01.8-R					326			971							1296
Kootenay Rive	r Total		304			713			1200		1179		364	207	232	4199
Downstream	C25.3-R	1380				317			1029							2727
Columbia	C27.6-R					122			185		306					613
	C28.2-R		1131													1131
	C34.9-L		1740	396												2136
	C36.6-L					880			1031			483				2395
	C47.8-L								826	613						1439
	C48.2-R												495	514		1009
	C49.0-L		379								550					930
	C49.0-R							101					618			720
	C49.8-L		2447													2447
	C49.8-R		1511								489			391		2391
	C52.2-L										458				431	889
	C52.2-R		3272												518	3790
	C52.8-L		428		464											893
	C53.6-L						1518									1518
Downstream C	olumbia Total	1380	10909	396	464	1320	1518	101	3072	613	1802	483	1113	905	949	25 026
Grand Total		3510	12047	396	2290	2033	1518	101	4272	4854	2982	483	2475	1506	1181	39 648

^a See Appendix A, Figures A1 to A3 for sample site locations.

^b See Appendix B, Table B1 for bank habitat type descriptions.

Table B3 Summary of habitat variables recorded at boat electroshocking sites in the Lower Columbia River, 24 September to 26 October 2012.

Section Size Session Temperatura Temperatura Constitutivity Conference Conferenc				Air	Water	C 1 .: :		Water	Instream	Water			Cov	er Types (%)			
Notemay No.	Section	Site ^a	Session			Conductivity (µS)	Cloud Cover ^b						Turbulence				
Kootenay Kootenay				(°C)	(°C)			Visibility	,		Interstices	Debris		Vegetation	Vegetation	Water	Water
Kootenay KOO3-L 3 8.00 13.30 100 Overcast High Low High 40 0 0 0 0 40 30 Kootenay KOO3-L 4 5.00 11.70 140 Partly cloudy High High 40 0 0 0 0 30 30 Kootenay KOO6-R 2 9.00 13.70 150 Clear High High High 30 0 0 0 0 40 30 Kootenay KOO6-R 3 8.00 12.90 100 Overcast High High 30 0 0 0 0 40 30 Kootenay KOLS-L 1 15.00 15.50 140 Clear High High High 15 0 0 0 0 75 10 Kootenay KO18-L 2 9.00 13.70 150 Clear	Kootenay		1	12.00	15.50	140		High	High	High	80	0	5	0	0	15	0
Kootensy KOO3-L 4 5.00 11.70 140 Partly cloudy Medium High 40 0 0 0 0 30 30 30 Kootenay KOO6-R 1 10.00 15.30 140 Partly cloudy High High High 90 0 10 0	Kootenay	K00.3-L	2	1.00	13.40	150	Clear	High	High	High	20	0	0	0	0	0	80
Koolenay Koole-R 1	Kootenay	K00.3-L	3	8.00	13.30	100	Overcast	High	Low	High	30	0	0	0	0	40	30
Kooleny K00.6-R 2 9.00 13.70 150 Clear High High High 0 0 0 10 0 90 0 Kootenay K00.6-R 3 8.00 12.90 100 Overcast High High High High 30 0 0 0 0 40 30 Kootenay K00.6-R 4 11.70 7.00 140 Party cloudy Medium Low High High High 40 0 0 0 0 20 40 Kootenay K01.8-L 2 9.00 13.70 150 Clear High High High 15 0 0 0 0 75 10 Kootenay K01.8-L 3 9.00 13.70 150 Clear High High High High 10 0 0 0 0 0 0 0 0 0	Kootenay	K00.3-L	4	5.00	11.70	140	Partly cloudy	Medium	Medium	High	40	0	0	0	0	30	30
Koolenny KOo,6-R 3 8.00 12.90 100 Overcast High High High 30 0 0 0 0 40 40 30 Kootenay KOO,6-R 4 11.70 7.00 140 Clear High Low High High 40 0 0 0 0 40 30 Kootenay KO1.8-L 1 15.00 13.70 150 Clear High High High 15 0 0 0 75 10 Kootenay KO1.8-L 3 9.00 13.50 100 Overcast High High High 10 0 0 0 0 70 10 Kootenay KO1.8-L 1 10.00 15.50 140 Partly cloudy High High High 40 0 0 0 0 0 0 0 0 0 0 0 0	Kootenay	K00.6-R	1	10.00	15.30	140	Partly cloudy	High	High	High	90	0	10	0	0	0	0
Kootenay KOo.6-R 4 11.70 7.00 140 Partly cloudy Mcdium Low High High High 40 0 0 0 0 20 40 30 Kootenay K01.8-L 1 15.00 13.70 150 Clear High High High High High 15 0 0 0 0 75 10 Kootenay K01.8-L 2 9.00 13.70 150 Clear High High High High 15 0 0 0 0 75 10 Kootenay K01.8-L 4 6.00 11.70 140 Partly cloudy Medium Low High High High 40 0	Kootenay	K00.6-R	2	9.00	13.70	150	Clear	High	High	High	0	0	0	10	0	90	0
Kootenay KO1.8-L 1 15.00 15.50 140 Clear High High High High High High High High	Kootenay	K00.6-R	3	8.00	12.90	100	Overcast	High	High	High	30	0	0	0	0	40	30
Kotenay K01.8-L 2 9.00 13.70 150 Clear High	Kootenay	K00.6-R	4	11.70	7.00	140	Partly cloudy	Medium	Low	High	30	0	0	0	0	40	30
Kotenay KO1.8-L 3 9.00 13.50 100 Overcast High High High High High High High High	Kootenay	K01.8-L	1	15.00	15.50	140	Clear	High	High	High	40	0	0	0	0	20	40
Kotenay KO1.8-L 4 6.00 11.70 140 Partly cloudy Medium Low High 30 0 </td <td>Kootenay</td> <td>K01.8-L</td> <td>2</td> <td>9.00</td> <td>13.70</td> <td>150</td> <td>Clear</td> <td>High</td> <td>High</td> <td>High</td> <td>15</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>75</td> <td>10</td>	Kootenay	K01.8-L	2	9.00	13.70	150	Clear	High	High	High	15	0	0	0	0	75	10
Kotenay K01.8-R 1 10.00 15.50 140 Partly cloudy High High High 40 0 </td <td>Kootenay</td> <td>K01.8-L</td> <td>3</td> <td>9.00</td> <td>13.50</td> <td>100</td> <td>Overcast</td> <td>High</td> <td>High</td> <td>High</td> <td>10</td> <td>0</td> <td>10</td> <td>0</td> <td>0</td> <td>70</td> <td>10</td>	Kootenay	K01.8-L	3	9.00	13.50	100	Overcast	High	High	High	10	0	10	0	0	70	10
Kootenay KO1.8-R 2 11.00 13.70 150 Clear High High High 20 0 0 0 0 70 10 Kootenay K01.8-R 3 8.00 13.30 100 Overcast High High High High 40 0 0 0 0 30 30 Lower C47.8-L 1 12.00 14.70 110 Clear High Hi	Kootenay	K01.8-L	4	6.00	11.70	140	Partly cloudy	Medium	Low	High	30	0	0	0	0	50	20
Kootenay KO1.8-R 3 8.00 13.30 100 Overcast High	Kootenay	K01.8-R	1	10.00	15.50	140	Partly cloudy	High	High	High	40	0	0	0	0	0	60
Kootenay KO1.8-R 4 8.00 12.10 140 Partly cloudy High Medium High 40 0 0 0 0 30 30 Lower C47.8-L 1 12.00 14.70 110 Clear High Hi	Kootenay	K01.8-R	2	11.00	13.70	150	Clear	High	High	High	20	0	0	0	0	70	10
Lower C47.8-L 1 12.00 14.70 110 Clear High High High 75 0 5 10 0 10 0 Lower C47.8-L 2 1.00 13.70 110 Clear High High High 10 0 0 0 0 0 85 5 Lower C47.8-L 3 7.00 12.90 110 Clear High High High High 15 0 5 5 0 70 5 Lower C47.8-L 4 8.00 12.00 120 Clear High	Kootenay	K01.8-R	3	8.00	13.30	100	Overcast	High	High	High	30	0	0	0	0	50	20
Lower C47.8-L 2 1.00 13.70 110 Clear High <	Kootenay	K01.8-R	4	8.00	12.10	140	Partly cloudy	High	Medium	High	40	0	0	0	0	30	30
Lower C47.8-L 3 7.00 12.90 110 Clear High High High High 15 0 5 5 0 70 5 Lower C47.8-L 4 8.00 12.00 120 Clear High	Lower	C47.8-L	1	12.00	14.70	110	Clear	High	High	High	75	0	5	10	0	10	0
Lower C47.8-L 4 8.00 12.00 120 Clear High High High 30 0 0 5 0 25 40 Lower C48.2-R 1 16.00 14.50 110 Clear High High High 20 0 0 5 0 75 0 Lower C48.2-R 2 11.00 13.70 110 Clear High High High High 10 0 0 5 0 80 5 Lower C48.2-R 3 12.00 12.90 110 Clear High	Lower	C47.8-L	2	1.00	13.70	110	Clear	High	High	High	10	0	0	0	0	85	5
Lower C48.2-R 1 16.00 14.50 110 Clear High	Lower	C47.8-L	3	7.00	12.90	110	Clear	High	High	High	15	0	5	5	0	70	5
Lower C48.2-R 2 11.00 13.70 110 Clear High High High High 10 0 0 5 0 80 5 Lower C48.2-R 3 12.00 12.90 110 Clear High High High High 20 0 0 0 0 0 70 10 Lower C48.2-R 4 10.00 11.70 110 Partly cloudy High High High 0 0 0 5 0 80 15 Lower C49.0-L 1 10.00 14.50 110 Clear High High High High 40 0 5 5 0 50 0 Lower C49.0-L 2 1.00 13.70 110 Clear High High High High 15 0 0 0 0 0 80 5 Lowe	Lower	C47.8-L	4	8.00	12.00	120	Clear	High	High	High	30	0	0	5	0	25	40
Lower C48.2-R 3 12.00 12.90 110 Clear High High High High High High High High	Lower	C48.2-R	1	16.00	14.50	110	Clear	High	High	High	20	0	0	5	0	75	0
Lower C48.2-R 4 10.00 11.70 110 Partly cloudy High High High High O 0 0 5 0 80 15 Lower C49.0-L 1 10.00 14.50 110 Clear High High <td>Lower</td> <td>C48.2-R</td> <td>2</td> <td>11.00</td> <td>13.70</td> <td>110</td> <td>Clear</td> <td>High</td> <td>High</td> <td>High</td> <td>10</td> <td>0</td> <td>0</td> <td>5</td> <td>0</td> <td>80</td> <td>5</td>	Lower	C48.2-R	2	11.00	13.70	110	Clear	High	High	High	10	0	0	5	0	80	5
Lower C49.0-L 1 10.00 14.50 110 Clear High	Lower	C48.2-R	3	12.00	12.90	110	Clear	High	High	High	20	0	0	0	0	70	10
Lower C49.0-L 2 1.00 13.70 110 Clear High High High High High 15 0 0 0 0 80 5 Lower C49.0-L 3 8.00 12.90 110 Clear High High High 25 0 0 0 0 0 70 5 Lower C49.0-L 4 6.00 12.00 120 Clear High High High High 20 0 0 0 0 80 0 Lower C49.0-R 1 13.00 14.50 110 Partly cloudy High High High High High 90 0 0 0 0 0 10 0 Lower C49.0-R 2 7.00 13.70 110 Clear High High High High 90 0 0 0 0 0 0 </td <td>Lower</td> <td>C48.2-R</td> <td>4</td> <td>10.00</td> <td>11.70</td> <td>110</td> <td>Partly cloudy</td> <td>High</td> <td>High</td> <td>High</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> <td>0</td> <td>80</td> <td>15</td>	Lower	C48.2-R	4	10.00	11.70	110	Partly cloudy	High	High	High	0	0	0	5	0	80	15
Lower C49.0-L 3 8.00 12.90 110 Clear High High High High 25 0 0 0 0 0 70 5 Lower C49.0-L 4 6.00 12.00 120 Clear High High High 20 0 0 0 0 80 0 Lower C49.0-R 1 13.00 14.50 110 Partly cloudy High High High High 90 0 0 0 0 0 10 0 Lower C49.0-R 2 7.00 13.70 110 Clear High High High High High 90 0 <td>Lower</td> <td>C49.0-L</td> <td>1</td> <td>10.00</td> <td>14.50</td> <td>110</td> <td>Clear</td> <td>High</td> <td>High</td> <td>High</td> <td>40</td> <td>0</td> <td>5</td> <td>5</td> <td>0</td> <td>50</td> <td>0</td>	Lower	C49.0-L	1	10.00	14.50	110	Clear	High	High	High	40	0	5	5	0	50	0
Lower C49.0-L 4 6.00 12.00 120 Clear High High High 20 0 0 0 0 80 0 Lower C49.0-R 1 13.00 14.50 110 Partly cloudy High High High 90 0 0 0 0 0 10 0 Lower C49.0-R 2 7.00 13.70 110 Clear High High High 10 0 0 0 0 80 10	Lower	C49.0-L	2	1.00	13.70	110	Clear	High	High	High	15	0	0	0	0	80	5
Lower C49.0-R 1 13.00 14.50 110 Partly cloudy High High High 90 0 0 0 0 0 0 10 0 Lower C49.0-R 2 7.00 13.70 110 Clear High High High 10 0 0 0 0 80 10	Lower	C49.0-L	3	8.00	12.90	110	Clear	High	High	High	25	0	0	0	0	70	5
Lower C49.0-R 2 7.00 13.70 110 Clear High High High 10 0 0 0 80 10	Lower	C49.0-L	4	6.00	12.00	120	Clear	High	High	High	20	0	0	0	0	80	0
	Lower	C49.0-R	1	13.00	14.50	110	Partly cloudy	High	High	High	90	0	0	0	0	10	0
Lower C49.0-R 3 9.00 12.90 110 Clear High High High 20 0 0 0 70 10	Lower	C49.0-R	2	7.00	13.70	110	Clear	High	High	High	10	0	0	0	0	80	10
	Lower	C49.0-R	3	9.00	12.90	110	Clear	High	High	High	20	0	0	0	0	70	10

^a See Appendix B, Figures B1 to B3 for sample site locations.

^b Clear = <10%; Partly Cloudy = 10-50%; Mostly Cloudy = 50-90%; Overcast = >90%.

 $^{^{}c}$ High = >1.0 m/s; Medium = 0.5-1.0 m/s; Low = <0.5 m/s.

^d High = >3.0 m; Medium = 1.0-3.0 m; Low = <1.0 m.

Table B3 Continued.

			Air	Water	G 1 .: ':		Water	Instream	Water			Cov	er Types (%)			
Section	Site ^a	Session	Temperature (°C)	Temperature (°C)	Conductivity (µS)	Cloud Cover ^b	Surface Visibility	Velocity ^c	Clarity ^d	Substrate Interstices	Woody Debris	Turbulence	Aquatic Vegetation	Terrestrial Vegetation	Shallow Water	Deep Water
Lower	C49.0-R	4	9.00	11.70	110	Partly cloudy	High	High	High	10	0	0	0	0	60	30
Lower	C49.8-L	1	10.00	14.50	110	Clear	High	High	High	85	0	5	10	0	0	0
Lower	C49.8-L	2	1.00	13.70	110	Clear	High	High	High	15	0	5	0	0	80	0
Lower	C49.8-L	3	7.00	12.70	110	Clear	High	High	High	10	0	5	0	0	75	10
Lower	C49.8-L	4	6.00	12.00	120	Clear	High	High	High	10	0	10	0	0	40	40
Lower	C49.8-R	1	12.00	14.50	110	Clear	High	High	High	50	0	0	10	0	20	20
Lower	C49.8-R	2	2.00	13.50	120	Clear	High	High	High	10	0	0	0	0	80	10
Lower	C49.8-R	3	8.00	12.90	110	Clear	High	High	High	10	0	0	0	0	70	20
Lower	C49.8-R	4	8.00	11.70	110	Partly cloudy	High	High	High	15	0	0	0	0	60	25
Lower	C52.2-L	1	5.00	14.50	110	Clear	High	High	High	80	0	5	15	0	0	0
Lower	C52.2-L	2	0.00	13.70	110	Clear	High	High	High	10	0	10	0	0	70	10
Lower	C52.2-L	3	6.00	12.70	120	Clear	High	High	High	30	0	30	0	0	30	10
Lower	C52.2-L	4	4.00	12.00	120	Clear	High	High	High	10	0	0	5	0	20	65
Lower	C52.2-R	1	10.00	14.50	110	Clear	High	High	High	50	0	20	0	0	10	20
Lower	C52.2-R	2	2.00	13.50	120	Partly cloudy	High	High	High	10	0	15	0	0	70	5
Lower	C52.2-R	3	6.00	12.90	110	Clear	High	High	High	10	0	5	1	0	65	19
Lower	C52.2-R	4	7.00	11.70	120	Overcast	Medium	High	Medium	20	0	20	0	0	30	30
Lower	C52.8-L	1	5.00	14.50	110	Clear	High	High	High	0	0	0	0	0	0	0
Lower	C52.8-L	2	0.00	13.70	110	Clear	High	High	High	10	0	20	0	0	60	10
Lower	C52.8-L	3	5.00	12.70	120	Clear	High	High	High	30	0	0	0	0	30	40
Lower	C52.8-L	4	5.00	12.00	120	Clear	High	High	High	30	0	0	0	0	0	70
Lower	C53.6-L	1	5.00	14.50	110	Clear	High	High	High	95	0	5	0	0	0	0
Lower	C53.6-L	2	0.00	13.70	110	Clear	High	High	High	30	0	30	0	0	20	20
Lower	C53.6-L	3	4.00	12.70	120	Clear	High	High	High	30	0	0	0	0	30	40
Lower	C53.6-L	4	6.00	12.00	120	Clear	High	High	High	50	0	0	0	0	0	50
Middle	C25.3-R	1	15.00	14.70	110	Partly cloudy	High	High	Medium	40	1	19	5	0	10	25
Middle	C25.3-R	2	8.00	13.70	110	Partly cloudy	High	High	High	5	0	0	5	0	85	5
Middle	C25.3-R	3	10.00	12.90	110	Clear	High	High	High	20	0	10	0	0	40	30
Middle	C25.3-R	4	6.30	12.10	110	Clear	High	High	High	20	5	0	5	0	40	30
Middle	C27.6-R	1	13.00	14.50	110	Clear	High	Low	High	55	0	0	5	0	40	0
Middle	C27.6-R	2	8.00	13.70	110	Partly cloudy	High	High	High	25	0	0	0	0	75	0

^a See Appendix B, Figures B1 to B3 for sample site locations.

^b Clear = <10%; Partly Cloudy = 10-50%; Mostly Cloudy = 50-90%; Overcast = >90%.

 $^{^{}c}$ High = >1.0 m/s; Medium = 0.5-1.0 m/s; Low = <0.5 m/s.

^d High = >3.0 m; Medium = 1.0-3.0 m; Low = <1.0 m.

Table B3 Continued.

Section Site ^a Middle C27.6-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	3 4 1 2 3 4 1	Temperature (°C) 9.00 5.00 12.00 8.00 8.00	Temperature (°C) 12.90 12.10 14.10	Conductivity (µS) 110 110	Cloud Cover ^b Clear	Surface Visibility	Instream Velocity ^c	Water Clarity ^d	Substrate	Woody		Aquatic	Terrestrial	Shallow	Ъ
Middle C27.6-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	4 1 2 3	9.00 5.00 12.00 8.00	12.90 12.10 14.10		Clear	,			Interstices	Debris	Turbulence	Vegetation	Vegetation	Water	Deep Water
Middle C27.6-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	4 1 2 3	5.00 12.00 8.00	12.10 14.10		Clear		*** 1	*** 1			20	Ü	Ŭ		
Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	1 2 3	12.00 8.00	14.10	110		High	High	High	30	0	20	0	0	50	0
Middle C28.2-R Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	3	8.00			Clear	High	High	High	40	0	10	0	0	40	10
Middle C28.2-R Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	3			110	Clear	High	Low	High	55	0	0	5	0	30	10
Middle C28.2-R Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R		8.00	13.70	110	Clear	High	High	High	0	0	0	0	0	100	0
Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	4		12.90	110	Clear	High	High	High	20	0	0	0	0	80	0
Middle C34.9-L Middle C34.9-L Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	1	4.00	12.10	110	Clear	High	High	High	20	0	0	0	0	60	20
Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R		15.00	15.30	110	Clear	High	Medium	High	70	0	0	0	0	15	15
Middle C34.9-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	2	12.00	14.50	120	Clear	High	High	High	50	0	30	0	0	20	0
Middle C36.6-L Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	3	12.90	12.90	110	Clear	High	High	High	30	0	0	0	0	40	30
Middle C36.6-L Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	4	4.00	12.10	110	Partly cloudy	High	High	High	40	0	0	0	0	30	30
Middle C36.6-L Middle C36.6-L Upper C00.0-R Upper C00.0-R	1	10.00	14.50	110	Clear	High	Medium	High	50	0	20	5	0	0	25
Middle C36.6-L Upper C00.0-R Upper C00.0-R	2	8.00	14.50	120	Clear	Medium	High	High	30	0	10	0	0	0	60
Upper C00.0-R Upper C00.0-R	3	7.00	12.90	110	Clear	High	High	High	30	0	0	0	0	0	70
Upper C00.0-R	4	3.00	12.10	120	Clear	High	High	High	0	0	30	0	0	30	40
11	1	14.00	13.90	90	Partly cloudy	High	High	High	0	0	0	5	0	75	20
Upper C00.0-R	2	7.10	13.30	110	Clear	High	Low	High	10	5	0	10	0	70	5
	3	10.00	12.30	100	Mostly cloudy	High	Low	High	20	0	0	2	0	68	10
Upper C00.0-R	4	10.00	11.30	110	Partly cloudy	High	Low	High	0	2	0	0	0	40	58
Upper C00.7-L	1	10.00	13.90	90	Mostly cloudy	Medium	Low	High	0	0	0	20	0	80	0
Upper C00.7-L	2	4.00	13.30	110	Clear	High	Low	High	10	0	0	15	0	75	0
Upper C00.7-L	3	10.00	12.10	100	Mostly cloudy	High	Low	High	20	0	0	5	0	70	5
Upper C00.7-L	4	9.00	11.30	110	Partly cloudy	High	Low	High	0	0	0	10	0	70	20
Upper C01.3-L	1	14.00	13.90	100	Partly cloudy	High	Low	High	0	0	0	15	0	85	0
Upper C01.3-L	2	3.00	12.90	100	Clear	High	Low	High	10	5	0	40	0	40	5
Upper C01.3-L	3	10.00	12.10	100	Overcast	High	Low	High	0	0	0	10	0	85	5
Upper C01.3-L	4	8.00	11.30	110	Partly cloudy	High	Low	High	10	0	0	10	0	70	10
Upper C02.8-L	1	13.00	13.90	100	Mostly cloudy	High	Low	High	0	0	0	70	0	30	0
Upper C02.8-L	2	1.00	13.30	110	Clear	High	Low	High	0	0	0	70	0	30	0
Upper C02.8-L	3	9.00	12.10	100	Overcast	High	Low	High	10	0	0	10	0	80	0
Upper C02.8-L	4	2.00	10.90	110	Clear	High	Low	High	10	0	0	10	0	75	5
Upper C03.6-L		10.00	14.00	100	Mostly cloudy	High	Low	High	0	0	0	65	0	35	0

^a See Appendix B, Figures B1 to B3 for sample site locations.

^b Clear = <10%; Partly Cloudy = 10-50%; Mostly Cloudy = 50-90%; Overcast = >90%.

 $^{^{}c}$ High = >1.0 m/s; Medium = 0.5-1.0 m/s; Low = <0.5 m/s.

^d High = >3.0 m; Medium = 1.0-3.0 m; Low = <1.0 m.

Table B3 Continued.

			Air	Water	G 1 .: ::		Water	Instream	Water			Cov	er Types (%)			
Section	Site ^a	Session	Temperature (°C)	Temperature (°C)	Conductivity (µS)	Cloud Cover ^b	Surface Visibility	Velocity ^c	Clarity ^d	Substrate Interstices	Woody Debris	Turbulence	Aquatic Vegetation	Terrestrial Vegetation	Shallow Water	Deep Water
Upper	C03.6-L	2	0.00	13.10	110	Clear	High	Low	High	20	0	0	40	0	20	20
Upper	C03.6-L	3	9.00	12.10	100	Overcast	Medium	Low	High	10	0	0	40	0	50	0
Upper	C03.6-L	4	3.00	10.90	110	Clear	High	Low	High	10	0	0	0	0	80	10
Upper	C04.6-R	1	8.00	14.00	100	Clear	High	Low	High	0	0	0	100	0	0	0
Upper	C04.6-R	2	0.00	13.30	110	Clear	High	Low	High	0	0	0	100	0	0	0
Upper	C04.6-R	3	8.00	12.10	100	Overcast	High	Low	High	0	1	0	99	0	0	0
Upper	C04.6-R	4	3.00	10.90	110	Clear	High	Low	High	0	0	0	80	0	10	10
Upper	C05.6-L	1	8.00	14.10	100	Clear	High	Low	High	0	2	0	18	0	80	0
Upper	C05.6-L	2	0.00	12.60	110	Clear	High	Low	High	0	0	0	10	0	90	0
Upper	C05.6-L	3	10.00	12.30	100	Overcast	High	Low	High	20	0	0	40	0	40	0
Upper	C05.6-L	4	3.00	10.90	110	Clear	High	Low	High	10	5	0	0	0	10	75
Upper	C07.3-R	1	10.00	14.00	140	Partly cloudy	High	High	High	90	0	5	5	0	0	0
Upper	C07.3-R	2	1.00	12.90	110	Clear	High	High	High	30	0	0	0	0	70	0
Upper	C07.3-R	3	9.00	12.30	100	Overcast	High	High	High	40	0	10	0	0	30	20
Upper	C07.3-R	4	4.00	10.90	110	Partly cloudy	Medium	High	High	40	0	0	0	0	40	20
Upper	C07.4-L	1	10.00	14.10	100	Partly cloudy	High	High	High	60	0	5	20	0	15	0
Upper	C07.4-L	2	1.00	12.60	110	Clear	High	High	High	0	0	0	20	0	80	0
Upper	C07.4-L	3	10.00	12.30	100	Overcast	High	Low	High	10	0	10	30	0	40	10
Upper	C07.4-L	4	3.00	10.90	100	Partly cloudy	Medium	High	High	40	0	0	10	0	30	20
Lower	C16.6-R	GRTS	4.00	10.90	110	Overcast	High	High	High	0	0	0	0	0	80	20
Lower	C41.1-L	GRTS	5.00	10.90	110	Mostly cloudy	High	High	High	0	0	0	0	0	90	10
Lower	C44.6-L	GRTS	4.00	10.90	110	Mostly cloudy	High	High	High	0	0	0	0	0	90	10
Lower	C46.4-L	GRTS	4.00	10.90	110	Mostly cloudy	High	High	High	10	0	0	0	0	20	70
Lower	C47.2-R	GRTS	3.00	10.90	110	Overcast	High	High	High	10	0	0	0	0	70	20
Lower	C56.0-L	GRTS	6.00	12.10	120	Overcast	Medium	High	Medium	20	0	0	0	0	0	80
Middle	C21.8-R	GRTS	7.00	10.90	110	Overcast	High	Low	High	40	0	10	0	0	40	10
Middle	C23.4-L	GRTS	6.00	10.90	110	Overcast	High	Medium	High	60	0	0	0	0	30	10
Middle	C28.8-L	GRTS	4.00	10.90	110	Overcast	High	Medium	High	50	0	0	0	0	30	20
Middle	C32.0-R	GRTS	4.00	10.90	110	Overcast	High	Medium	High	50	0	0	0	0	10	40
Middle	C34.9-R	GRTS	3.00	10.90	110	Overcast	High	Medium	High	40	0	0	0	0	30	30
Middle	C36.9-R	GRTS	6.00	10.90	120	Overcast	High	High	High	10	0	30	0	0	30	30

^a See Appendix B, Figures B1 to B3 for sample site locations.

^b Clear = <10%; Partly Cloudy = 10-50%; Mostly Cloudy = 50-90%; Overcast = >90%.

 $^{^{}c}$ High = >1.0 m/s; Medium = 0.5-1.0 m/s; Low = <0.5 m/s.

^d High = >3.0 m; Medium = 1.0-3.0 m; Low = <1.0 m.

Table B3 Concluded.

			Air	Water	C		Water	Instream	Water			Cov	er Types (%)			
Section	Site ^a	Session	Temperature (°C)	Temperature (°C)	Conductivity (µS)	Cloud Cover ^b	Surface Visibility	Velocity ^c	Clarity ^d	Substrate Interstices	Woody Debris	Turbulence	Aquatic Vegetation	Terrestrial Vegetation	Shallow Water	Deep Water
Middle	C39.2-R	GRTS	6.00	10.90	110	Overcast	High	High	High	40	0	10	0	0	20	30
Upper	C06.7-L	GRTS	6.00	10.50	100	Overcast	High	Low	High	0	0	0	60	0	40	0
Upper	C09.2-L	GRTS	3.00	10.50	100	Overcast	High	High	High	50	0	0	0	0	40	10
Upper	C10.7-R	GRTS	4.00	10.90	100	Overcast	Medium	High	High	60	0	20	0	0	20	0
Upper	C10.9-L	GRTS	3.00	10.90	100	Overcast	Medium	High	High	30	0	20	0	0	30	20
Upper	C13.4-R	GRTS	7.00	10.90	110	Overcast	High	High	High	10	0	10	0	0	30	50
Upper	C14.8-L	GRTS	6.00	10.90	110	Overcast	Medium	High	High	10	0	0	0	0	60	30
Upper	C18.0-R	GRTS	1.00	10.90	110	Overcast	Medium	High	High	30	0	0	0	0	40	30

^a See Appendix B, Figures B1 to B3 for sample site locations.

^b Clear = <10%; Partly Cloudy = 10-50%; Mostly Cloudy = 50-90%; Overcast = >90%.

 $^{^{}c}$ High = >1.0 m/s; Medium = 0.5-1.0 m/s; Low = <0.5 m/s.

^d High = >3.0 m; Medium = 1.0-3.0 m; Low = <1.0 m.

Table B4 Summary of species counts (both captured and observed) by bank habitat types in the Lower Columbia River, 24 September to 25 October 2012.

Section	Site Name	Species	A1	A2	A3	A4	A5	A6	A1+A2	A2+A3	D1	D2	D3	D1+D2	BW	Eddy	Total
Upstream Columbia River		Bull Trout Kokanee Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon		2 105 26 45 17 2415 120 111 19											1 21 126 69 29 39 178 881 10 10		3 21 231 95 74 56 2593 1001 121 29
	C00.0-R Tota	a l Bull Trout	0	2860	0	0	0	0	0	0	0	0	0	0	1365	0	4225 1
	C00.7-L Tota	Kokanee Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye	0	19 12 70 19 31 250 26 1	0			0			2 85 30 85 35 374 727 36 7	0			0	0	2 104 42 155 54 405 977 62 8
		Burbot	0	429	0	0	0	0	0	0	1381 1	0	0	0	0	0	1810 1
		Kokanee Mountain Whitefish Northern Pike Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye	1 76 5 9 26 20 205 53 32 4								21 228 111 139 133 153 355 324 46						22 304 5 120 165 153 358 408 356 50
		Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye	431	0	0	0	0	0	0	0	322 14 8 44 100 105 218 11	0	0	0	0	0	322 14 8 44 100 105 218 11
	C02.8-L Tota C03.6-L		0	0	0	0	0	0	0	0	822	0	0	0	0	0	822
		Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye	1 4 1 141 23 20 77 44 228 183			5 8 5 3 10 120 92					2 253 24 28 71 52 120 113 19						1 6 1 399 55 53 151 106 468 388
	C03.6-L Tota	l	34 757	0	0	243	0	0	0	0	682	0	0	0	0	0	53 1682
		Mountain Whitefish Northern Pike Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye									3 4 5 28 30 12 69 8						3 4 5 28 30 12 69 8
	C04.6-R Tota C05.6-L	l Kokanee	6	0	0	0	0	0	0	0	159 1	0	0	0	0	0	159 7
		Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye	18 22 1 37 21 210 118 15								14 6 1 34 166 132 113 5						32 28 2 71 187 342 231 20
	C05.6-L Tota C07.3-R	l Bull Trout	448	0	0	1	0	0	0	0	472	0	0	0	0	0	920 1
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon				8 2 138 8 7 180 2 126 73 17 1											8 2 138 8 7 180 2 126 73 17
	C07.3-R Tota	l Kokanee	0	0	0	563	0	0	0	0	0	0	0	8	0	0	563 8
		Mountain Whitefish Northern Pike Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon												303 2 50 9 144 70 190 254 15			303 2 50 9 144 70 190 254 15
	C07.4-L Tota	l	0	0	0	0	0	0	0	0	0	0	0	1046	0	0	1046
Upstream Columb	oia Kiver Tota	11	1636	3289	0	806	0	0	0	0	5027	0	0	1046	1365	0	13169 ntinued

Table B4 Continued.

Section	Site Name	Species	A1	A2	A3	A4	A5	A6	A1+A2	A2+A3	D1	D2	D3	D1+D2	BW	Eddy	Total
Kootenay River	K00.3-L	Kokanee Mountain Whitefish								1 5					r		5
		Northern Pikeminnow Rainbow Trout Redside Shiner								1 11 2					5 8		6 19 2
		Sculpin spp. Sucker spp.								34 37					20 12		54 49
	K00.3-L Tota	Walleye	0	0	0	0	0	0		17	0	0	0	0	6 51	0	23
	K00.5-E 100 K00.6-R	Kokanee Lake Whitefish	U	U	U	U	U	U	0	108	0	U	U	3 1	51	1	3
		Mountain Whitefish Northern Pikeminnow												111 18		21 17	2 132 35
		Rainbow Trout Redside Shiner												40 25		14 25	54 50
		Sculpin spp. Sucker spp.												150 119		101 107	251 226
	K00.6-R Tota	Walleye	0	0	0	0	0	0	0	0	0	0	0	20	0	21	41 794
	K01.8-L	Burbot Kokanee	U	1	U	U	U	U	U	U	U	12	U	487	U	307	1 12
		Lake Whitefish Mountain Whitefish		1 134			1 79					154					2 367
		Northern Pikeminnow Peamouth		40			14					70 4					124 12
		Rainbow Trout Redside Shiner		105 4			52 282					129 40					286 326
		Sculpin spp. Sucker spp.		307 48			20 19					920 223					1247 290
		Walleye White Sturgeon		35			4					70 2					109 2
	K01.8-L Tota K01.8-R	Kokanee	0	681	0	0	473 7	0	0	0 22	0	1624	0	0	0	0	2778 29
	11011011	Mountain Whitefish Northern Pikeminnow					34			236 37							270 40
		Rainbow Trout Redside Shiner					40 90			149 6							189 96
		Sculpin spp. Sucker spp.					50 50 9			370 191							420 200
	K01.8-R Tota	Walleye	0	0	0	0	1 234	0	0	37 1048	0	0	0	0	0	0	38 1282
Kootenay River T Downstream		Bull Trout	0	681	0	0	707	0	0	1156 2	0	1624	0	487	51	307	5013
Columbia River		Kokanee Lake Whitefish	15							1 7							16 7
		Mountain Whitefish Northern Pikeminnow	102				16 4			307 8							425 12
		Peamouth Rainbow Trout	1 191				20			281							1 492
		Redside Shiner Sculpin spp.	697 452				25			35 245							732 722
		Sucker spp. Walleye	10 33				4 4			19 22							33 59
	C25.3-R Tota C27.6-R	Mountain Whitefish	1502	0	0	0	73	0	0	927 22	0	0 78	0	0	0	0	2502
		Rainbow Trout Sculpin spp.					6			81							100
							25			10		61 24					
		Sucker spp. Walleye					25 4										100 148
	C27.6-R Tota C28.2-R	Walleye al	0	0	0	0		0	0	10 1	0	24 1	0	0	0	0	100 148 59 2
		Walleye Kokanee Mountain Whitefish	0		0	0	4	0	0	10 1 10	0	24 1 8	0	0	0	0	100 148 59 2 22 331
		Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout	0	1 195 11 299	0	0	4	0	0	10 1 10	0	24 1 8	0	0	0	0	100 148 59 2 22 331 1 195 11 299
		Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp.	0	1 195 11	0	0	4	0	0	10 1 10	0	24 1 8	0	0	0	0	100 148 59 2 22 331 1 195 11
	C28.2-R	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon	0	1 195 11 299 82 395	0	0	4	0	0	10 1 10	0	24 1 8	0	0	0	0	100 148 59 2 222 331 1 195 11 299 82 395
		Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon	0	1 195 11 299 82 395 71 26	0	0	4	0	0	10 1 10	0	24 1 8	0	0	0	0	100 148 59 2 222 331 1 195 11 299 82 395 71 26
	C28.2-R C28.2-R Tota	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon		1 195 11 299 82 395 71 26 1	-		35			10 1 10 124		24 1 8 172					100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081
	C28.2-R C28.2-R Tota	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Brook Trout Brown Trout		1 195 11 299 82 395 71 26 1 1081	-		35			10 1 10 124		24 1 8 172					100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081
	C28.2-R C28.2-R Tota	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Brook Trout Brown Trout Bull Trout Kokanee		1 195 11 299 82 395 71 26 1 1081 1 1	0		35			10 1 10 124		24 1 8 172					100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1
	C28.2-R C28.2-R Tota	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish		1 195 11 299 82 395 71 26 1 1081 1 1 3 1	1 1 21		35			10 1 10 124		24 1 8 172					100 148 59 2 222 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137
	C28.2-R C28.2-R Tota	Walleye I Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth		1 195 11 299 82 395 71 26 1 1081 1 1 3 1 116 2	1 1 21 2		35			10 1 10 124		24 1 8 172					100 148 59 2 222 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1
	C28.2-R C28.2-R Tota	Walleye I Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Brook Trout Brown Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner		1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53	0 1 1 21 2 99		35			10 1 10 124		24 1 8 172					100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1 531 53
	C28.2-R Tota C34.9-L C34.9-L Tota	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon		1 195 11 299 82 395 71 26 1 1081 1 1 3 1 116 2 1 432 53 194 8	0 1 1 21 2 99 8 5		35			10 1 10 124		24 1 8 172					100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 4 2 137 4 1 53 202 13
	C28.2-R Tota C34.9-L C34.9-L Tota	Walleye I Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Burbot Kokanee	0	1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53 194 8 25	0 1 1 21 2 99 8 5 10 1	0	0	0	0	10 1 10 124	0	24 1 8 172	0	0	0	0	100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1 531 53 202 13 35 1
	C28.2-R Tota C34.9-L C34.9-L Tota	Walleye I Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Brook Trout Brown Trout Brown Trout Bull Trout Kokanee Lake Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Burbot Kokanee Lake Whitefish Mountain Whitefish	0	1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53 194 8 25	0 1 1 21 2 99 8 5 10 1	0	0	0	0	10 1 10 124	0	24 1 8 172	0	0	0	0	100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1 531 53 202 13 35 1 986 2
	C28.2-R Tota C34.9-L C34.9-L Tota	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth	0	1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53 194 8 25	0 1 1 21 2 99 8 5 10 1	0	0 1 49 2	0	0	10 1 10 124 0 2 2 1 68 8 1	0	24 1 8 172	0 0 44	0	0	0	100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1 531 53 202 13 35 1 986 2 3 1
	C28.2-R Tota C34.9-L C34.9-L Tota C36.6-L	Walleye Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner	0	1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53 194 8 25	0 1 1 21 2 99 8 5 10 1	0	0 1 49 2 183 2	0	0	0 0 0 0 0 0 0 0 0 0 0 0 124	0	24 1 8 172	0	0	0	0	100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 4 2 137 4 1 531 53 202 13 35 1 986 2 3 1 161 10 1 461 27
	C28.2-R Tota C34.9-L C34.9-L Tota C36.6-L	Walleye I Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp.	0	1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53 194 8 25	0 1 1 21 2 99 8 5 10 1	0	0 1 49 2 183	0	0	10 1 10 124 0 2 2 1 68 8 1 258	0	24 1 8 172	0 0 44	0	0	0	100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1 531 53 202 13 35 1 986 2 3 1 161 10 1 461 27 437 8
	C28.2-R Tota C34.9-L C34.9-L Tota C36.6-L	Walleye I Kokanee Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Brook Trout Brown Trout Bull Trout Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye White Sturgeon I Burbot Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Peamouth Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye	0	1 195 11 299 82 395 71 26 1 1081 1 1 1 3 1 116 2 1 432 53 194 8 25	0 1 1 21 2 99 8 5 10 1	0	0 1 49 2 183 2 131	0	0	0 0 0 2 1 1 68 8 1 258 25 306	0	24 1 8 172	0 44 20	0	0	0	100 148 59 2 22 331 1 195 11 299 82 395 71 26 1 1081 1 1 4 2 137 4 1 531 53 202 13 35 1 986 2 3 1 161 10 1 461 27 437

Table B4 Continued.

	Site Name	Species	A1	A2	A3	A4	A5	A6	A1+A2	A2+A3	D1	D2	D3	D1+D2	BW	Eddy	Total
	C47.8-L	Brook Trout							1		7						8
		Burbot							3								3
		Cutthroat Trout Kokanee							1		6						1 7
		Lake Whitefish							2		7						9
		Longnose Dace							1								1
		Mountain Whitefish							15		39						54
		Northern Pikeminnow							2		2						4
		Rainbow Trout Redside Shiner							98 5		127 2						225 7
		Sculpin spp.							2110		61						2171
		Sucker spp.							18		16						34
	C45 0 1 70 4	Walleye							7		30						37
	C47.8-L Tota		0	0	0	0	0	0	2264	0	297	0	0	0	0	0	2561
	C48.2-R	Burbot Mountain Whitefish												1 24	4		1 28
		Northern Pikeminnow												1	-		1
		Rainbow Trout												86	45		131
		Redside Shiner												3	20		3
		Sculpin spp. Sucker spp.												105 5	38 1		143 6
		Walleye												9	4		13
	C48.2-R Tota	al	0	0	0	0	0	0	0	0	0	0	0	234	92	0	326
	C49.0-L	Brook Trout		1								1					2
		Kokanee		1													1
		Lake Whitefish Mountain Whitefish		4 138								1					4 139
		Rainbow Trout		80								8					88
		Sculpin spp.		255								101					356
1		Sucker spp.		42								2					44
	C49.0-L Tota	Walleye		11				^		•	^	2		_		•	13
	C49.0-L Tota C49.0-R	Burbot	0	532	0	0	0	0	0	0	0	115	0	1	0	0	647
	C49.0-K	Cutthroat Trout												1			1
1		Kokanee												1			1
		Mountain Whitefish							8					32			40
		Rainbow Trout							40					77			117
		Redside Shiner							57					3			3
		Sculpin spp. Sucker spp.							57 3					266 2			323 5
1		Walleye							3					5			8
1	C49.0-R Tota	al	0	0	0	0	0	0	111	0	0	0	0	388	0	0	499
1	C49.8-L	Burbot		7													7
		Cutthroat Trout Kokanee		1 3													1 3
1		Lake Whitefish		10													3 10
1		Mountain Whitefish		203													203
1		Rainbow Trout		330													330
		Redside Shiner		15													15
		Sculpin spp. Sucker spp.		4530 80													4530 80
		Walleye		38													80 38
1		White Sturgeon		1		ĺ			I			1				1	
1	C49.8-L Tota	al															1
	C49.8-R		0	5218	0	0	0	0	0	0	0	0	0	0	0	0	5218
	1	Burbot	0	5218	0	0	0	0	0	0	0	0	0	0	1	0	5218 5
I		Kokanee	0	3	0	0	0	0	0	0	0	_	0	0		0	5218 5 1
		Kokanee Lake Whitefish	0	3 2	0	0	0	0	0	0	0	1	0	0	1 1	0	5218 5 1 2
		Kokanee	0	3	0	0	0	0	0	0	0	_	0	0	1	0	5218 5 1
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout	0	3 2 151	0	0	0	0	0	0	0	1 49	0	0	1 1 2 53	0	5218 5 1 2 202 15 361
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner	0	3 2 151 10 192 1	0	0	0	0	0	0	0	1 49 5 116	0	0	1 1 2 53 32	0	5218 5 1 2 202 15 361 33
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp.	0	3 2 151 10 192 1 180	0	0	0	0	0	0	0	1 49 5 116 175	0	0	1 1 2 53 32 28	0	5218 5 1 2 202 15 361 33 383
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp.	0	3 2 151 10 192 1 180 127	0	0	0	0	0	0	0	1 49 5 116 175 53	0	0	1 1 2 53 32 28 49	0	5218 5 1 2 202 15 361 33 383 229
	C49.8-R Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleve	0	3 2 151 10 192 1 180 127 21	0	0	0	0	0	0	0	1 49 5 116 175 53 7	0	0	1 1 2 53 32 28 49 15		5218 5 1 2 202 15 361 33 383 229 43
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleve		3 2 151 10 192 1 180 127								1 49 5 116 175 53			1 1 2 53 32 28 49	0 0 2	5218 5 1 2 202 15 361 33 383 229
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye al Brook Trout Brown Trout		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7			1 1 2 53 32 28 49 15	0 2 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Brutt Brutt Brout		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7 406			1 1 2 53 32 28 49 15	0 2 1 2	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Burbot		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7 406			1 1 2 53 32 28 49 15	0 2 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Burbot Lake Whitefish		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7 406			1 1 2 53 32 28 49 15	0 2 1 2 3	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Burbot		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7 406			1 1 2 53 32 28 49 15	0 2 1 2	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp.		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7 406 1 5 39 41			1 1 2 53 32 28 49 15	0 2 1 2 3 16 96 85	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85
		Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp.		3 2 151 10 192 1 180 127 21								1 49 5 116 175 53 7 406 1 5 39 41			1 1 2 53 32 28 49 15	0 2 1 2 3 16 96 85 77	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82
	C52.2-L	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye al Brook Trout Brown Trout Bull Trout Burlbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye	0	3 2 151 10 192 1 180 127 21 687	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Walleye		3 2 151 10 192 1 180 127 21 687								1 49 5 116 175 53 7 406 1 5 39 41			1 1 2 53 32 28 49 15	0 2 1 2 3 16 96 85 77 13 295	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye al Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye al Brook Trout	0	3 2 151 10 192 1 180 127 21 687	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Brook Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Brook Trout Burbot Cutthroat Trout	0	3 2 151 10 192 1 180 127 21 687	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Brook Trout Cutthroat Trout Lake Whitefish	0	3 2 151 10 192 1 180 127 21 687	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Brook Trout Sculpin spp. Sucker spp. Walleye Cutthroat Trout Lake Whitefish Mountain Whitefish Brook Trout Burbot Cutthroat Trout Lake Whitefish Mountain Whitefish	0	3 2 151 10 192 1 180 127 21 687	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1 12 2
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Brook Trout Cutthroat Trout Lake Whitefish Mountain Whitefish	0	3 2 151 10 192 1 180 127 21 687 0 1 12 1 9 206 1	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1 12 2 11 12 13 13 13 13 13 13 13 13 13 13
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye Brook Trout Lake Whitefish Rout Trout Cutthroat Trout Lake Whitefish Mountain Whitefish Burbot Cutthroat Trout Lake Whitefish Mountain Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout	0	3 2 151 10 192 1 180 127 21 687 0 1 12 1 9 206 1 287	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 555 137 85 82 17 390 2 12 1 12 219 1 411
	C52.2-L C52.2-L Tota	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye al Brook Trout Brown Trout Bull Trout Burlbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye al Brook Trout Burbot Lake Whitefish Mountain Whitefish Cutthroat Trout Lake Whitefish Mountain Whitefish Mountain Whitefish Mountain Whitefish Mountain Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Sculpin spp. Sucker spp.	0	3 2 151 10 192 1 180 127 21 687 0 1 12 1 9 206 1 287 210 26	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1 12 219 1 411 326 34
	C52.2-L Tota C52.2-R	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye al Brook Trout Brown Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Sucker spp. Walleye al Brook Trout Lake Whitefish Mountain Trout Cutthroat Trout Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Sulpin spp. Sucker spp. Walleye Sucker spp. Walleye	0	3 2 151 10 192 1 180 127 21 687 0 1 12 1 9 206 1 287 210 26 46	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1 12 219 1 411 326 34 66
	C52.2-L Tota C52.2-R	Kokanee Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Redside Shiner Sculpin spp. Sucker spp. Walleye al Brook Trout Brown Trout Bull Trout Bull Trout Burbot Lake Whitefish Mountain Whitefish Rainbow Trout Sculpin spp. Walleye al Brook Trout Burbot Cutthroat Trout Lake Whitefish Mountain Whitefish Northern Pikeminnow Rainbow Trout Sculpin spp. Sucker spp. Walleye White Sturgeon	0	3 2 151 10 192 1 180 127 21 687 0 1 12 1 9 206 1 287 210 26	0	0	0	0	0	0	0	1 49 5 116 175 53 7 406	0	0	1 1 2 53 32 28 49 15 181	0 2 1 2 3 16 96 85 77 13 295 1	5218 5 1 2 202 15 361 33 383 229 43 1274 2 1 2 4 5 55 137 85 82 17 390 2 12 1 12 219 1 411 326 34

Table B4 Concluded.

Section	Site Name	Species	A1	A2	A3	A4	A5	A6	A1+A2	A2+A3	D1	D2	D3	D1+D2	BW	Eddy	Total
	C52.8-L	Bull Trout				1											1
		Lake Whitefish		1													1
		Mountain Whitefish		8		47											55
		Rainbow Trout		33		84											117
		Sucker spp.		7		8											15
		Walleye		11		32											43
	C52.8-L Total	[0	60	0	172	0	0	0	0	0	0	0	0	0	0	232
	C53.6-L	Burbot						1									1
		Lake Whitefish						1									1
		Mountain Whitefish						32									32
		Northern Pikeminnow						1									1
		Rainbow Trout						111									111
		Sculpin spp.						297									297
		Sucker spp.						1									1
		Walleye						31									31
	C53.6-L Total		0	0	0	0	0	475	0	0	0	0	0	0	0	0	475
Downstream (Columbia Rive	r Total	1502	9216	148	172	483	475	2375	1732	297	788	67	622	273	580	18730
All Sections Total			3138	13186	148	978	1190	475	2375	2888	5324	2412	67	2155	1689	887	36912

APPENDIX C

HBM Methods

Hierarchical Bayesian Analysis

Joe Thorley Ph.D., R.P.Bio. Poisson Consulting Ltd.

10 May 2013

Contents

1	Gen	eral Approach	i											
2	JAG	5 Distributions, Functions and Operators	ii											
3		JAGS Models												
	3.1	Length-at-Age	iii											
		3.1.1 Length-at-Age Model - Variables and Parameters	iii											
		3.1.2 Length-at-Age Model - JAGS Code	iii											
	3.2	Growth	iv											
		3.2.1 Growth Model - Variables and Parameters	iv											
		3.2.2 Growth Model - JAGS Code	iv											
	3.3	Count	٧											
		3.3.1 Count Model - Variables and Parameters	٧											
		3.3.2 Count Model - JAGS Code	vi											
	3.4	Catch	vi											
	3.5	Site Fidelity	vi											
			vii											
		y	vii											
	3.6	Abundance vii												
		3.6.1 Abundance Model - Variables and Parameters	/iii											
		3.6.2 Abundance Model - JAGS Code	/iii											
	3.7		ix											
		3.7.1 Capture Efficiency Model - Variables and Parameters	ix											
		3.7.2 Capture Efficiency Model - JAGS Code	ix											
	3.8	Survival	X											
		3.8.1 Survival Model - Variables and Parameters	Χ											
		3.8.2 Survival Model - JAGS Code	Χ											
	3.9	Condition	хi											
		3.9.1 Condition Model - Variables and Parameters	хi											
		3.9.2 Condition Model - IAGS Code	vii											

1 General Approach

Hierarchical Bayesian models were fitted to the fish indexing data for the Lower Columbia River using the software packages R 2.15.3[8] and JAGS 3.3.0[7] which interfaced with each other via jaggernaut 0.1.6[9]. For additional information on hierarchical Bayesian modelling in the BUGS language, of which JAGS uses a dialect, the reader is referred to Kery and Schuab (2011)[5, p.41-44].

Unless specified, the models assumed vague (low information) prior distributions [5, p.36]. The posterior distributions were estimated from a minimum of 1,000 Markov Chain Monte Carlo (MCMC) samples thinned from the second halves of three chains [5, p.38-40]. Model convergence was confirmed by ensuring that Rhat [5, p.40] was less than 1.1 for each of the parameters in the model [5, p.61]. Posterior distributions were summarised in terms of a point *estimate* (median), *lower* and *upper* 95% credibility limits (2.5th and 97.5th percentiles), percent relative *error* (half the 95% credibility interval as a percent of the point estimate) and *significance* (Bayesian equivalent of two-sided frequentist p-value) [5, p.37,42].

The results were displayed graphically by plotting the modeled relationship between the particular variable(s) and the response (with 95% credibility intervals) while the remaining variables were held constant. Unless stated otherwise, continuous and discrete fixed variables were held constant at their mean and first level values respectively while random variables were held constant at their typical values (expected values of the underlying hyperdistributions) [5, p.77-82]. Where informative the influence of particular variables was expressed in terms of the effect size (i.e., percent change in the response variable) with 95% credibility intervals[1]. Plots were produced using the ggplot2 R package [11].

2 JAGS Distributions, Functions and Operators

JAGS distributions, functions and operators are defined in the following three tables. For additional information on the JAGS dialect of the BUGS language see the JAGS User Manual[7].

JAGS Distribution	Description
dbern(p)	Bernoulli distribution
dbin(p, n)	Binomial distribution
dcat(pi)	Categorical distribution
ddirch(alpha)	Dirichlet distribution
dgamma(shape, rate)	Gamma distribution
dlnorm(mu, sd^-2)	Log-normal distribution
dnorm(mu, sd^-2)	Normal distribution
dpois(lambda)	Poisson distribution
dunif(a, b)	Uniform distribution

JAGS Function	Description
log(x)	Log of x
logit(x)	Log odds of x
max(x,y)	Maximum of x and y
min(x,y)	Minimum of x and y
round(x)	Round to integer away from zero
sum(a)	Sum of elements of a
T(x,y)	Truncate distribution so that values lie between x and y

JAGS Operator	Description
<-	Deterministic relationship
~	Stochastic relationship
1:n	Vector of integers from 1 to n
a[1:n]	Subset of first n values in a
for (i in 1:n) {}	Repeat for 1 to n times incrementing i each time
x^y	Power where x is raised to the power of y

3 JAGS Models

The following sections provide the key assumptions, variable and parameter definitions and JAGS model code for the analyses. By convention variables are named using CamelCase and the number of levels of a discrete variable (factor) ObservedFactor is referenced by nObservedFactor. The following variables occur in multiple models.

Variable	Description
ProportionSampled[i]	Proportion of site surveyed on ith survey(s)
Site[i]	Site of ith survey(s)
SiteLength[i]	Length of site on ith survey(s)
Year[i]	Year of ith survey(s)

3.1 Length-at-Age

Length-at-age was estimated from the yearly fall length-frequency distributions using a finite mixture distribution model [6].

Key assumptions of the length-at-age model include:

- Length-at-age varies randomly with year.
- Length-at-age is normally-distributed.

3.1.1 Length-at-Age Model - Variables and Parameters

Variable/Parameter	Description
Age[i]	Age of ith fish
bAgeYear[ag,yr]	Effect of yrth year on length of an agth age fish
bDayte[ag]	Effect of day of year on length of an agth age fish
bDayte2[ag]	Effect of 2-order polynomial of day of year on length of an ath age fish
bIncrement[ag]	Length difference between an agth age fish and an ag-1th age fish
bIntercept[ag]	Length of an agth age fish
Dayte[i]	Day of year ith fish was observed
eLength[i]	Expected length of ith fish
Length[i]	Length of ith fish
pAge[ag]	Proportion of fish belonging to agth age
sAgeYear[ag]	SD of effect of year on length of fish belong to agth age
sLengthAge[ag]	SD of residual variation in length of fish belong to agth age
Year[i]	Year ith fish was observed

3.1.2 Length-at-Age Model - JAGS Code

```
model {
  for(ag in 1:nAge) {
    dAge[ag] <- 1

    sLengthAge[ag] ~ dunif(0, 100)
    sAgeYear[ag] ~ dunif(0, 50)

bIncrement[ag] ~ dunif(50, 250)</pre>
```

```
bDayte[ag] ~ dnorm(0, 10)
    bDayte2[ag] ~ dnorm(0, 10)
    for(yr in 1:nYear) {
      bAgeYear[ag,yr] ~ dnorm(0, sAgeYear[ag]^-2)
    }
 }
  bIntercept[1] <-bIncrement[1]
  for(ag in 2:nAge) {
    bIntercept[ag] <- bIntercept[ag-1] + bIncrement[ag]</pre>
 pAge[1:nAge] ~ ddirch(dAge[])
  for (i in 1:nrow) {
    Age[i] ~ dcat(pAge[])
    eLength[i] <- bIntercept[Age[i]] + bAgeYear[Age[i],Year[i]]</pre>
                + bDayte[Age[i]] * Dayte[i] + bDayte2[Age[i]] * Dayte[i]^2
    Length[i] ~ dnorm(eLength[i], sLengthAge[Age[i]]^-2)
 }
}
```

3.2 Growth

Annual growth was estimated from the inter-annual recaptures using the Fabens method[2] for estimating the von Bertalanffy growth curve[10].

Key assumptions of the growth model include:

- ullet Mean maximum length (L_∞) varies randomly with year.
- Observed growth (change in length) is normally distributed.

3.2.1 Growth Model - Variables and Parameters

Variable/Parameter	Description
bYear[yr]	Effect of yrth year on mean maximum length
eGrowth[i]	Expected growth of the ith fish
Growth[i]	Change in length (growth) of the ith fish from the previous year
k	Von Bertalanffy growth rate coefficient
LengthAtRelease[i]	Length of the ith fish when released the previous year
Linf	Mean maximum length (length-at-infinity)
sGrowth	SD of residual variation in growth
sYear	SD of effect of year on mean maximum length
Year[i]	Year the ith fish was released

3.2.2 Growth Model - JAGS Code

```
model {
  sGrowth ~ dunif(0, 100)
  sYear ~ dunif (0, 100)
```

3.3 Count

The count data were analysed using an overdispersed Poisson model[4, p.168-170,180][5, p.55-56]. Unlike Kery[4] and Kery and Schaub[5], which used a log-normal distribution to account for the extra-Poisson variation, the current model used a gamma distribution with identical shape and scale parameters because it has a mean of 1 and therefore no overall effect on the expected count. The model does not distinguish between the abundance and observer efficiency, i.e., it estimates the count which is the product of the two. As such it is necessary to assume that changes in observer efficiency are negligible in order to interpret the estimates as relative abundance.

Key assumptions of the count model include:

- Count density (count/km) varies randomly with site, year, and the interaction between site and year.
- Expected counts are the product of the count density (count/km) and the length of bank sampled.
- Sites are closed, i.e., the expected count at a site is constant for all the sessions in a particular season of a year.
- Observed counts are described by a Poisson-gamma distribution.

3.3.1 Count Model - Variables and Parameters

Variable/Parameter	Description
bDensityIntercept	Log density intercept
bDensitySite[st]	Effect of stth site on log density
bDensitySiteYear[st, yr]	Effect of stth site in yrth year on log density
bDensityYear[yr]	Effect of yrth year on log density
Count[st, yr, ss]	Count at stth site in yrth year on ssth session
eCount[st, yr, ss]	Expected count at stth site in yrth year on ssth session
eDensity[st, yr, ss]	Expected density at stth site in yrth year on ssth session
eU[st, yr, ss]	Extra-poisson variation in count at stth site in yrth year on ssth session
r	Overdispersion parameter
sDensitySite	SD of effect of site on log density
sDensitySiteYear	SD of effect of site within year on log density
sDensityYear	SD of effect of year on log density

3.3.2 Count Model - JAGS Code

```
model {
 r ~ dgamma(0.1, 0.1)
  sDensityYear ~ dunif(0, 2)
  sDensitySite ~ dunif(0, 2)
  sDensitySiteYear ~ dunif(0, 2)
  bDensityIntercept ~ dnorm(0, 5^-2)
  for (yr in 1:nYear) {
  bDensityYear[yr] ~ dnorm(0, sDensityYear^-2)
  for (st in 1:nSite) {
  bDensitySite[st] ~ dnorm(0, sDensitySite^-2)
    for (yr in 1:nYear) {
      bDensitySiteYear[st, yr] ~ dnorm(0, sDensitySiteYear^-2)
    }
  }
  for (st in 1:nSite) {
    for (yr in 1:nYear) {
      log(eCount[st,yr]) <- bDensityIntercept + bDensitySite[st]</pre>
        + bDensityYear[yr] + bDensitySiteYear[st,yr] + log(LengthSite[st])
      for (ss in 1:nSession) {
        eU[st,yr,ss] ~ dgamma(r,r)
        Count[st,yr,ss] ~ dpois(eCount[st,yr]
                                 * ProportionSampled[st,yr,ss]
                                 * eU[st,yr,ss])
   }
 }
```

3.4 Catch

The catch data were analysed using the same overdispersed Poisson model as the count data to provide estimates of relative abundance.

3.5 Site Fidelity

The extent to which sites are closed, i.e., fish remain at the same site between sessions, was evaluated from a binomial "t-test" [4, p.211-213]. The "t-test" estimated the probability that intra-annual recaptures were caught at the same site as previously encountered (site fidelity) for the fall and spring seasons.

Key assumptions of the site fidelity model include:

• Observed site fidelity is described by a Bernoulli distribution.

3.5.1 Site Fidelity Model - Variables and Parameters

Variable/Parameter	Description
bIntercept	Log-odds of probability of recapture at same site
eRemained[i]	Expected probability of ith recapture being caught at same site as previously
Remained[i]	Was ith recapture recorded at same site as previously encountered

3.5.2 Site Fidelity Model - JAGS Code

```
model {
  bIntercept ~ dnorm(0, 5^-2)

for (i in 1:nrow) {
   logit(eRemained[i]) <- bIntercept
   Remained[i] ~ dbern(eRemained[i])
  }
}</pre>
```

3.6 Abundance

The catch data were also analysed using a capture-recapture-based binomial mixture model[4, p.253-257][5, p.134-136,384-388] to provide estimates of capture efficiency and absolute abundance. The expected density was converted into an expected abundance using an offset[4, p.188-189] on site length. The site fidelity (probability that a recapture was encountered at the same site) was used to adjust the capture efficiency for marked fish by season.

Key assumptions of the abundance model include:

- Abundance density (fish/km) varies randomly with site, year and the interaction between site and year.
- Efficiency (probability of capture) varies randomly by session within year.
- The proportion of marked fish remaining at a site by season is described by the median estimates from the site fidelity model.
- Marked and unmarked fish have the same probability of capture.
- There is no tag loss, mortality or misidentification of fish.
- Other than the straying of marked fish, sites are closed, i.e., emigration of unmarked fish is accounted for by immigration of unmarked fish.
- The abundance at a site is described by a Poisson distribution.
- The number of marked and unmarked fish caught at a site is described by a binomial distribution.

3.6.1 Abundance Model - Variables and Parameters

Variable/Parameter	Description
bDenIntercept	Log density intercept
bDenSite[st]	Effect of stth site on log density
bDenSiteYear[st, yr]	Effect of stth site in yrth year on log density
bDenYear[yr]	Effect of yrth year on log density
bEffIntercept	Log-odds efficiency intercept
bEffYearSession[yr,ss]	Effect of ssth session in yrth year on log-odds efficiency
eAbundance[i]	Expected abundance on ith surveys
eEfficiency[i,ss]	Expected efficiency on ssth session of ith surveys
eMarkedN[i, ss]	Abundance of marked fish on ssth session of ith surveys
eUnmarkedN[i, ss]	Expected abundance of unmarked fish on ssth session of ith surveys
Fish[i]	Minimum abundance on ith surveys
Marked[i,ss]	Number of marked fish caught in ssth session of ith surveys
Remained	Site fidelity for marked fish
sDenSite	SD of effect of site on log density
sDenSiteYear	SD of effect of site within year on log density
sDenYear	SD of effect of year on log density
sEffYearSession	SD of effect of session and year on log density
Tagged[i,ss]	Number of unmarked fish tagged in ssth session of ith surveys
Unmarked[i,ss]	Number of unmarked fish caught in ssth session of ith surveys

3.6.2 Abundance Model - JAGS Code

```
model {
  sDenYear ~ dunif(0, 5)
  sDenSite ~ dunif(0, 5)
  sDenSiteYear ~ dunif(0, 2)
  sEffYearSession ~ dunif(0, 2)
  bDenIntercept ~ dnorm(0, 5^-2)
  bEffIntercept ~ dnorm(0, 5^-2)
  for (yr in 1:nYear) {
   bDenYear[yr] ~ dnorm(0, sDenYear^-2)
   for (ss in 1:nSession) {
      bEffYearSession[yr,ss] ~ dnorm(0, sEffYearSession^-2)
    }
  }
  for (st in 1:nSite) {
    bDenSite[st] ~ dnorm(0, sDenSite^-2)
    for (yr in 1:nYear) {
      bDenSiteYear[st, yr] ~ dnorm(0, sDenSiteYear^-2)
  }
  for (i in 1:nVisit) {
    log(eAbundance[i]) <- bDenIntercept + bDenYear[Year[i]] + bDenSite[Site[i]]</pre>
```

```
+ bDenSiteYear[Site[i], Year[i]] + log(SiteLength[i])
eN[i] ~ dpois(eAbundance[i])
eUnmarkedN[i,1] <- eN[i]
eMarkedN[i,1] <- 0

for (ss in 1:nSessionVisit[i]) {
    logit(eEfficiency[i,ss]) <- bEffIntercept + bEffYearSession[Year[i],ss]
    eSamplingEff[i,ss] <- eEfficiency[i,ss] * ProportionSampled[i,ss]

    eMarkedEff[i,ss] <- eSamplingEff[i,ss]
        * step(eMarkedN[i,ss]-1) * Remained

    Unmarked[i,ss] ~ dbin(eSamplingEff[i,ss],eUnmarkedN[i,ss])
        Marked[i,ss] ~ dbin(eMarkedEff[i,ss], max(eMarkedN[i,ss],1))

    eMarkedN[i,ss+1] <- eMarkedN[i,ss] + Tagged[i,ss]
    eUnmarkedN[i,ss+1] <- eUnmarkedN[i,ss] - Tagged[i,ss]
}
}
</pre>
```

3.7 Capture Efficiency

In order to estimate the capture efficiency independent of abundance a recapture-based binomial model[4, p.253-257][5, p.134-136,384-388] was fitted to just the marked fish. The model was equivalent to the abundance model without the estimation of the numbers of unmarked fish.

Key assumptions of the efficiency model include:

- Efficiency (probability of capture) varies randomly by session within year.
- The proportion of marked fish remaining at a site by season is described by the median estimates from the site fidelity model.
- There is no tag loss, mortality or misidentification of fish.
- The number of marked fish caught at a site is described by a binomial distribution.

3.7.1 Capture Efficiency Model - Variables and Parameters

The variables and parameters in the efficiency model are the same as those in the abundance model.

3.7.2 Capture Efficiency Model - JAGS Code

```
model {
   sEffYearSession ~ dunif(0, 2)
   bEffIntercept ~ dnorm(0, 5^-2)
   for (yr in 1:nYear) {
     for (ss in 1:nSession) {
```

3.8 Survival

The annual survival rate was estimated by fitting a Cormack-Jolly-Seber model[5, p.172-177] to inter-annual recaptures. Key assumptions of the survival model include:

• Log-odds survival varies with year.

3.8.1 Survival Model - Variables and Parameters

Variable/Parameter	Description
bEfficiencyIntercept	Log-odds efficiency
bSurvivalInterceptStage[st]	Log-odds survival of stth stage
bSurvivalStageYear[st,yr]	Effect of yrth year on log-odds survival of stth stage
eAlive[i,yr]	Expected state (alive or dead) of ith fish in yrth year
eEfficiency[i, yr]	Expected recapture probability of ith fish in yrth year
eSurvival[i,yr-1]	Expected probability of survival of ith fish in yr-1th year
FirstYear[i]	The first year ith fish was encountered
FishYear[i,yr]	Whether the ith fish was encountered in the yrth year
sSurvivalStageYear[st]	SD of effect of year on log-odds survival of stth stage
Stage[i]	Stage of ith fish when first encountered
StageFishYear[i,yr]	Stage of ith fish in yrth year

3.8.2 Survival Model - JAGS Code

```
model {
  for (st in 1:nStage) {
    sSurvivalStageYear[st] ~ dunif (0, 5)
  }
```

```
bEfficiencyIntercept ~ dnorm (0, 5^-2)
  for(st in 1:nStage) {
    bSurvivalInterceptStage[st] ~ dnorm(0, 5^-2)
    for (yr in 1:nYear) {
      bSurvivalStageYear[st,yr] ~ dnorm (0, sSurvivalStageYear[st]^-2)
    }
 }
  for (i in 1:nFish) {
    eAlive[i, FirstYear[i]] <- 1</pre>
    for (j in (FirstYear[i]+1):nYear) {
      logit(eSurvival[i,j-1]) <- bSurvivalInterceptStage[StageFishYear[i,j-1]]</pre>
                                   + bSurvivalStageYear[StageFishYear[i,j-1],j-1]
      eAlive[i,j] ~ dbern (eAlive[i, j-1] * eSurvival[i,j-1])
      logit(eEfficiency[i,j]) <- bEfficiencyIntercept</pre>
      FishYear[i,j] ~ dbern (eAlive[i,j] * eEfficiency[i,j])
 }
}
```

3.9 Condition

Condition was estimated via an analysis of weight-length relations [3].

Key assumptions of the condition model include:

- Weight varies with length.
- Weight varies randomly with site, year and the interaction between site and year.
- Weight is log-normally distributed.

3.9.1 Condition Model - Variables and Parameters

Variable/Parameter	Description
bDayte	Effect of day of year on log weight
bDayte2	Effect of 2nd order polynomial of day of year on log weight
bIntercept	Log weight
bLength	Effect of log length on log weight
bSite[st]	Effect of stth site on log weight
bYear[yr]	Effect of yrth year on log weight
bYearSite[yr,st]	Effect of stth site in yrth year on log weight
Dayte[i]	Day of year ith fish was encountered
eLogWeight[i]	Expected log weight of ith fish
Length[i]	Log length of ith fish
sSite	SD of effect of site on log weight
sWeight	SD of residual variation in log weight
sYear	SD of effect of year on log weight
sYearSite	SD of effect of site within year on log weight
Weight[i]	Weight of ith fish

3.9.2 Condition Model - JAGS Code

```
model {
  sWeight ~ dunif(0, 5)
  sSite ~ dunif(0, 5)
  sYear ~ dunif(0, 5)
  sYearSite ~ dunif(0, 5)
  bIntercept ~ dnorm(5, 5^-2)
  bLength ~ dnorm(3, 5^-2)
  bDayte \sim dnorm(0, 5^-2)
  bDayte2 ~ dnorm(0, 5^-2)
  for(st in 1:nSite) {
    bSite[st] ~ dnorm(0, sSite^-2)
  for(yr in 1:nYear) {
    bYear[yr] ~ dnorm(0, sYear^-2)
    for(st in 1:nSite) {
      bYearSite[yr,st] ~ dnorm(0, sYearSite^-2)
    }
  }
  for(i in 1:nrow) {
    eLogWeight[i] <- bIntercept + bLength * Length[i] + bDayte * Dayte[i]</pre>
                      + bDayte2 * Dayte[i]^2 + bSite[Site[i]] + bYear[Year[i]]
                      + bYearSite[Year[i],Site[i]]
    Weight[i] ~ dlnorm(eLogWeight[i], sWeight^-2)
  }
}
```

References

- [1] Michael J Bradford, Josh Korman, and Paul S Higgins. Using confidence intervals to estimate the response of salmon populations (oncorhynchus spp.) to experimental habitat alterations. *Canadian Journal of Fisheries and Aquatic Sciences*, 62(12):2716–2726, 2005.
- [2] A J Fabens. Properties and fitting of the von bertalanffy growth curve. *Growth*, 29(3):265–289, September 1965. PMID: 5865688.
- [3] Ji X. He, James R. Bence, James E. Johnson, David F. Clapp, and Mark P. Ebener. Modeling variation in mass-length relations and condition indices of lake trout and chinook salmon in lake huron: A hierarchical bayesian approach. *Transactions of the American Fisheries Society*, 137(3):801–817, May 2008.
- [4] Marc Kéry. Introduction to WinBUGS for Ecologists: A Bayesian approach to regression, ANOVA, mixed models and related analyses. Elsevier, Amsterdam; Boston, 2010.
- [5] Marc Kéry and Michael Schaub. *Bayesian population analysis using WinBUGS : a hierarchical perspective*. Academic Press, Boston, 2011.

- [6] P. D. M. Macdonald and T. J. Pitcher. Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures. *Journal of the Fisheries Research Board of Canada*, 36(8):987–1001, August 1979.
- [7] M. Plummer. JAGS version 3.3.0 user manual, October 2012.
- [8] R Core Team. R: A language and environment for statistical computing, 2013.
- [9] J. L. Thorley. jaggernaut: An r package to facilitate bayesian analyses using JAGS (just another gibbs sampler), 2013.
- [10] L. von Bertalanffy. A quantitative theory of organic growth (inquiries on growth laws ii). *Human Biology*, 10:181–213, 1938.
- [11] Hadley Wickham. *ggplot2 elegant graphics for data analysis*. Springer, Dordrecht; New York, 2009.

LOWER COLUMBIA RIVER FISH POPULATION INDEXING SURVEYS - 2012 INVESTIGATIONS

APPENDIX D

Discharge and Temperature Data

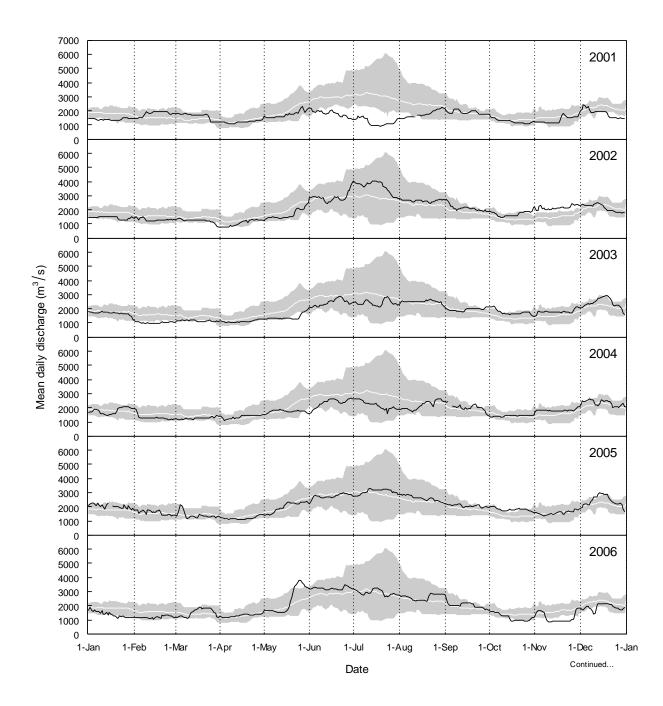


Figure D1. Mean daily discharge (m³/s) for the Columbia River at the Birchbank water gauging station (black line), 2001 to 2012. The shaded area represents minimum and maximum mean daily discharge recorded at Birchbank during other study years between 2001 and 2012. The white line represents average mean daily discharge over the same time period.

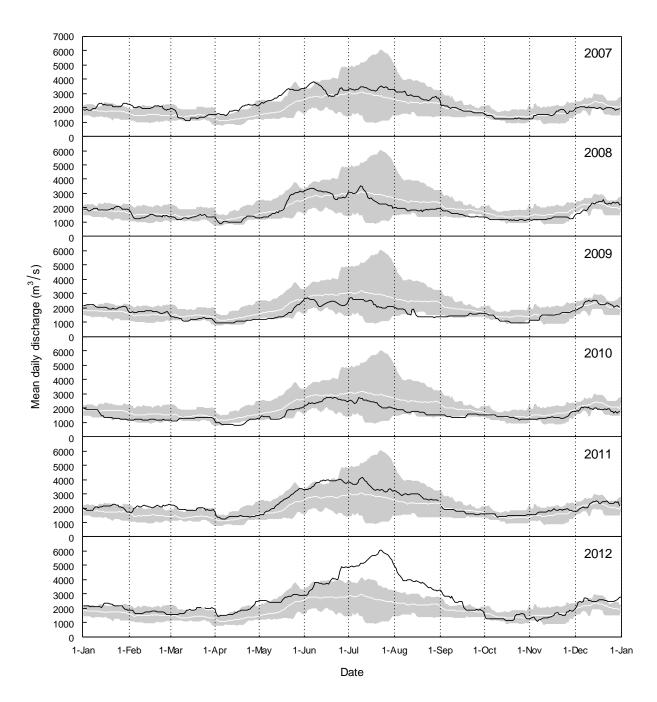


Figure D1. Concluded.

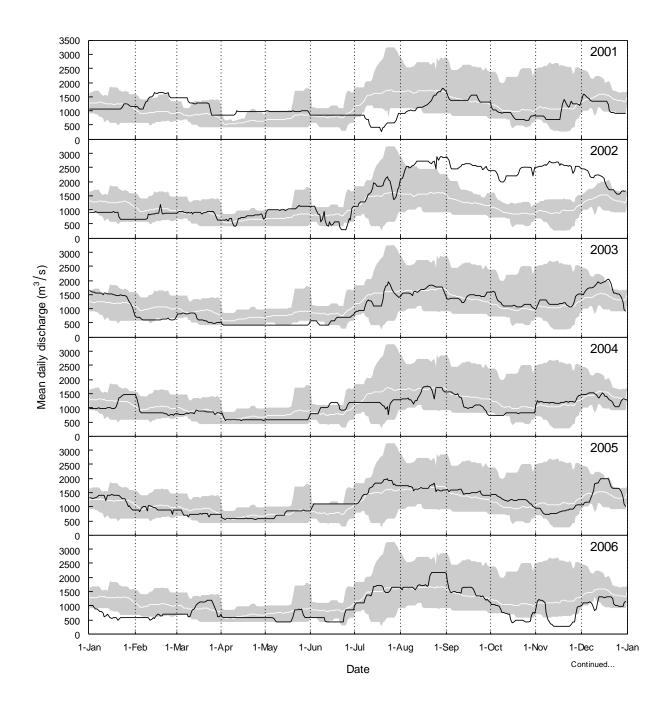


Figure D2. Mean daily discharge (m³/s) for the Columbia River at Hugh L. Keenleyside Dam (HLK), 2001 to 2012 (black line). The shaded area represents minimum and maximum mean daily discharge recorded at HLK during other study years between 2001 and 2012. The white line represents average mean daily discharge over the same time period.

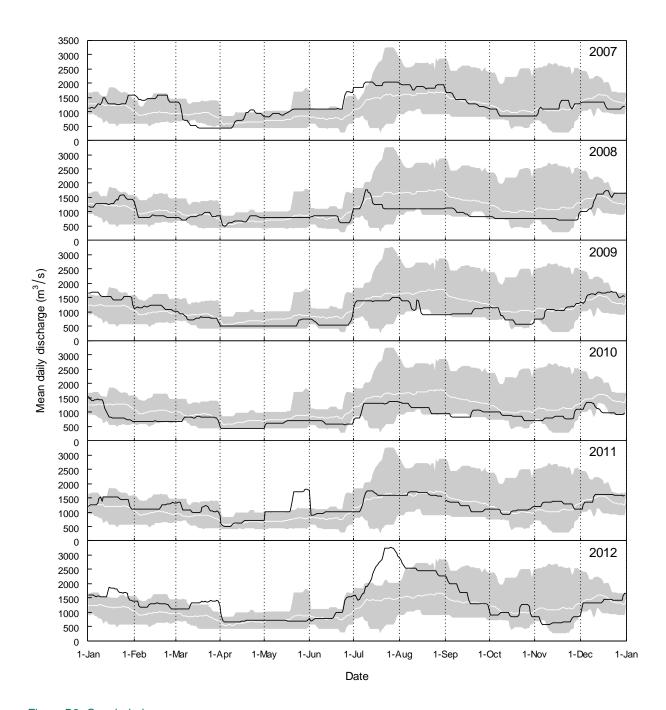


Figure D2. Concluded.

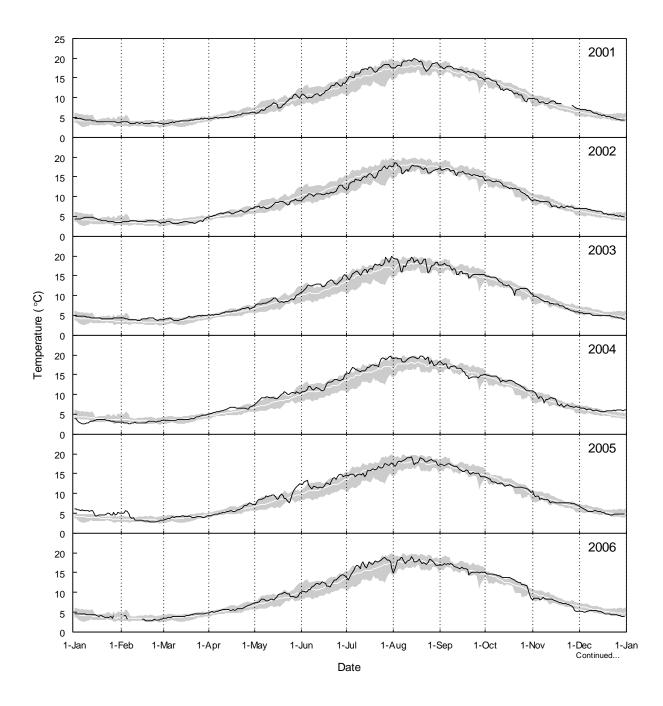


Figure D3. Mean daily water temperatures (°C) for the Columbia River (black line), 2001 to 2012. Data from 2001 to 2011 were recorded at the Birchbank water gauging station and data from 2012 were recorded near Fort Sheperd. The shaded area represents minimum and maximum mean daily water temperatures during other study years between 2001 and 2012. The white line represents average mean daily water temperature over the same time period.

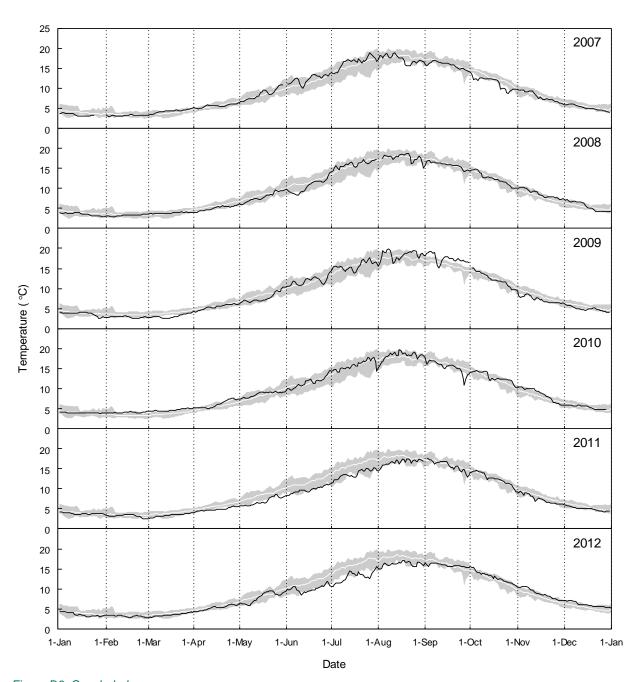


Figure D3. Concluded.

Figure D4. Mean daily discharge (m³/s) for the Columbia River at Brilliant Dam (BRD), 2001 to 2012 (black line). The shaded area represents minimum and maximum mean daily discharge recorded at BRD during other study years between 2001 and 2012. The white line represents average mean daily discharge over the same time period.

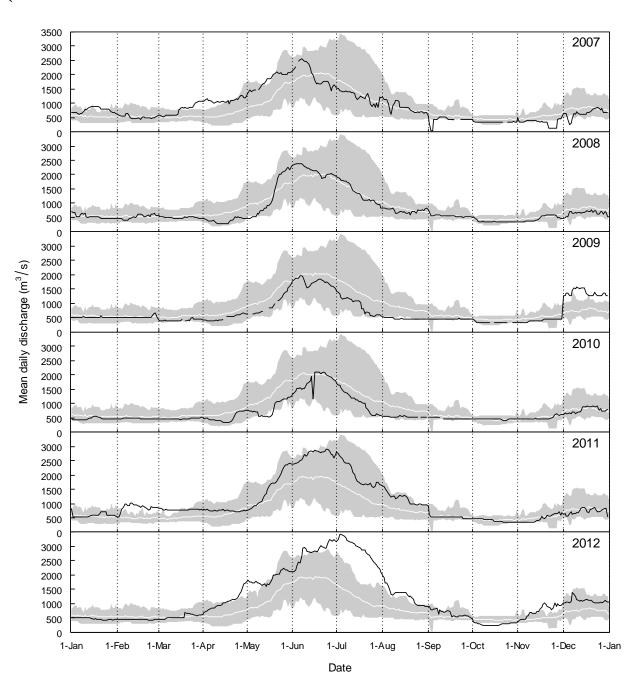


Figure D4. Concluded.

.

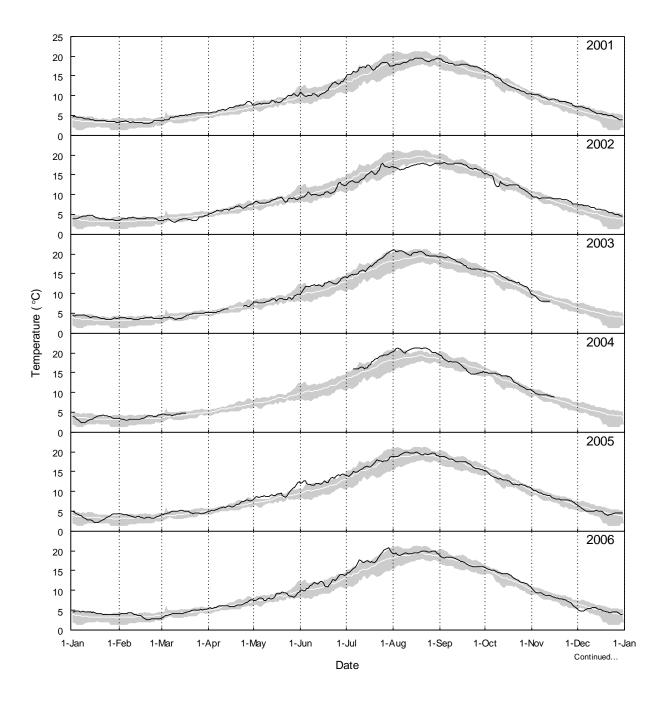


Figure D5. Mean daily water temperatures (°C) for the Kootenay River at Brilliant Dam (BRD), 2001 to 2012 (black line). The shaded area represents minimum and maximum mean daily water temperatures recorded at BRD during other study years between 2001 and 2012. The white line represents average mean daily water temperature over the same time period.

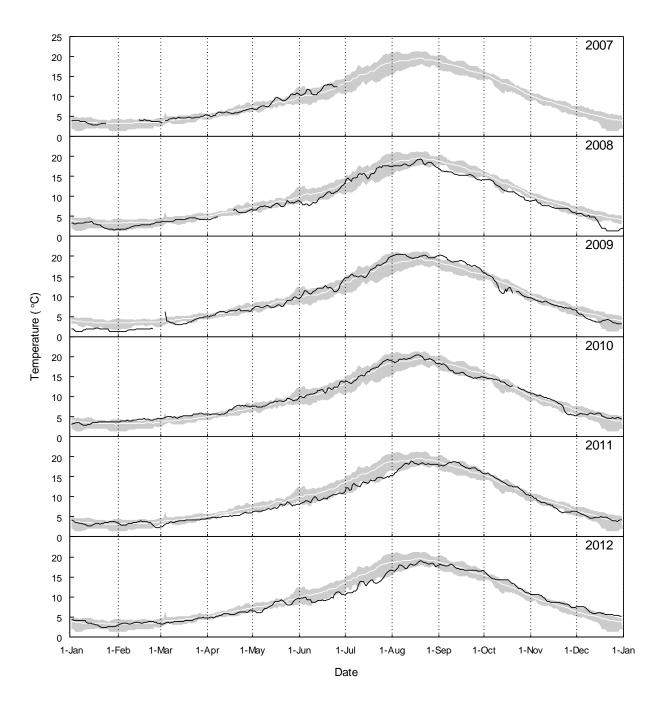


Figure D5. Concluded.

LOWER COLUMBIA RIVER FISH POPULATION INDEXING SURVEYS - 2012 INVESTIGATIONS

APPENDIX E

Catch and Effort Data Summaries

Table E1 Number of fish caught and observed during boat electroshocking surveys and their frequency of occurrence in sampled sections of the Lower Columbia River, 2001 to 2012.

Species	2001		2002		2003		2004		2005		2006		2007		2008		2009		2010		2011		2012	2	All	Years	
Species	nª	% ^b	nª	% ^b	n a	% ^b	n a	% ^b	n a	% ^b	nª	% ^b	nª	% ^b	nª	% ^b	n a	% ^b	nª	% ^b	nª	% ^b	n ^a	% ^b	n a	% ^b	% ^c
Sportfish																											
Mountain whitefish	14 916	52	12 065	50	9667	35	6021	38	5024	43	5472	40	5595	45	5221	44	3800	36	2748	30	2933	27	4648	41	78 110	42	12
Rainbow trout	9425	33	10 161	42	8436	30	5763	37	3844	33	5338	39	4953	39	5124	43	4219	40	4419	48	5501	51	5401	48	72 584	39	11
Walleye	1467	5	1478	6	4165	15	3413	22	2230	19	1421	10	1076	9	1208	10	1127	11	1588	17	1814	17	881	8	21 868	12	3
Brook trout	5	<1	8	<1	7	<1	3	<1	3	<1	4	<1	15	<1	8	<1	3	<1	4	<1	14	<1	15	<1	89	<1	<1
Brown trout	1	<1	2	<1			1	<1	1	<1	2	<1	7	<1	2	<1	3	<1	8	<1	4	<1	2	<1	33	<1	<1
Bull trout	16	<1	3	<1	18	<1	8	<1	8	<1	11	<1	30	<1	6	<1	9	<1	8	<1	12	<1	13	<1	142	<1	<1
Burbot	3	<1	10	<1	59	<1	208	1	174	2	195	1	191	2	69	<1	33	<1	70	<1	247	2	39	<1	1298	<1	<1
Cutthroat trout	1	<1	4	<1	2	<1			1	<1	5	<1	8	<1	5	<1	3	<1	6	<1	4	<1	4	<1	43	<1	<1
Kokanee	2562	9	171	<1	5180	19	120	<1	32	<1	898	7	506	4	148	1	1128	11	57	<1	77	<1	156	1	11 035	6	2
Lake trout			1	<1											1	<1									2	<1	<1
Lake whitefish	61	<1	140	<1	230	<1	160	1	262	2	290	2	163	1	159	1	192	2	239	3	220	2	61	<1	2177	1	<1
Northern pike																			7	<1	9	<1	11	<1	27	<1	<1
Smallmouth bass					4	<1	3	<1	4	<1	53	<1	16	<1	1	<1			1	<1	8	<1			90	<1	<1
White sturgeon	14	<1	6	<1	18	<1	5	<1	11	<1	14	<1	11	<1	9	<1	4	<1	11	<1	23	<1	9	<1	135	<1	<1
Yellow perch					1	<1	4	<1	1	<1	24	<1	1	<1					12	<1	2	<1			45	<1	<1
Sportfish Subtotal	28 471	100	24 049	100	27 787	100	15 709	100	11 595	100	13 727	100	12 572	100	11 961	100	10 521	100	9178	100	10 868	100	11 240	100	187 678	100	28
Non-sportfish																										+	
	2	-1						-1		-1	3	<1		<1	2	<1			3	-1					13		-1
Common carp	2	<1 <1					3	<1	15	<1 <1	3 17		1		1	<1			13	<1	3	-1	,	-1	56	<1	<1
Dace spp. ^d Northern pikeminnow	570	3	2371	10	969	3	1337	<1 3	522	2	1450	<1 2	845	<1	1452	2	241	<1	376	<1	764	<1 2	681	<1 3	11 578	<1 2	<1 2
Peamouth	80	<1	205	<1	45	<1	51	<1	33	<1	52	<1	93	<1	3	<1	4	<1	24	<1	192	<1	488	2	1270	<1	<1
Redside shiner	8520	46	9026	40	5710	20	4605	12	1742	5	13 121	17	3119	5	8156	12	1592	5	2266	7	4626	11	5280	21	67 763	14	10
	2724	15	7479	33	16 674	59	26 991	67	25 734	79	51 925	68	45 508	76	49 939	71	23 209	73	21 087	66	29 392	72	16 030	62	316 692	66	48
Sculpin spp. ^d	6509	35	3553	16	4779	17	7033	18	4378	14	9235	12	10 012	17	11 028	16	6896	22	7984	25	5949	15	3194	12	80 550	17	12
Sucker spp.d Tench	0509	33	5555	10	4//7	17	1033	10	4370	14	1	<1	5	<1	11 028	<1	0090	22	2	<1	3343	1.5	3174	12	9	<1	<1
Non-sportfish	40.407	400	20.004	400	00.477	400	40.004	400	20.405	400	75.004		50.504		70 500		24.046	400	24.755		40.000	400	05.674	400			
Subtotal	18 407	100	22 634	100	28 177	100	40 021	100	32 425	100	75 804	100	59 584	100	70 582	100	31 942	100	31 755	100	40 926	100	25 674	100	477 931	100	72
All species	46 878		46 683		55 964		55 730		44 020		89 531		72 156		82 543		42 463		40 933		51 794		36 914		665 609		100

^a Includes fish observed and identified to species; does not include recaptured fish.

b Percent composition of sportfish or non-sportfish catch.

e Percent composition of the total fish catch.

d Species combined for table or not identified to species.

Table E2 Summary of boat electroshocking sportfish catch (includes fish captured and observed and identified to species) and catch-per-unit-effort (CPUE = no. fish/km/hour) in the Lower Columbia River, 24 September to 25 October 2012.

				Time	Length														Numbe	er Caught	(CPUE=no.	fish/km	/hr)										
Section	Session	Site	Date	Sampled	Sampled	Broo	ok trout	Bro	wn trout	Bul	I trout	В	urbot	Cuttl	nroat trout	Ko	kanee	Lake	whitefish	Mountai	in whitefish	North	hern pike	Rainb	oow trout	Smallm	outh Bass	Wall	leye	White	sturgeon	All	Species
				(s)	(km)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Columbia River																																	
U/S																																	
	1			1278	0.94	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	143	428.53	0	0.00	11	32.96	0	0.00	10	29.97	0	0.00	164	491.46
		C00.7-L	29-Sep-12	1106	0.59	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	5.52	0	0.00	36	198.61	0	0.00	11	60.69	0	0.00	0	0.00	0	0.00	48	264.81
		C01.3-L C02.8-L	29-Sep-12	2059 1320	1.60 0.88	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00	0	0.00 0.00	8	8.74 0.00	0	0.00 0.00	87 129	95.07 399.79	5	5.46	23	25.13 21.69	0	0.00	5	5.46	0	0.00	128 138	139.87 427.69
		C02.8-L C03.6-L	30-Sep-12 30-Sep-12	2609	2.09	0	0.00	0	0.00	0	0.00	0	0.00 0.00	0	0.00	1	0.66	0	0.00	49	32.35	0	0.00 0.00	20	13.20	0	0.00 0.00	6	6.20 3.96	0	0.00 0.00	76	50.18
		C03.6-L		830	0.52	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	3	25.02	8	66.73	0	0.00	3	25.02	0	0.00	14	116.77
		C05.6-L	30-Sep-12	1261	1.10	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	2.60	0	0.00	4	10.38	0	0.00	12	31.14	0	0.00	2	5.19	0	0.00	19	49.31
				934	1.70	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	2	4.53	1	2.27	19	43.08	0	0.00	45	102.03	0	0.00	3	6.80	0	0.00	70	158.71
			29-Sep-12	1027	1.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	4	14.02	0	0.00	94	329.50	0	0.00	56	196.30	0	0.00	5	17.53	1	3.51	160	560.86
	Session S	ummary		1380	10.4	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	17	4.25	1	0.25	561	140.40	8	2.00	193	48.30	0	0.00	36	9.01	1	0.25	817	204.47
	2	C00.0-R	05-Oct-12	1140	0.94	0	0.00	0	0.00	2	6.72	0	0.00	0	0.00	0	0.00	0	0.00	59	198.21	0	0.00	16	53.75	0	0.00	6	20.16	1	3.36	84	282.19
		C00.7-L	05-Oct-12	647	0.59	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	41	386.66	0	0.00	26	245.20	0	0.00	3	28.29	0	0.00	70	660.15
		C01.3-L	05-Oct-12	1845	1.60	0	0.00	0	0.00	0	0.00	1	1.22	0	0.00	0	0.00	0	0.00	57	69.51	0	0.00	59	71.95	0	0.00		29.27	0	0.00	141	171.95
		C02.8-L	06-Oct-12	950	0.88	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	79	340.19	0	0.00	10	43.06	0	0.00	4	17.22	0	0.00	93	400.48
		C03.6-L	06-Oct-12	2371	2.09	0	0.00	0	0.00	1	0.73	0	0.00	0	0.00	1	0.73	1	0.73	145	105.34	0	0.00	71	51.58	0	0.00	21	15.26	0	0.00	240	174.36
		C04.6-R		378	0.52 1.10	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	3	54.95 29.78	0	0.00	26	128.21	0	0.00	1	18.32 10.83	0	0.00	11	201.47 110.99
		C05.6-L	07-Oct-12 07-Oct-12	1209 866	1.70	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	1	0.00 2.45	0	0.00 0.00	11 40	29.78 97.81	0	0.00 0.00	26 39	70.38 95.37	0	0.00 0.00	4	9.78	1	0.00 2.45	41 85	207.85
			07-Oct-12	970	1.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	66	244.95	0	0.00	22	81.65	0	0.00	3	11.13	0	0.00	91	337.73
	Session S	I	07 000 12	1153	10.4	0	0.00	0	0.00	3	0.90	1	0.30	0	0.00	2	0.60	1	0.30	501	150.14	0	0.00	276	82.71	0	0.00	70	20.98	2	0.60	856	256.52
	3	C00.0-R	12-Oct-12	887	0.94	0	0.00	0	0.00	1	4.32	0	0.00	0	0.00	1	4.32	0	0.00	9	38.86	0	0.00	23	99.31	0	0.00	8	34.54	0	0.00	42	181.34
	J	C00.7-L	12-Oct-12	490	0.59	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	8	99.62	0	0.00	13	161.88	0	0.00		37.36	0	0.00	24	298.86
		C01.3-L	12-Oct-12	2021	1.60	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	4	4.45	0	0.00	66	73.48	0	0.00	30	33.40	0	0.00	15	16.70	0	0.00	115	128.03
		C02.8-L	12-Oct-12	913	0.88	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	60	268.84	0	0.00	24	107.54	0	0.00	5	22.40	0	0.00	89	398.79
		C03.6-L	13-Oct-12	2550	2.09	0	0.00	0	0.00	0	0.00	1	0.68	0	0.00	0	0.00	0	0.00	77	52.01	0	0.00	42	28.37	0	0.00	23	15.54	0	0.00	143	96.59
		C04.6-R	13-Oct-12	429	0.52	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	6	96.83	0	0.00	4	64.55	0	0.00	10	161.38
		C05.6-L	13-Oct-12	1476	1.10	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	5	11.09	0	0.00	10	22.17	0	0.00	12	26.61	0	0.00	5	11.09	0	0.00	32	70.95
			13-Oct-12	870	1.70	0	0.00	0	0.00	1	2.43	0	0.00	0	0.00	0	0.00	1	2.43	60	146.04	0	0.00	68	165.52	0	0.00	6	14.60	0	0.00	136	331.03
	Session S	I	13-Oct-12	1101 1193	1.00 10.4	0	0.00 0.00	0	0.00 0.00	2	0.00	0	0.00	0	0.00 0.00	4 14	13.08 4.05	1	0.00 0.29	71 361	232.15 104.54	2 2	6.54 0.58	33 251	107.90 72.69	0	0.00 0.00	69	0.00 19.98	0	0.00	701	359.67 203.01
	4		20.0-+ 12			0		0		0		0		0				0						231		-		5		0			
	4	C00.0-R C00.7-L	20-Oct-12 20-Oct-12	1168 636	0.94 0.59	0	0.00 0.00	0	0.00 0.00	1	0.00 9.59	0	0.00 0.00	0	0.00 0.00	20	65.58 9.59	0	0.00 0.00	20 19	65.58 182.28	0	0.00 0.00	0	19.67 38.38	0	0.00 0.00	3	16.39 19.19	0	0.00 0.00	51 27	167.23 259.03
		C01.3-L	20-Oct-12	2310	1.60	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	10	9.74	0	0.00	94	91.56	0	0.00	41	39.94	0	0.00	6	5.84	0	0.00	151	147.08
		C02.8-L	20-Oct-12	820	0.88	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	54	269.40	0	0.00	3	14.97	0	0.00	0	0.00	0	0.00	57	284.37
		C03.6-L	21-Oct-12	2704	2.09	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	4	2.55	0	0.00	128	81.54	0	0.00	18	11.47	0	0.00	3	1.91	0	0.00	153	97.46
		C04.6-R		708	0.52	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	9.78	7	68.45	0	0.00	0	0.00	0	0.00	8	78.23
		C05.6-L	21-Oct-12	1268	1.10	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	2.58	0	0.00	7	18.07	0	0.00	21	54.20	0	0.00	9	23.23	0	0.00	38	98.08
				702	1.70	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	5	15.08	0	0.00	19	57.32	0	0.00	28	84.46	0	0.00		12.07	0	0.00	56	168.93
		•	22-Oct-12	1066	1.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	72	243.15	0	0.00	33	111.44	0	0.00		23.64	0	0.00	112	378.24
	Session S		I	1265	10.4	0	0.00	0	0.00	1	0.27	0	0.00	0	0.00	41	11.20	0	0.00	413	112.83	1	0.27	161	43.98	0	0.00		9.83	0	0.00	653	178.39
			22-Oct-12 22-Oct-12	638 783	0.66 0.81	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	6 84	51.30 476.80	0	0.00 0.00	9 18	76.94 102.17	0	0.00 0.00		0.00 5.68	0	0.00 0.00	15 103	128.24 584.65
	Session S		22 301 12	711	1.5	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	90	310.22	0	0.00	27	93.06	0	0.00		3.45	0	0.00	118	406.73
Section Tot				46340	43.15	0		0		6		2		0		74		3		1926		11		908		0		212		3		3145	
Section Ave		-		1219	1.14	0	0.00	0	0.00	0	0.41	0	0.14	0	0.00	2	5.06	0	0.21	51	131.77	0	0.75	24	62.12	0	0.00		14.50	0	0.21	83	242.76
Section Sta	_	-	an			0.00	0.00	0.00	0.00	0.07	0.32	0.04	0.04	0.00	0.00	0.62	1.80	0.04	0.09	6.85	21.94	0.16	0.72	2.90	8.60	0.00	0.00		2.12	0.04	0.14	8.97	25.42
z consn ota		J. J. 1120					0.00		0.00	0.07	0.02		0.07	0,00	0.00	0.02	2.30		0.07	0.00		0.10	2	,,	0.00	0.00	0.00	0.70		I	V.1.		

Table E2 Continued.

				Time	Length														Numbe	r Caught	(CPUE=no.	fish/km/	hr)										
Section	Session	Site	Date	Sampled	Sampled	Bro	ok trout	Bro	vn trout	Bu	II trout	В	urbot	Cutth	roat trout	Ko	kanee	Lake	whitefish	Mountai	in whitefish	North	ern pike	Rainb	ow trout	Smallm	outh bass	W	alleye	White	sturgeon	All S	Species
				(s)	(km)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Kootenay River																																	
	1	K00.3-L 2	8-Sep-12	241	0.44	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	33.95	0	0.00	2	67.90	0	0.00	6	203.70	0	0.00	9	305.55
		K00.6-R 2	9-Sep-12	601	0.60	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	3	29.95	0	0.00	24	239.60	0	0.00	20	199.67	0	0.00	6	59.90	0	0.00	53	529.12
		K01.8-L 2	28-Sep-12	1645	1.87	0	0.00	0	0.00	0	0.00	1	1.17	0	0.00	6	7.02	0	0.00	73	85.43	0	0.00	100	117.03	0	0.00	21	24.58	2	2.34	203	237.57
		K01.8-R 2	28-Sep-12	1338	1.30	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	29	60.02	0	0.00	76	157.30	0	0.00	76	157.30	0	0.00	5	10.35	0	0.00	186	384.96
	Session S	ummary		956	4.2	0	0.00	0	0.00	0	0.00	1	0.89	0	0.00	38	33.98	0	0.00	174	155.60	0	0.00	198	177.06	0	0.00	38	33.98	2	1.79	451	403.30
	2	K00.3-L 0	6-Oct-12	271	0.44	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	30.19	0	0.00	8	241.53	0	0.00	9	271.72
		K00.6-R 0	6-Oct-12	642	0.60	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	2	18.69	41	383.18	0	0.00	9	84.11	0	0.00	12	112.15	0	0.00	64	598.13
		K01.8-L	06-Oct-12	1694	1.87	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	2	2.27	81	92.05	0	0.00	28	31.82	0	0.00	33	37.50	0	0.00	144	163.65
		K01.8-R 0	6-Oct-12	1420	1.30	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	76	148.21	0	0.00	13	25.35	0	0.00	13	25.35	0	0.00	102	198.92
	Session S	ummary		1007	4.2	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	4	3.40	198	168.18	0	0.00	51	43.32	0	0.00	66	56.06	0	0.00	319	270.95
	3	K00.3-L 1	4-Oct-12	299	0.44	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	14	383.10	0	0.00	6	164.18	0	0.00	20	547.28
		K00.6-R 1	4-Oct-12	576	0.60	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	21	218.75	0	0.00	13	135.42	0	0.00	8	83.33	0	0.00	42	437.50
		K01.8-L 1	4-Oct-12	1719	1.87	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	121	135.51	0	0.00	67	75.03	0	0.00	32	35.84	0	0.00	220	246.38
		K01.8-R 1	4-Oct-12	1142	1.30	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	72	174.59	0	0.00	33	80.02	0	0.00	6	14.55	0	0.00	111	269.16
	Session S	lummary		934	4.2	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	214	195.92	0	0.00	127	116.27	0	0.00	52	47.61	0	0.00	393	359.80
	4	K00.3-L 2	21-Oct-12	263	0.44	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	31.11	0	0.00	4	124.44	0	0.00	2	62.22	0	0.00	3	93.33	0	0.00	10	311.10
		K00.6-R 2	21-Oct-12	583	0.60	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	46	473.41	0	0.00	12	123.50	0	0.00	15	154.37	0	0.00	73	751.29
		K01.8-L 2	21-Oct-12	1522	1.82	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	6	7.80	0	0.00	92	119.57	0	0.00	91	118.27	0	0.00	23	29.89	0	0.00	212	275.52
		K01.8-R 2	21-Oct-12	1193	1.30	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	46	106.78	0	0.00	67	155.52	0	0.00	14	32.50	0	0.00	127	294.80
	Session S	ummary		890	4.2	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	7	6.80	0	0.00	188	182.75	0	0.00	172	167.20	0	0.00	55	53.46	0	0.00	422	410.21
Section To	otal All San	nples		15149	16.79	0		0		0		1		0		45		4		774		0		548		0		211		2		1585	
Section Av	verage All S	Samples		947	1.05	0	0.00	0	0.00	0	0.00	0	0.23	0	0.00	3	10.19	0	0.91	48	175.28	0	0.00	34	124.10	0	0.00	13	47.78	0	0.45	99	363.91
	_	ror of Mean				0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.07	0.00	0.00	1.82	4.29	0.17	1.17	9.41	31.72	0.00	0.00	8.49	21.79	0.00	0.00	2.36	18.17	0.13	0.15	18.97	41.08
						0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	-0.00	1.02		0.17		/ ,11	01.72	0.00	0.00	0		0.00	0.00	2.00	20127	0.13	0.10	10.77	11.00

Table E2 Continued.

			Time	Length														Numbe	er Caught	(CPUE=no.	fish/km	/hr)										
Section Session	Site	Date	Sampled	Sampled	Broo	ok trout	Brov	wn trout	Bu	III trout	В	urbot	Cutth	roat trout	Ko	kanee	Lake	whitefish	Mounta	in whitefish	Norti	hern pike	Rainl	bow trout	Smallm	outh bass	W	alleye	White	sturgeon	All :	Species
			(s)	(km)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Columbia River																																
D/S																																
1		25-Sep-12	2219	2.73	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	108	64.18	0	0.00	259	153.92	0	0.00	37	21.99	0	0.00	404	240.08
		25-Sep-12	346	0.61	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	25	426.42	0	0.00	101	1722.73	0	0.00	17	289.96	0	0.00	143	2439.12
		26-Sep-12	939	1.13	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	3.39	0	0.00	41	139.10	0	0.00	88	298.57	0	0.00	10	33.93	0	0.00	140	474.99
		24-Sep-12	2395	2.14 2.39	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	1.40	59 47	41.44	0	0.00	180	126.43 127.58	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.00	9	6.32	0	0.00	250	175.60 169.56
		25-Sep-12 27-Sep-12	1830 1181	1.44	0	0.00 0.00	0	0.00 0.00	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.00 0.00	0	0.00 0.00	0	0.00 2.12	1	0.00 2.12	0	0.82 0.00	7	38.69 14.82	0	0.00 0.00	155 73	127.56 154.53	0	0.00 0.00	1	2.47 2.12	0	0.00 0.00	206 83	175.70
		26-Sep-12	1040	1.01	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	11	37.70	0	0.00	30	102.82	0	0.00	5	2.12 17.14	0	0.00	46	157.65
		27-Sep-12	516	0.93	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	7.50	0	0.00	48	360.09	0	0.00	23	172.54	0	0.00	4	30.01	0	0.00	76	570.14
	C49.0-R		442	0.72	0	0.00	0	0.00	0	0.00	1	11.31	0	0.00	0	0.00	0	0.00	18	203.62	0	0.00	34	384.62	0	0.00	4	45.25	0	0.00	57	644.80
		27-Sep-12	1539	2.45	0	0.00	0	0.00	0	0.00	1	0.95	0	0.00	0	0.00	0	0.00	29	27.69	0	0.00	101	96.43	0	0.00	4	3.82	0	0.00	135	128.89
		26-Sep-12	1117	2.39	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	32	43.15	0	0.00	133	179.35	0	0.00	7	9.44	0	0.00	172	231.94
	C52.2-L	28-Sep-12	807	0.89	0	0.00	0	0.00	1	5.01	0	0.00	0	0.00	0	0.00	0	0.00	26	130.32	0	0.00	93	466.15	0	0.00	3	15.04	0	0.00	123	616.52
		27-Sep-12	2137	3.79	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	80	35.56	0	0.00	168	74.67	0	0.00	22	9.78	1	0.44	271	120.46
	C52.8-L	28-Sep-12	577	0.89	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	3	21.03	0	0.00	31	217.32	0	0.00	3	21.03	0	0.00	37	259.38
	C53.6-L	28-Sep-12	933	1.72	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	15	33.65	0	0.00	26	58.33	0	0.00	1	2.24	0	0.00	42	94.22
Session St	Summary		1201	25.2	0	0.00	0	0.00	1	0.12	2	0.24	1	0.12	3	0.36	3	0.36	549	65.21	0	0.00	1495	177.59	0	0.00	130	15.44	1	0.12	2185	259.55
2	C25.3-R	02-Oct-12	1898	2.73	0	0.00	0	0.00	1	0.69	0	0.00	0	0.00	15	10.42	2	1.39	227	157.71	0	0.00	123	85.46	0	0.00	8	5.56	0	0.00	376	261.24
	C27.6-R	02-Oct-12	342	0.61	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	5	86.28	0	0.00	12	207.08	0	0.00	1	17.26	0	0.00	18	310.61
	C28.2-R	02-Oct-12	916	1.13	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	70	243.46	0	0.00	89	309.54	0	0.00	0	0.00	0	0.00	159	553.00
	C34.9-L	01-Oct-12	2175	2.09	0	0.00	1	0.79	0	0.00	0	0.00	0	0.00	2	1.58	0	0.00	42	33.26	0	0.00	184	145.72	0	0.00	10	7.92	0	0.00	239	189.28
		01-Oct-12	1592	2.19	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	66	68.15	0	0.00	131	135.27	0	0.00	4	4.13	0	0.00	201	207.54
	C47.8-L	04-Oct-12	1260	1.44	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	2	3.97	3	5.95	0	0.00	23	45.63	0	0.00	7	13.89	0	0.00	35	69.44
		03-Oct-12	920	1.01	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	3	11.62	0	0.00	27	104.61	0	0.00	3	11.62	0	0.00	33	127.85
	C49.0-L	04-Oct-12	506	0.93	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	40	306.01	0	0.00	12	91.80	0	0.00	3	22.95	0	0.00	55	420.76
		03-Oct-12	352	0.72	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	8	113.64	0	0.00	28	397.73	0	0.00	1	14.20	0	0.00	37	525.57
		04-Oct-12	1539	2.45	0	0.00	0	0.00	0	0.00	2	1.91	0	0.00	0	0.00	2	1.91	92 73	87.84	0	0.00	109	104.07 65.03	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.00	13	12.41 17.73	0	0.00	218	208.14
		03-Oct-12 05-Oct-12	1274 863	2.39 0.89	1	0.00 4.69	1	0.00 4.69	1	0.00 4.69	2	1.18 9.37	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	13	86.31 60.93	0	0.00 0.00	55 31	05.05 145.30	0	0.00 0.00	15	0.00	0	0.00 0.00	144 49	170.25 229.67
		03-Oct-12 04-Oct-12	2308	3.79	1	0.41	0	0.00	0	0.00	5	2.06	0	0.00	0	0.00	0	0.00	50	20.58	0	0.00	67	27.57	0	0.00	16	6.58	0	0.00	139	57.21
		05-Oct-12	603	0.89	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	45	301.86	0	0.00	24	160.99	0	0.00	7	46.96	0	0.00	76	509.81
	C53.6-L		1091	1.72	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	8	15.35	0	0.00	22	42.21	0	0.00	8	15.35	0	0.00	38	72.90
Session St		00 000 12	1176	25.0	2	0.25	2	0.25	2	0.25	10	1.23	0	0.00	17	2.08	6	0.74	745	91.30	0	0.00	937	114.83	0	0.00	96	11.77	0	0.00	1817	222.68
3	C25.3-R	09-Oct-12	1576	2.73	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.84	2	1.67	33	27.61	0	0.00	40	33.47	0	0.00	5	4.18	0	0.00	81	67.77
		09-Oct-12	373	0.61	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	33	522.13	0	0.00	12	189.87	0	0.00	3	47.47	0	0.00	48	759.46
	C28.2-R	09-Oct-12	796	1.13	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	53	212.12	0	0.00	50	200.12	0	0.00	6	24.01	0	0.00	109	436.25
	C34.9-L	09-Oct-12	1811	2.14	1	0.93	0	0.00	0	0.00	0	0.00	0	0.00	1	0.93	0	0.00	21	19.51	0	0.00	75	69.67	0	0.00	5	4.64	0	0.00	103	95.68
	C36.6-L	10-Oct-12	1415	2.39	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	28	29.81	0	0.00	94	100.06	0	0.00	1	1.06	0	0.00	123	130.93
		11-Oct-12	1256	1.44	6	11.94	0	0.00	0	0.00	1	1.99	0	0.00	6	11.94	4	7.96	24	47.77	0	0.00	66	131.37	0	0.00	15	29.86	0	0.00	122	242.83
	C48.2-R	10-Oct-12	956	1.01	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	8	29.83	0	0.00	59	219.98	0	0.00	2	7.46	0	0.00	69	257.26
	C49.0-L	11-Oct-12	505	0.93	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	4	30.66	32	245.29	0	0.00	32	245.29	0	0.00	4	30.66	0	0.00	72	551.90
		10-Oct-12	666	0.72	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	7	52.55	0	0.00	36	270.27	0	0.00	3	22.52	0	0.00	46	345.35
		11-Oct-12	1539	2.45	0	0.00	0	0.00	0	0.00	0	0.00	1	0.95	3	2.86	3	2.86	29	27.69	0	0.00	57	54.42	0	0.00	12	11.46	1	0.95	106	101.21
		10-Oct-12	1406	2.39	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	1.07	0	0.00	78	83.56	0	0.00	123	131.77	0	0.00	8	8.57	0	0.00	210	224.98
		12-Oct-12	806	0.89	0	0.00	0	0.00	0	0.00	l	5.02	0	0.00	0	0.00	0	0.00	8	40.15	0	0.00	25	125.46	0	0.00	6	30.11	0	0.00	40	200.74
		11-Oct-12	2305	3.79	0	0.00	0	0.00	0	0.00	5	2.06	0	0.00	0	0.00	1	2.88	64	26.37	0	0.00	116	47.80	0	0.00	20	8.24	0	0.00	212	87.36
		12-Oct-12 12-Oct-12	556 1008	0.89 1.72	0	0.00 0.00	0	0.00 0.00	0	7.28 0.00	0	0.00	0	0.00	0	0.00	1	7.28 0.00	7	50.93 14.53	0	0.00 0.00	25 26	181.88 53.99	0	0.00 0.00	11 8	80.03 16.61	0	0.00 0.00	45 41	327.38 85.13
		12-OCI-12			-		U		U		U	0.00	U	0.00		0.00	U		/		_								U			
Session St	Summary		1132	25.2	7	0.88	0	0.00	1	0.13	7	0.88	1	0.13	12	1.51	21	2.65	432	54.47	0	0.00	836	105.41	0	0.00	109	13.74	1	0.13	1427	179.94

Table E2 Continued.

			Time	Length														Numbe	r Caught	(CPUE=no.	fish/km/	hr)										
Section Session	Site	Date	Sampled	Sampled	Bro	ok trout	Brov	vn trout	Bul	I trout	В	urbot	Cutth	roat trout	Ko	kanee	Lake v	whitefish	Mountai	in whitefish	North	ern pike	Rainb	oow trout	Smallm	outh bass	W	alleye	White	sturgeon	All S	Species
			(s)	(km)	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE	No.	CPUE
4	C25.3-R	16-Oct-12	1898	2.73	0	0.00	0	0.00	2	1.39	0	0.00	0	0.00	0	0.00	3	2.08	57	39.60	0	0.00	70	48.63	0	0.00	9	6.25	0	0.00	141	97.96
	C27.6-R	16-Oct-12	324	0.61	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	37	673.95	0	0.00	23	418.94	0	0.00	1	18.21	0	0.00	61	1111.11
	C28.2-R	16-Oct-12	1205	1.13	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	31	81.96	0	0.00	72	190.36	0	0.00	10	26.44	1	2.64	114	301.40
	C34.9-L	17-Oct-12	1943	2.14	0	0.00	0	0.00	1	0.87	0	0.00	0	0.00	1	0.87	0	0.00	15	12.99	0	0.00	92	79.65	0	0.00	11	9.52	1	0.87	121	104.76
	C36.6-L	17-Oct-12	1459	2.39	0	0.00	0	0.00	0	0.00	2	2.06	0	0.00	3	3.10	0	0.00	20	20.65	0	0.00	81	83.62	0	0.00	4	4.13	0	0.00	110	113.56
	C47.8-L	17-Oct-12	1274	1.44	2	3.92	0	0.00	0	0.00	2	3.92	0	0.00	0	0.00	3	5.89	20	39.25	0	0.00	63	123.63	0	0.00	14	27.47	0	0.00	104	204.08
	C48.2-R	18-Oct-12	807	1.01	0	0.00	0	0.00	0	0.00	1	4.42	0	0.00	0	0.00	0	0.00	6	26.50	0	0.00	15	66.25	0	0.00	3	13.25	0	0.00	25	110.42
	C49.0-L	17-Oct-12	520	0.93	2	14.89	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	19	141.44	0	0.00	21	156.33	0	0.00	2	14.89	0	0.00	44	327.54
	C49.0-R C49.8-L	18-Oct-12 17-Oct-12	526 1539	0.72 2.45	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0 4	0.00 3.82	1	9.51 0.00	0	9.51 0.00	5	0.00 4.77	7 53	66.54 50.60	0	0.00 0.00	19 63	180.61 60.15	0	0.00 0.00	9	0.00 8.59	0	0.00 0.00	28	266.16 127.94
	C49.8-L	17-Oct-12 18-Oct-12	1299	2.43	0	0.00	0	0.00	0	0.00	4	3.62 4.64	0	0.00	0	0.00	2	2.32	19	22.03	0	0.00	50	57.98	0	0.00	13	15.07	0	0.00	134 88	127.94 102.04
	C52.2-L	18-Oct-12	751	0.89	1	5.39	0	0.00	0	0.00	1	5.39	0	0.00	0	0.00	5	26.93	8	43.09	0	0.00	18	96.95	0	0.00	10	53.86	0	0.00	43	231.60
	C52.2-R	18-Oct-12	2062	3.79	1	0.46	0	0.00	0	0.00	2	0.92	1	0.46	0	0.00	5	2.30	25	11.52	0	0.00	60	27.64	0	0.00	8	3.69	0	0.00	102	46.99
	C52.8-L	18-Oct-12	571	0.89	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	37	262.11	0	0.00	22	155.85	0	0.00	59	417.95
	C53.6-L	18-Oct-12	1001	1.72	0	0.00	0	0.00	0	0.00	1	2.09	0	0.00	0	0.00	1	2.09	2	4.18	0	0.00	37	77.36	0	0.00	14	29.27	0	0.00	55	115.00
Session St	ummary		1145	25.2	6	0.75	0	0.00	3	0.37	17	2.12	2	0.25	5	0.62	24	2.99	319	39.74	0	0.00	721	89.83	0	0.00	130	16.20	2	0.25	1229	153.12
5	C10.7-R	22-Oct-12	940	0.91	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	61	256.72	0	0.00	57	239.89	0	0.00	6	25.25	0	0.00	124	521.86
	C10.9-L	22-Oct-12	700	2.18	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	294	693.58	0	0.00	111	261.86	0	0.00	12	28.31	0	0.00	417	983.75
	C13.4-R	23-Oct-12	1907	2.52	0	0.00	0	0.00	0	0.00	1	0.75	0	0.00	0	0.00	0	0.00	94	70.42	0	0.00	135	101.13	0	0.00	10	7.49	0	0.00	240	179.79
	C14.8-L	23-Oct-12	2164	2.26	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.74	94	69.19	0	0.00	107	78.76	0	0.00	13	9.57	0	0.00	215	158.26
	C16.6-R	23-Oct-12	1361	1.44	1	1.84	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	1.84	46	84.50	0	0.00	28	51.43	0	0.00	2	3.67	0	0.00	78	143.28
	C18.0-R	24-Oct-12	710	0.85	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	5.97	84	501.08	0	0.00	74	441.43	0	0.00	6	35.79	0	0.00	165	984.26
		24-Oct-12	1107	1.27	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	39	99.87	0	0.00	84	215.10	0	0.00	8	20.49	0	0.00	131	335.45
	C23.4-L	24-Oct-12	743	0.93	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	44	229.24	0	0.00	65	338.64	0	0.00	0	0.00	1	5.21	110	573.09
	C28.8-L	24-Oct-12	524	0.82	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	42	351.89	0	0.00	32	268.11	0	0.00	2	16.76	0	0.00	76	636.75
	C32.0-R C34.9-R	24-Oct-12 25-Oct-12	1105 864	1.37 0.89	1	0.00 4.68	0	0.00 0.00	0	4.76 0.00	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0	2.38 0.00	33	78.48 18.73	0	0.00 0.00	98 33	233.05 154.49	0	0.00 0.00	1	16.65 18.73	0	0.00 0.00	141 42	335.30 196.63
		25-Oct-12 25-Oct-12	1317	2.27	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	28	33.72	0	0.00	18	21.68	0	0.00	74	89.11	0	0.00	5	6.02	0	0.00	125	150.52
		25-Oct-12	736	1.18	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	4.15	5	20.73	0	0.00	45	186.53	0	0.00	5	20.73	0	0.00	56	232.13
		25-Oct-12	1754	2.41	0	0.00	0	0.00	0	0.00	1	0.85	0	0.00	0	0.00	0	0.00	27	22.99	0	0.00	61	51.95	0	0.00	12	10.22	0	0.00	101	86.02
	C44.6-L	25-Oct-12	755	1.01	0	0.00	0	0.00	0	0.00	2	9.44	0	0.00	0	0.00	1	4.72	12	56.65	0	0.00	30	141.63	0	0.00	4	18.88	0	0.00	49	231.33
	C46.4-L	25-Oct-12	1178	1.59	0	0.00	0	0.00	0	0.00	1	1.92	0	0.00	1	1.92	0	0.00	14	26.91	0	0.00	100	192.20	0	0.00	19	36.52	0	0.00	135	259.47
	C47.2-R	26-Oct-12	678	1.06	0	0.00	0	0.00	0	0.00	1	5.01	0	0.00	0	0.00	0	0.00	53	265.49	0	0.00	52	260.48	0	0.00	2	10.02	0	0.00	108	540.99
	C56.0-L	19-Oct-12	781	0.94	0	0.00	0	0.00	0	0.00	6	29.42	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	6	29.42	1	4.90	14	68.65	1	4.90	28	137.30
Session St	ummary		1074	25.9	2	0.26	0	0.00	2	0.26	12	1.55	0	0.00	29	3.75	6	0.78	964	124.81	0	0.00	1192	154.33	1	0.13	131	16.96	2	0.26	2341	303.10
Section Total All Sam	nples		89134	126.57	17		2		9		48		4		66		60		3009		0		5181		1		596		6		8999	
Section Average All S	Samples		1143	1.62	0	0.42	0	0.05	0	0.22	1	1.19	0	0.10	1	1.64	1	1.49	39	74.89	0	0.00	66	128.95	0	0.02	8	14.83	0	0.15	115	316.55
Section Standard Err	ror of Mea	n			0.09	0.27	0.02	0.06	0.04	0.14	0.14	0.45	0.03	0.12	0.41	0.49	0.17	0.54	5.10	16.89	0.00	0.00	5.40	23.22	0.01	0.06	0.72	4.26	0.03	0.10	9.50	37.54
All Sections Total All	l Samples		150623	186.51	17	0.00	2	0.00	15	0.00	51	0.01	4	0.00	185	0.02	67	0.01	5709	0.73	11	0.00	6637	0.85	1	0.00	1019	0.13	11	0.00	13729	1.76
All Sections Average	All Sampl	es			0	0.29	0	0.03	0	0.25	0	0.86	0	0.07	1	3.13	1	1.13	43	96.57	0	0.19	50	112.27	0	0.02	8	17.24	0	0.19	104	232.23
All Sections Standard	d Error of	Mean			0.05	0.16	0.01	0.04	0.03	0.13	0.09	0.27	0.01	0.07	0.37	0.81	0.11	0.35	3.78	12.44	0.05	0.21	3.84	14.68	0.01	0.04	0.61	3.81	0.03	0.07	6.67	24.03

Table E3 Summary of boat electroshocking non-sportfish catch (includes fish captured and observed and identified to species) and catch-per-unit-effort (CPUE = no. fish/km/hour) in the Lower Columbia River, 24 September to 25 October 2012.

									Nun	nber C	aught (C	PUE=r	no. fish/kı	m/h) ^a			
Section	Session	Site	Date	Time Sampled	Length Sampled		thern	Pea	mouth	Re	dside		pin spp.		ker spp.	AII S	Species
Ocolion	00331011	Oite	Duto	(seconds)	(km)	-	minnow CPUE		CPUE	No.	niner CPUE		CPUE	No.	CPUE	No.	CPUE
C-lhi-						No.	CPUE	No.	CPUE	NO.	CPUE	No.	CPUE	NO.	CPUE	NO.	CPUE
Columbia River U/S																	
	1	C00.0-R	29-Sep-12	1278	0.94	85	254.72	10	29.97	2030	6083.31	250	749.18	101	302.67	2476	7419.84
		C00.7-L	29-Sep-12	1106	0.59	10	55.17	55	303.43	350	1930.92	580	3199.80	25	137.92	1020	5627.24
		C01.3-L	29-Sep-12	2059	1.60	41	44.80	38	41.53	300	327.83	110	120.20	114	124.58	603	658.94
		C02.8-L C03.6-L	30-Sep-12	1320 2609	0.88 2.09	0 4	0.00 2.64	0	0.00	75 83	232.44 54.80	10 48	30.99 31.69	58 115	179.75 75.92	143 255	443.18 168.35
		C03.6-L C04.6-R	30-Sep-12 30-Sep-12	830	0.52	0	0.00	5	3.30 0.00	30	250.23	0	0.00	17	73.92 141.80	47	392.03
		C05.6-L	30-Sep-12	1261	1.10	2	5.19	0	0.00	70	181.67	21	54.50	44	114.20	137	355.56
		C07.3-R	29-Sep-12	934	1.70	1	2.27	0	0.00	0	0.00	6	13.60	34	77.09	41	92.96
		C07.4-L	29-Sep-12	1027	1.00	2	7.01	0	0.00	0	0.00	0	0.00	85	297.96	87	304.97
	Session 1 Sun	nmary		1380	10.42	145	36.29	108	27.03	2938	735.31	1025	256.53	593	148.41	4809	1203.57
	2	C00.0-R	05-Oct-12	1140	0.94	4	13.44	20	67.19	310	1041.43	580	1948.49	10	33.59	924	3104.14
		C00.7-L	05-Oct-12	647	0.59	5	47.15	40	377.23	30	282.92	262	2470.86	28	264.06	365	3442.22
		C01.3-L	05-Oct-12	1845	1.60	12	14.63	52	63.41	17	20.73	93	113.41	113	137.80	287	350.00
		C02.8-L	06-Oct-12	950	0.88	4	17.22	2	8.61	5	21.53	50	215.31	43	185.17	104	447.85
		C03.6-L C04.6-R	06-Oct-12 07-Oct-12	2371 378	2.09 0.52	12	8.72 0.00	43	31.24 0.00	2 0	1.45 0.00	200	145.30 0.00	127 10	92.26 183.15	384	278.97 183.15
		C04.6-R C05.6-L	07-Oct-12 07-Oct-12	1209	1.10	1	0.00 2.71	2	5.41	101	273.40	110	297.77	36	97.45	10 250	676.74
		C05.6-L C07.3-R	07-Oct-12 07-Oct-12	866	1.70	0	0.00	5	3.41 12.23	0	0.00	0	0.00	21	51.35	26	63.58
		C07.4-L	07-Oct-12	970	1.00	0	0.00	1	3.71	20	74.23	100	371.13	55	204.12	176	653.20
	Session 2 Sun	1		1153	10.42	38	11.39	165	49.45	485	145.34	1395	418.04	443	132.76	2526	756.97
	3	C00.0-R	12-Oct-12	887	0.94	3	12.95	24	103.62	233	1006.02	162	699.47	8	34.54	430	1856.60
		C00.7-L	12-Oct-12	490	0.59	26	323.76	35	435.84	10	124.52	135	1681.08	6	74.71	212	2639.92
		C01.3-L	12-Oct-12	2021	1.60	50	55.67	64	71.25	26	28.95	105	116.90	82	91.29	327	364.05
		C02.8-L	12-Oct-12	913	0.88	8	35.85	6	26.88	20	89.61	45	201.63	112	501.84	191	855.82
		C03.6-L	13-Oct-12	2550	2.09	36	24.32	5	3.38	10	6.75	190	128.34	124	83.76	365	246.55
		C04.6-R C05.6-L	13-Oct-12 13-Oct-12	429 1476	0.52 1.10	5 25	80.69 55.43	0	0.00 0.00	0	0.00 35.48	12 185	193.65 410.20	21 102	338.89 226.16	38 328	613.23 727.27
		C05.0-L C07.3-R	13-Oct-12 13-Oct-12	870	1.70	5	12.17	0	0.00	16 0	0.00	110	267.75	13	31.64	128	311.56
		C07.4-L	13-Oct-12	1101	1.00	47	153.68	1	3.27	50	163.49	75	245.23	90	294.28	263	859.95
	Session 3 Sun			1193	10.42	205	59.37	135	39.10	365	105.70	1019	295.10	558	161.60	2282	660.86
	4	C00.0-R	20-Oct-12	1168	0.94	3	9.84	20	65.58	20	65.58	9	29.51	2	6.56	54	177.06
		C00.7-L	20-Oct-12	636	0.59	1	9.59	25	239.85	15	143.91	0	0.00	3	28.78	44	422.13
		C01.3-L	20-Oct-12	2310	1.60	17	16.56	11	10.71	15	14.61	100	97.40	47	45.78	190	185.06
		C02.8-L	20-Oct-12	820	0.88	2	9.98	0	0.00	0	0.00	0	0.00	5	24.94	7	34.92
		C03.6-L	21-Oct-12	2704	2.09	3	1.91	0	0.00	11	7.01	30	19.11	22	14.01	66	42.04
		C04.6-R	21-Oct-12	708	0.52	0	0.00	0	0.00	0	0.00	0	0.00	21	205.35	21	205.35
		C05.6-L C07.3-R	21-Oct-12 22-Oct-12	1268 702	1.10	0 2	0.00 6.03	0 2	0.00 6.03	0 2	0.00 6.03	26 10	67.11 30.17	49 5	126.47 15.08	75 21	193.58 63.35
		C07.3-K C07.4-L	22-Oct-12 22-Oct-12	1066	1.70 1.00	1	3.38	7	23.64	0	0.03	15	50.17 50.66	24	81.05	47	158.72
	Session 4 Sun	1	22-001-12	1265	10.42	29	7.92	65	17.76	63	17.21	190	51.91	178	48.63	525	143.42
	5	C06.7-L	22-Oct-12	638	0.66	4	34.20	0	0.00	25	213.74	0	0.00	55	470.22	84	718.15
	3	C00.7-L C09.2-L	22-Oct-12 22-Oct-12	783	0.81	0	0.00	0	0.00	15	85.14	5	28.38	1	5.68	21	119.20
	Session 5 Sun			711	1.47	4	13.79	0	0.00	40	137.87	5	17.23	56	193.02	105	361.92
Columbia Ri	iver U/S Section	Total All Samı	ples	46340	43.15	421		473		3891		3634		1828		10247	
	ver U/S Section	_	-	1219	1.14	11	28.80	12	32.36	102	266.20	96	248.62	48	125.06	270	701.05
	ver U/S Section		_	1219	1.14	2.98	11.07	2.98			166.75			6.67	19.99		255.04
						1											
Kootenay River																	
	1	K00.3-L	28-Sep-12	241	0.44	0	0.00	0	0.00	0	0.00	0	0.00	23	780.84	23	780.84
		K00.6-R	29-Sep-12	601	0.60	10	99.83	0	0.00	0	0.00	20	199.67	12	119.80	42	419.30
		K01.8-L	28-Sep-12	1645	1.87	50	58.51	4	4.68	0	0.00	235	275.02	60	70.22	349	408.43
	~ :	K01.8-R	28-Sep-12	1338	1.30	29	60.02	0	0.00	0	0.00	75	155.23	69	142.81	173	358.05
	Session 1 Sun	nmary	1	956	4.21	89	79.59	4	3.58	0	0.00	330	295.10	164	146.65	587	524.91
	2	K00.3-L	06-Oct-12	271	0.44	0	0.00	0	0.00	0	0.00	4	120.76	10	301.91	14	422.68
		K00.6-R	06-Oct-12	642	0.60	5	46.73	0	0.00	15	140.19	156	1457.94	54	504.67	230	2149.53
		K01.8-L	06-Oct-12	1694	1.87	19	21.59	3	3.41	200	227.29	152	172.74	72	81.82	446	506.85
	Session 2 Sun	K01.8-R	06-Oct-12	1420 1007	1.30 4.21	0 24	0.00 20.38	3	0.00 2.55	50 265	97.51 225.08	300 612	585.05 519.82	26 162	50.70 137.60	376 1066	733.26 905.43
		1	14.0 : 12														
	3	K00.3-L K00.6-R	14-Oct-12 14-Oct-12	299 576	0.44 0.60	1 4	27.36 41.67	0	0.00 0.00	0 10	0.00 104.17	0 65	0.00 677.08	10 120	273.64 1250.00	11 199	<i>301.00</i> 2072.92
		K00.6-K K01.8-L	14-Oct-12 14-Oct-12	1719	1.87	42	47.04	1	1.12	120	134.39	655	733.54	101	113.11	919	1029.20
		K01.8-R	14-Oct-12	1142	1.30	4	9.70	0	0.00	41	99.42	0	0.00	80	193.99	125	303.11
	Session 3 Sun		•	934	4.21	51	46.69	1	0.92	171	156.56	720	659.18	311	284.73	1254	1148.08
	4	K00.3-L	21-Oct-12	263	0.44	5	155.55	0	0.00	2	62.22	50	1555.48	6	186.66	63	1959.90
		K00.6-R	21-Oct-12	583	0.60	16	164.67	0	0.00	25	257.29	10	102.92	40	411.66	91	936.54
		K01.8-L	21-Oct-12	1522	1.82	13	16.90	4	5.20	6	7.80	205	266.42	57	74.08	285	370.39
		K01.8-R	21-Oct-12	1193	1.30	7	16.25	0	0.00	5	11.61	45	104.46	25	58.03	82	190.34
	Session 4 Sun	nmary		890	4.16	41	39.85	4	3.89	38	36.94	310	301.34	128	124.42	521	506.45
Kootenay Riv	ver Section Tota	al All Samples		15149	16.79	205		12		474		1972		765		3428	
Kootenay Riv	ver Section Ave	rage All Sampl	es	947	1.05	13	46.42	1	2.72	30	107.34	123	446.58	48	173.24	214	776.30
Kootenay Riv	ver Section Stan	ndard Error of	Mean			3.82	12.85	0.37	0.45	13.78	21.25	42.60	122.40	8.65	81.01	58.20	166.28

Table E3 Continued.

									Nun	nber C	aught (C	PUE=n	o. fish/kı	m/h) ^a			
Section	Session	Site	Date	Time Sampled	Length Sampled		thern	Pea	mouth	Red	dside		oin spp.	· ·	er spp.	All S	pecies
				(seconds)	(km)	No.	ninnow CPUE	No.	CPUE	No.	niner CPUE	No.	CPUE	No.	CPUE	No.	CPUE
Columbia																	0.00
River D/S																	
	1	C25.3-R C27.6-R	25-Sep-12 25-Sep-12	2219 346	2.73 0.61	0	0.00 0.00	0	0.00 0.00	2 0	1.19 0.00	55 34	32.68 579.93	11 2	6.54 34.11	68 36	40.41 614.04
		C28.2-R	26-Sep-12	939	1.13	0	0.00	0	0.00	0	0.00	25	84.82	9	30.54	34	115.36
		C34.9-L	24-Sep-12	2395	2.14	0	0.00	1	0.70	0	0.00	0	0.00	2	1.40	3	2.11
		C36.6-L C47.8-L	25-Sep-12 27-Sep-12	1830 1181	2.39 1.44	1 0	0.82 0.00	0	0.00 0.00	2 0	1.65 0.00	5 153	4.12 323.88	0 10	0.00 21.17	8 163	6.58 345.05
		C49.0-L	27-Sep-12	516	0.93	0	0.00	0	0.00	0	0.00	1	7.50	35	262.57	36	270.07
		C49.0-R	26-Sep-12	442	0.72	0	0.00	0	0.00	0	0.00	15	169.68	1	11.31	16	181.00
		C49.8-L C49.8-R	27-Sep-12 26-Sep-12	1539 1117	2.45 2.39	0	0.00 1.35	0	0.00 0.00	0 5	0.00 6.74	2200	2100.49 0.00	15 96	14.32 129.46	2215 102	2114.81 137.55
		C52.2-L	28-Sep-12	807	0.89	0	0.00	0	0.00	0	0.00	5	25.06	5	25.06	10	50.12
		C52.2-R	27-Sep-12	2137	3.79	0	0.00	0	0.00	0	0.00	0	0.00	15	6.67	15	6.67
		C52.8-L C53.6-L	28-Sep-12 28-Sep-12	577 933	0.89 1.72	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0 2	0.00 4.49	3	21.03 0.00	3 2	21.03 4.49
	Session 1 Sum		20 Sep 12	1213	24.22	2	0.25	1	0.12	9	1.10	2495	305.80	204	25.00	2711	332.28
	2	C25.3-R	02-Oct-12	1898	2.73	0	0.00	1	0.69	0	0.00	320	222.33	12	8.34	333	231.36
		C27.6-R C28.2-R	02-Oct-12	342	0.61	0	0.00 0.00	0	0.00 0.00	0	0.00	20	345.13 330.41	0 4	0.00 13.91	20	345.13 351.28
		C28.2-R C34.9-L	02-Oct-12 01-Oct-12	916 2175	1.13 2.09	2	1.58	0	0.00	2 0	6.96 0.00	95 32	25.34	3	2.38	101 37	29.30
		C36.6-L	01-Oct-12	1592	2.19	4	4.13	1	1.03	25	25.81	67	69.18	1	1.03	98	101.19
		C47.8-L	04-Oct-12	1260	1.44	0	0.00 0.00	0	0.00	3	5.95	655	1299.60	17	33.73	675	1339.29
		C48.2-R C49.0-L	03-Oct-12 04-Oct-12	920 506	1.01 0.93	0	0.00 0.00	0	0.00 0.00	1 0	3.87 0.00	35 80	135.60 612.01	1 2	3.87 15.30	37 82	143.35 627.31
		C49.0-R	03-Oct-12	352	0.72	0	0.00	0	0.00	0	0.00	128	1818.18	0	0.00	128	1818.18
		C49.8-L C49.8-R	04-Oct-12 03-Oct-12	1539 1274	2.45 2.39	0	0.00 0.00	0	0.00 0.00	15 26	14.32 30.74	760 39	725.62 46.11	51 35	48.69 41.38	826 100	788.64 118.23
		C49.8-R C52.2-L	05-Oct-12 05-Oct-12	863	0.89	0	0.00	0	0.00	0	0.00	39	40.11 140.61	7	41.38 32.81	37	173.42
		C52.2-R	04-Oct-12	2308	3.79	1	0.41	0	0.00	0	0.00	116	47.74	10	4.12	127	52.27
		C52.8-L C53.6-L	05-Oct-12 05-Oct-12	603 1091	0.89 1.72	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0 45	0.00 86.33	5	33.54 0.00	5 45	33.54 86.33
	Session 2 Sum		03-001-12	1176	24.98	7	0.86	2	0.25	72	8.82	2422	296.83	148	18.14	2651	324.89
	3	C25.3-R	09-Oct-12	1576	2.73	11	9.20	0	0.00	190	158.98	110	92.04	3	2.51	314	262.73
		C27.6-R	09-Oct-12	373	0.61	0	0.00	0	0.00	0	0.00	2	31.64	0	0.00	2	31.64
		C28.2-R C34.9-L	09-Oct-12 09-Oct-12	796 1811	1.13 2.14	11 2	44.03 1.86	0	0.00 0.00	80 50	320.18 46.45	0 150	0.00 139.34	30	120.07 0.00	121 202	484.28 187.64
		C34.5-L C36.6-L	10-Oct-12	1415	2.39	3	3.19	0	0.00	0	0.00	135	143.71	0	0.00	138	146.90
		C47.8-L	11-Oct-12	1256	1.44	1	1.99	0	0.00	2	3.98	540	1074.84	4	7.96	547	1088.77
		C48.2-R C49.0-L	10-Oct-12 11-Oct-12	956 505	1.01 0.93	1 0	3.73 0.00	0	0.00 0.00	2 0	7.46 0.00	108 205	402.67 1571.38	3 2	11.19 15.33	114 207	425.04 1586.71
		C49.0-R	10-Oct-12	666	0.72	0	0.00	0	0.00	0	0.00	155	1163.66	3	22.52	158	1186.19
		C49.8-L C49.8-R	11-Oct-12 10-Oct-12	1539	2.45	0 14	0.00 15.00	0	0.00 0.00	0	0.00 0.00	1050 212	1002.51	8 58	7.64	1058 284	1010.14 304.25
		C49.8-R C52.2-L	10-Oct-12 12-Oct-12	1406 806	2.39 0.89	0	0.00	0	0.00	0	0.00	30	227.12 150.56	70	62.14 351.30	100	501.85
		C52.2-R	11-Oct-12	2305	3.79	0	0.00	0	0.00	0	0.00	70	28.85	4	1.65	74	30.49
	Session 3 Sum	C53.6-L	12-Oct-12	1008 1173	1.72 24.34	0 43	0.00 5.42	0	0.00 0.00	0 324	0.00 40.86	250 3017	519.10 380.51	1 186	2.08 23.46	251 3570	521.18 450.25
	4	C25.3-R	16-Oct-12	1898	2.73	1	0.69	0	0.00	540	375.18	237	164.66	7	4.86	785	545.40
		C27.6-R	16-Oct-12	324	0.61	0	0.00	0	0.00	0	0.00	3	54.64	0	0.00	3	54.64
		C28.2-R	16-Oct-12	1205	1.13	0	0.00	0	0.00	0	0.00	275	727.06	28	74.03	303	801.09
		C34.9-L C36.6-L	17-Oct-12 17-Oct-12	1943 1459	2.14 2.39	0 2	0.00 2.06	0	0.00 0.00	3	2.60 0.00	20 230	17.32 237.45	8 7	6.93 7.23	31 239	26.84 246.74
		C47.8-L	17-Oct-12	1274	1.44	3	5.89	0	0.00	2	3.92	823	1614.99	3	5.89	832	1632.65
		C48.2-R C49.0-L	18-Oct-12 17-Oct-12	807 520	1.01 0.93	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	0 70	0.00 521.09	2 5	8.83 37.22	2 75	8.83 558.31
		C49.0-L C49.0-R	17-Oct-12 18-Oct-12	526	0.72	0	0.00	0	0.00	3	28.52	25	237.64	1	9.51	29	275.67
		C49.8-L	17-Oct-12	1539	2.45	0	0.00	0	0.00	0	0.00	520	496.48	6	5.73	526	502.21
		C49.8-R C52.2-L	18-Oct-12 18-Oct-12	1299 751	2.39 0.89	0	0.00 0.00	0	0.00 0.00	2 0	2.32 0.00	132 20	153.06 107.72	40	46.38 0.00	174 20	201.76 107.72
		C52.2-L C52.2-R	18-Oct-12	2062	3.79	0	0.00	0	0.00	0	0.00	140	64.49	5	2.30	145	66.79
		C52.8-L	18-Oct-12	571	0.89	0	0.00	0	0.00	0	0.00	0	0.00	7	49.59	7	49.59
	Session 4 Sum	C53.6-L mary	18-Oct-12	1001 1145	1.72 25.23	7	2.09 0.87	0	0.00 0.00	550	0.00 68.52	0 2495	0.00 310.85	0 119	0.00 14.83	1 3172	2.09 395.20
	5	C10.7-R	22-Oct-12	940	0.91	0	0.00	0	0.00	0	0.00	20	84.17	12	50.50	32	134.67
		C10.9-L	22-Oct-12	700	2.18	0	0.00	3	7.08	0	0.00	0	0.00	27	63.70	30	70.77
		C13.4-R	23-Oct-12 23-Oct-12	1907 2164	2.52	3	2.25 6.62	1	0.75 8.10	5 30	3.75 22.08	61 160	45.70	8	5.99 6.62	78 219	58.43 161.21
		C14.8-L C16.6-R	23-Oct-12 23-Oct-12	1361	2.26 1.44	0	0.02	11 5	9.18	0	0.00	60	117.78 110.21	18	33.06	83	152.46
		C18.0-R	24-Oct-12	710	0.85	2	11.93	7	41.76	0	0.00	120	715.82	16	95.44	145	864.95
		C21.8-R	24-Oct-12 24-Oct-12	1107 743	1.27	0	0.00 0.00	0	0.00	10 5	25.61 26.05	40	102.43 192.77	25 8	64.02 41.68	75 50	192.05 260.50
		C23.4-L C28.8-L	24-Oct-12 24-Oct-12	524	0.93 0.82	0	0.00	0	0.00 0.00	0	26.05 0.00	37 25	192.77 209.46	0	0.00	50 25	200.50
		C32.0-R	24-Oct-12	1105	1.37	1	2.38	0	0.00	0	0.00	0	0.00	3	7.13	4	9.51
		C34.9-R C36.9-R	25-Oct-12 25-Oct-12	864 1317	0.89 2.27	0	0.00 0.00	0	0.00 0.00	0	0.00 0.00	10 30	46.82 36.13	3 2	14.04 2.41	13 33	60.86 39.74
		C30.9-R C39.2-R	25-Oct-12 25-Oct-12	736	1.18	0	0.00	0	0.00	0	0.00	20	82.90	0	0.00	20	82.90
		C41.1-L	25-Oct-12	1754	2.41	0	0.00	2	1.70	0	0.00	18	15.33	0	0.00	20	17.03
		C44.6-L C46.4-L	25-Oct-12 25-Oct-12	755 1178	1.01 1.59	0	0.00 0.00	0	9.44 0.00	0	0.00 0.00	210 20	991.41 38.44	14 11	66.09 21.14	226 31	1066.95 59.58
		C46.4-L C47.2-R	25-Oct-12 26-Oct-12	678	1.39	1	5.01	0	0.00	0	0.00	20	38.44 100.18	0	0.00	21	39.38 105.19
	G	C56.0-L	19-Oct-12	781	0.94	0	0.00	0	0.00	0	0.00	225	1103.33	0	0.00	225	1103.33
Calm 11 Di	Session 5 Sum		nlog	1074	25.90	16	2.07	31	4.01	50	6.47	1076	139.31	156	20.20	1330	172.20
	ver D/S Section T ver D/S Section A			87538	124.67	75 1	1.88	34	0.85	1005	25.20	11505 151	288.43	813 11	20.38	13434 177	336.79
	ver D/S Section S	Ü	•	1152	1.64	0.30	0.64	0.19	0.59	7.56	6.74	35.68	54.08	1.95	6.21	36.81	53.91
All Sections T	otal All Sample	<u> </u>		149027	184.61	701		519		5370		17111		3406		27109	
	verage All Sam			1146	1.42	5	11.92	4	8.83	41	91.35	132	291.07	26	57.94	209	461.15
	tandard Error	•				1.09	3.93	0.99	5.38	16.74	50.11	22.48	48.83	2.95	14.19	30.63	85.91
^a Excludes 1 l	ongnose dace ca	ptured on 17	October 2012 at	t Site C47.8-L a	nd 1 longnose	dace ca	ptured or	25 Oc	tober 201	2 at Site	e C36.9-R).					

^a Excludes 1 longnose dace captured on 17 October 2012 at Site C47.8-L and 1 longnose dace captured on 25 October 2012 at Site C36.9-R).

LOWER COLUMBIA RIVER FISH POPULATION INDEXING SURVEYS - 2012 INVESTIGATIONS

APPENDIX F

Life History Summaries

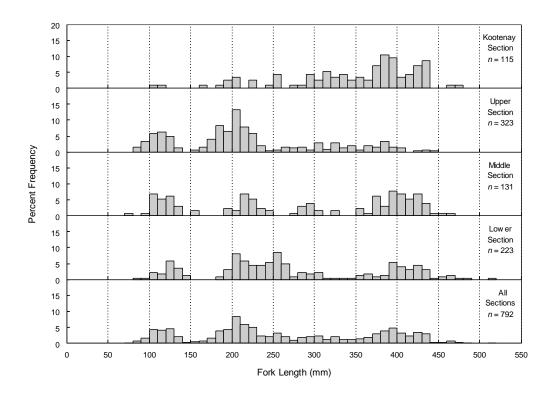


Figure F1. Length-frequency distributions by site for Mountain Whitefish captured by boat electroshocking in sampled sections of the Lower Columbia River, September 24 to October 26, 2012.

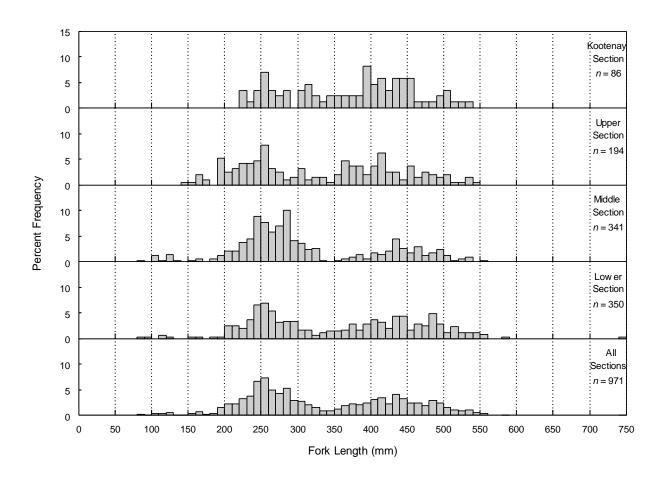


Figure F2. Length-frequency distributions by site for Rainbow Trout captured by boat electroshocking in sampled sections of the Lower Columbia River, September 24 to October 26, 2012.

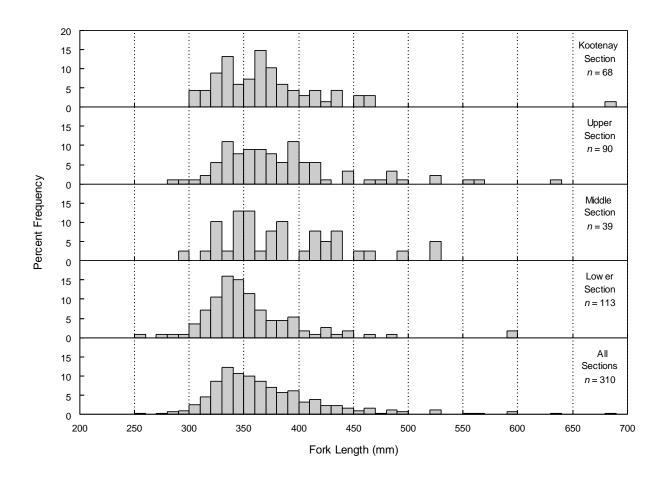


Figure F3. Length-frequency distributions by site for Walleye captured by boat electroshocking in sampled sections of the Lower Columbia River, September 24 to October 26, 2012.

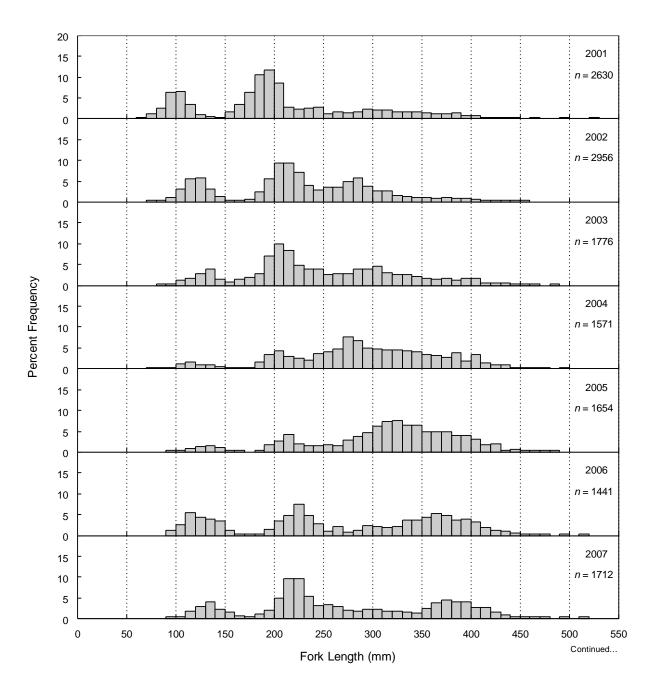


Figure F4. Length-frequency distributions by year for Mountain Whitefish captured by boat electroshocking in sampled sections of the Lower Columbia River, 2001 to 2012.

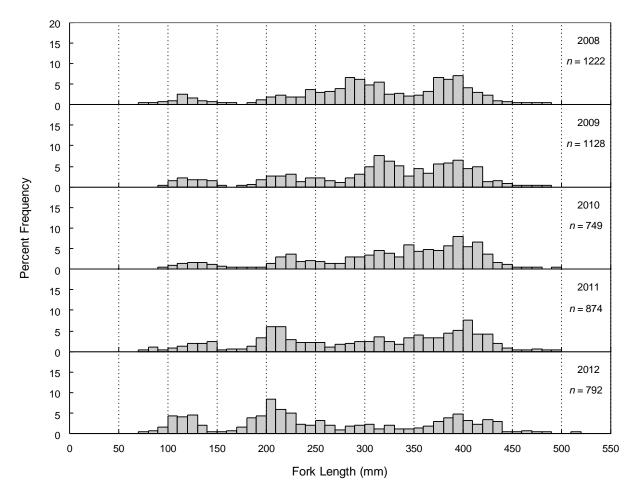


Figure F4. Concluded.

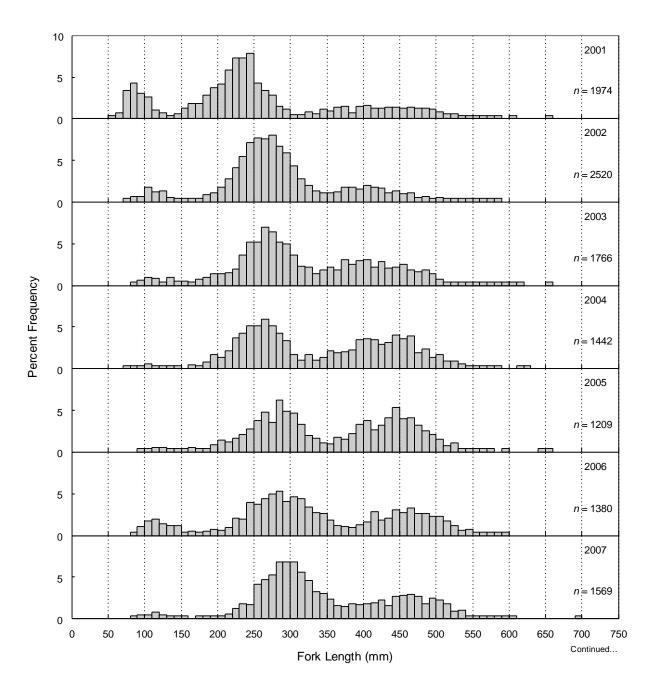


Figure F5. Length-frequency distributions by year for Rainbow Trout captured by boat electroshocking in sampled sections of the Lower Columbia River, 2001 to 2012.

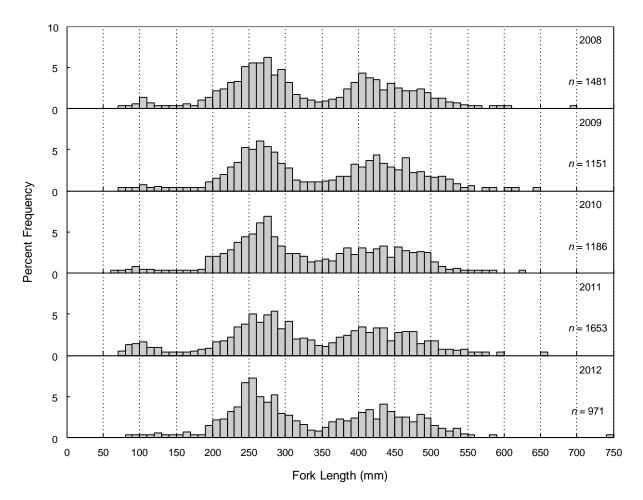


Figure F5. Concluded.

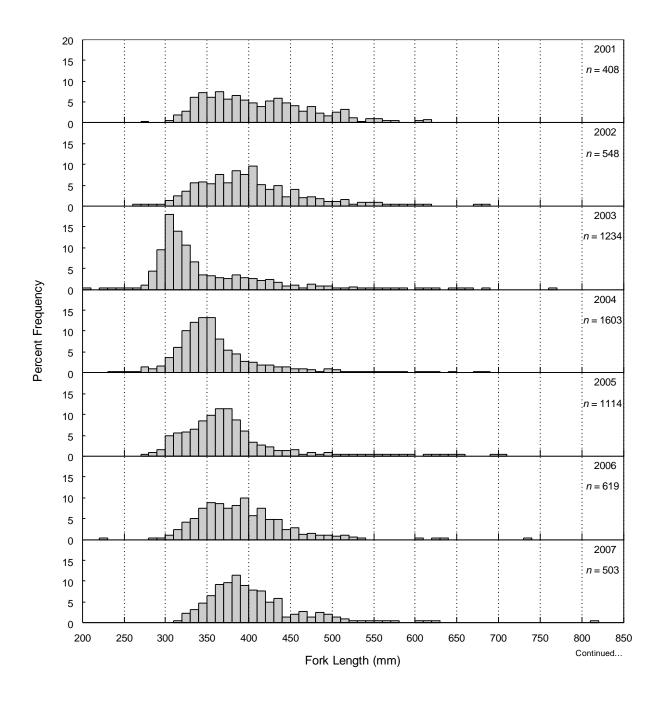


Figure F6. Length-frequency distributions by year for Walleye captured by boat electroshocking in sampled sections of the Lower Columbia River, 2001 to 2012.

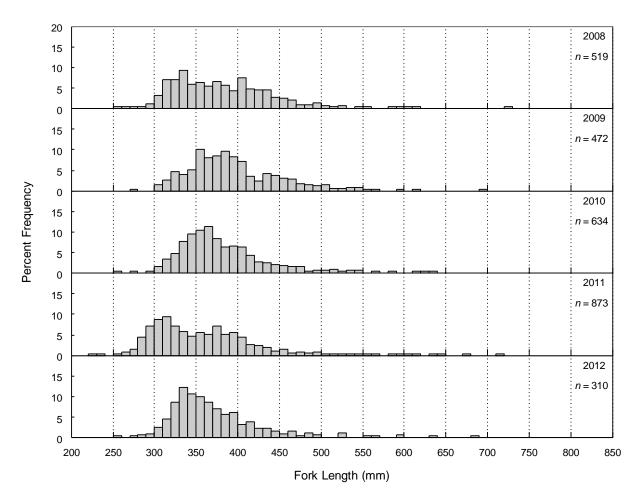


Figure F6. Concluded.

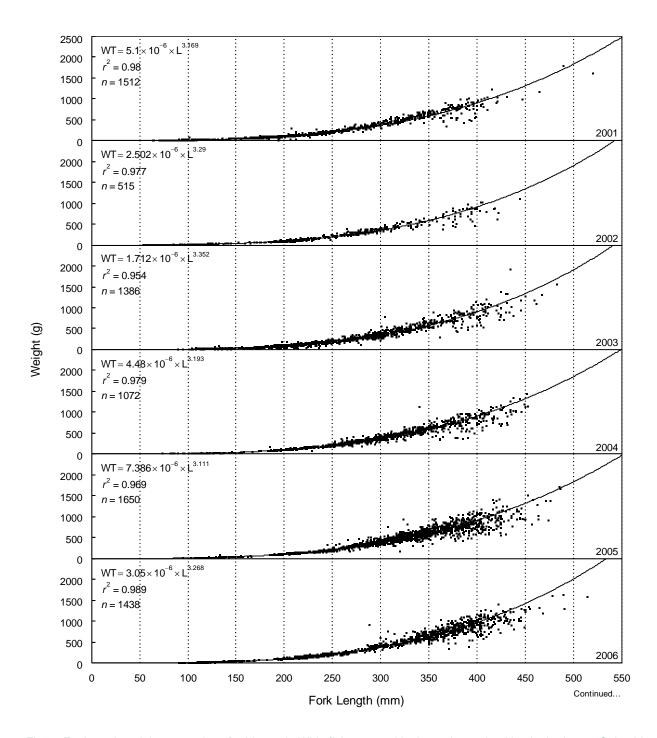


Figure F7. Length-weight regressions for Mountain Whitefish captured by boat electroshocking in the Lower Columbia River, 2001 to 2012.

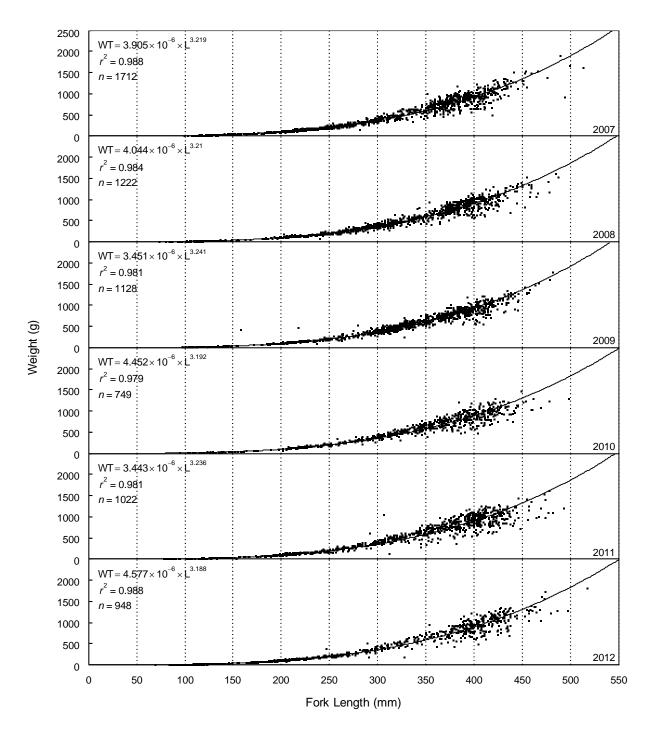


Figure F7. Concluded.

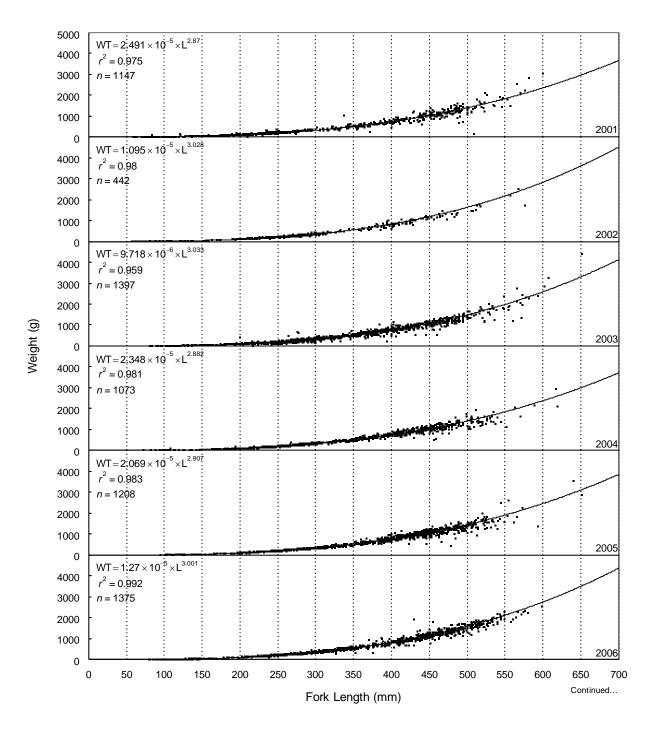


Figure F8. Length-weight regressions for Rainbow Trout captured by boat electroshocking in the Lower Columbia River, 2001 to 2012.

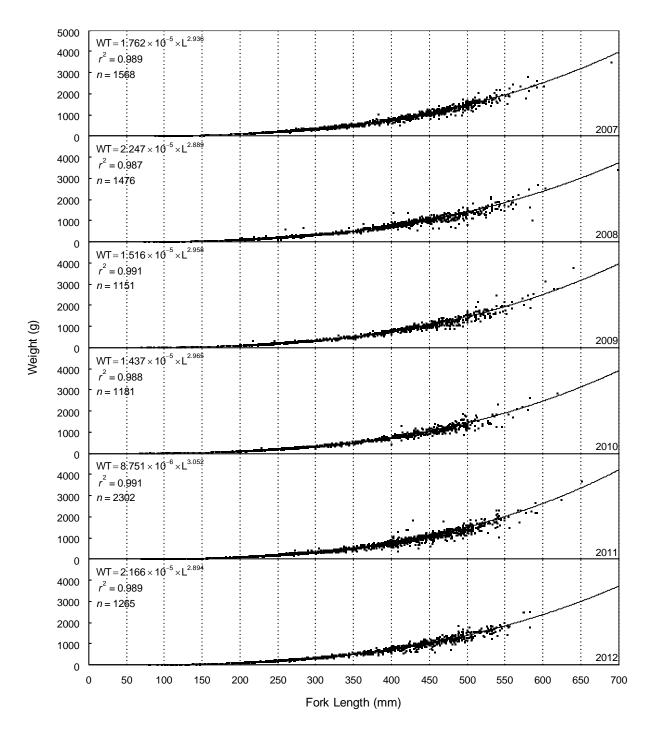


Figure F8. Concluded.

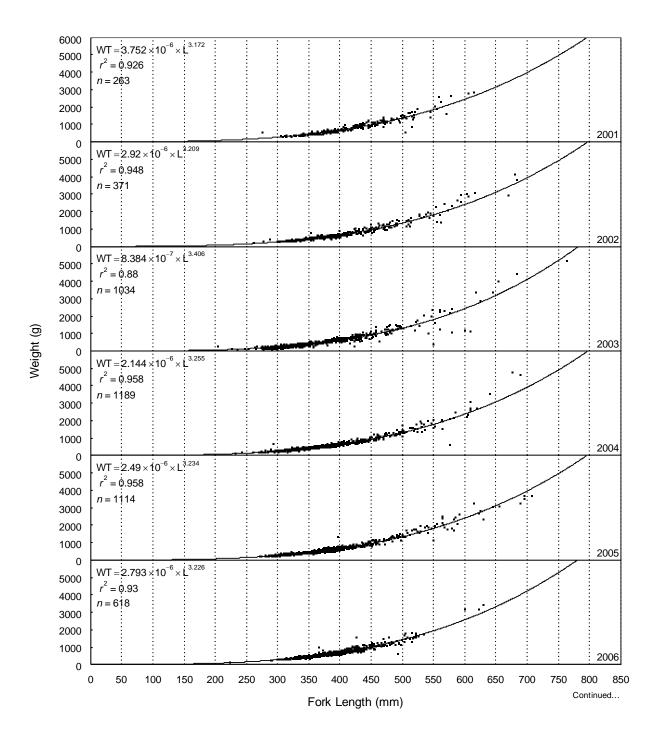


Figure F9. Length-weight regressions for Walleye captured by boat electroshocking in the Lower Columbia River, 2001 to 2012.

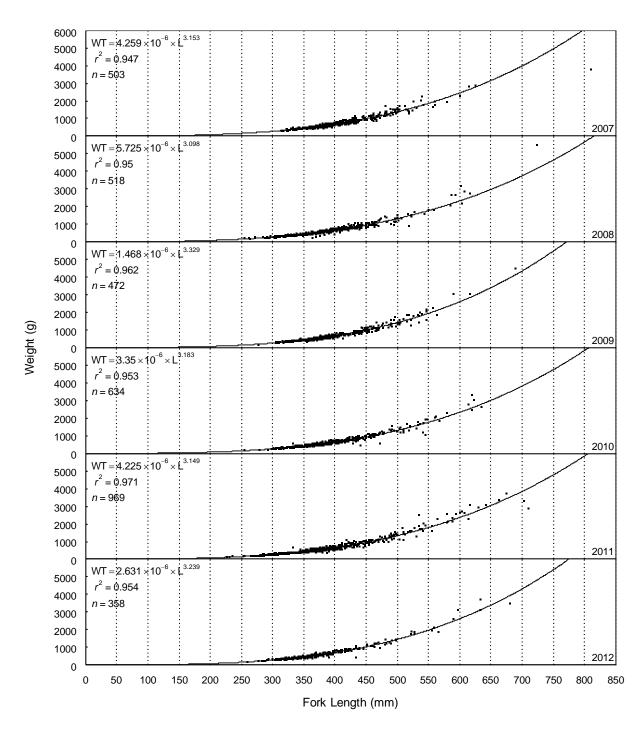


Figure F9. Concluded.

LOWER COLUMBIA RIVER FISH POPULATION INDEXING SURVEYS - 2012 INVESTIGATIONS

APPENDIX G

HBM Results

Hierarchical Bayesian Analysis - Results

Joe Thorley Ph.D., R.P.Bio. Poisson Consulting Ltd.

10 May 2013

Contents

1	General Approach	ii
2	Length-at-Age2.1 Mountain Whitefish2.2 Rainbow Trout	iii iii iv
3	Growth 3.1 Mountain Whitefish	iv iv iv
4	Count 4.1 Mountain Whitefish 4.2 Rainbow Trout 4.3 Walleye	v v
5	Catch 5.1 Mountain Whitefish - Subadult 5.2 Mountain Whitefish - Adult 5.3 Rainbow Trout - Subadult 5.4 Rainbow Trout - Adult 5.5 Walleye - Adult	v vi vi vi
6	Site Fidelity 6.1 Mountain Whitefish - Subadult 6.2 Mountain Whitefish - Adult 6.3 Rainbow Trout - Subadult 6.4 Rainbow Trout - Adult 6.5 Walleye - Adult	vi vi vii vii
7	7.1 Mountain Whitefish - Subadult 7.2 Mountain Whitefish - Adult 7.3 Rainbow Trout - Subadult 7.4 Rainbow Trout - Adult	vii vii vii viii

8	Capt	ture Efficiency	vi
	8.1	Mountain Whitefish - Subadult	vi
	8.2	Mountain Whitefish - Adult	vi
	8.3	Rainbow Trout - Subadult	vi
	8.4	Rainbow Trout - Adult	٧
	8.5	Walleye - Adult	
9	Surv	ival	
	9.1	Mountain Whitefish	
	9.2	Rainbow Trout	
	9.3	Walleye	
10	Cond	dition	
	10.1	Mountain Whitefish - Subadult	
	10.2	Mountain Whitefish - Adult	
	10.3	Rainbow Trout - Subadult	
	10.4	Rainbow Trout - Adult	
	10.5	Walleye - Adult	

1 General Approach

The following appendix summarises the posterior distributions for the fixed[1, p.75] parameters in each model. As described in the accompanying Methods Appendix the posterior distributions are summarised in terms of a point *estimate* (median), *lower* and *upper* 95% credibility limits (2.5th and 97.5th percentiles), percent relative *error* (half the 95% credibility interval as a percent of the point estimate) and *significance* (Bayesian equivalent of two-sided frequentist p-value)[1, p.37,42].

2 Length-at-Age

2.1 Mountain Whitefish

Parameter	estimate	lower	upper	error	significance
bDayte[1]	2.92	2.4	3.47	11	0
bDayte[2]	2.21	1.66	2.74	16	0
bDayte[3]	0.984	0.443	1.52	60	0
bDayte2[1]	-0.733	-1.21	-0.255	20	0
bDayte2[2]	-0.426	-0.854	-0.0335	23	0.0208
bDayte2[3]	0.116	-0.366	0.609	67	0.644
blncrement[1]	122	117	127	2	0
bIncrement[2]	94	84.7	104	6	0
bIncrement[3]	123	105	141	8	0
bIntercept[1]	122	117	127	2	0
bIntercept[2]	216	208	224	2	0
bIntercept[3]	339	324	355	2	0
pAge[1]	0.135	0.13	0.14	2	0
pAge[2]	0.281	0.271	0.293	2	0
pAge[3]	0.584	0.573	0.594	1	0
sAgeYear[1]	8.74	5.85	14.1	46	0
sAgeYear[2]	12.9	8.76	21.5	49	0
sAgeYear[3]	28.8	19.9	44.3	39	0
sLengthAge[1]	14.8	14.3	15.2	2	0
sLengthAge[2]	19.2	18.2	20.5	3	0
sLengthAge[3]	44.7	43.6	45.6	1	0

2.2 Rainbow Trout

Parameter	estimate	lower	upper	error	significance
bDayte[1]	0.456	-0.115	1.02	244	0.12
bDayte[2]	3.19	2.64	3.75	11	0
bDayte[3]	0.158	-0.424	0.754	70	0.601
bDayte2[1]	0.826	0.265	1.41	111	0.0078
bDayte2[2]	-0.929	-1.32	-0.504	16	0
bDayte2[3]	0.0386	-0.529	0.618	55	0.891
bIncrement[1]	112	105	119	4	0
bIncrement[2]	152	140	160	3	0
bIncrement[3]	168	157	181	4	0
bIntercept[1]	112	105	119	4	0
bIntercept[2]	263	253	271	2	0
bIntercept[3]	431	423	441	1	0
pAge[1]	0.0642	0.0607	0.0682	3	0
pAge[2]	0.581	0.572	0.591	1	0
pAge[3]	0.354	0.346	0.363	1	0
sAgeYear[1]	11.4	7.5	18.1	45	0
sAgeYear[2]	15.5	10.4	26.6	53	0
sAgeYear[3]	16.4	11	27.7	51	0
sLengthAge[1]	18.4	17.4	19.4	3	0
sLengthAge[2]	37.2	36.5	37.9	1	0
sLengthAge[3]	56.1	54.7	57.6	1	0

3 Growth

3.1 Mountain Whitefish

Parameter	estimate	lower	upper	error	significance
k	0.399	0.352	0.45	7	0
Linf	396	373	421	3	0
sGrowth	10.9	9.31	13	11	0
sYear	27.9	15.1	55.6	92	0

3.2 Rainbow Trout

Parameter	estimate	lower	upper	error	significance
k	0.81	0.752	0.868	4	0
Linf	508	488	529	2	0
sGrowth	26	24.5	27.6	3	0
sYear	31	20.1	53.8	57	0

3.3 Walleye

Parameter	rameter estimate		upper	error	significance
k	0.0773	0.0513	0.114	36	0
Linf	788	649	976	14	0
sGrowth	12.7	11.3	14.5	8	0
sYear	67.3	30.2	97.9	51	0

4 Count

4.1 Mountain Whitefish

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	3.23	2.79	3.67	8	0
r	2.77	2.55	3.02	5	0
sDensitySite	0.82	0.652	1.05	17	0
sDensitySiteYear	0.368	0.318	0.424	9	0
sDensityYear	0.55	0.36	0.938	54	0

4.2 Rainbow Trout

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	3.42	3.11	3.71	5	0
r	3.71	3.4	4.06	5	0
sDensitySite	0.599	0.471	0.756	17	0
sDensitySiteYear	0.268	0.222	0.314	10	0
sDensityYear	0.385	0.249	0.655	54	0

4.3 Walleye

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	2.02	1.78	2.26	7	0
r	3.8	3.4	4.17	6	0
sDensitySite	0.278	0.203	0.389	27	0
sDensitySiteYear	0.196	0.149	0.25	18	0
sDensityYear	0.382	0.256	0.649	52	0

5 Catch

5.1 Mountain Whitefish - Subadult

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	0.761	0.4	1.07	39	0
r	7.44	6.1	9.32	15	0
sDensitySite	0.66	0.508	0.855	19	0
sDensitySiteYear	0.361	0.302	0.421	10	0
sDensityYear	0.545	0.361	0.872	45	0

5.2 Mountain Whitefish - Adult

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	1.59	1.31	1.97	15	0
ŗ	4.23	3.73	4.86	8	0
sDensitySite	0.699	0.556	0.894	18	0
sDensitySiteYear	0.473	0.408	0.538	8	0
sDensityYear	0.659	0.444	1.04	43	0

5.3 Rainbow Trout - Subadult

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	1.67	1.39	1.93	9	0
r	7.56	6.4	9.13	12	0
sDensitySite	0.563	0.437	0.719	18	0
sDensitySiteYear	0.315	0.265	0.371	11	0
sDensityYear	0.34	0.228	0.53	42	0

5.4 Rainbow Trout - Adult

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	1.22	1.03	1.41	9	0
ŗ	9.45	7.68	11.8	15	0
sDensitySite	0.449	0.343	0.6	22	0
sDensitySiteYear	0.298	0.248	0.353	11	0
sDensityYear	0.161	0.0931	0.297	73	0

5.5 Walleye - Adult

Parameter	estimate	lower	upper	error	significance
bDensityIntercept	1.36	1.11	1.75	18	0
r	6.2	5.27	7.25	10	0
sDensitySite	0.285	0.206	0.402	28	0
sDensitySiteYear	0.287	0.24	0.339	11	0
sDensityYear	0.561	0.382	0.865	40	0

6 Site Fidelity

6.1 Mountain Whitefish - Subadult

Parameter	estimate	lower	upper	error	significance
bIntercept	0.111	-0.562	0.799	61	0.759

6.2 Mountain Whitefish - Adult

Parameter	estimate	lower	upper	error	significance
bIntercept	-0.324	-0.851	0.182	30	0.237

6.3 Rainbow Trout - Subadult

Parameter	estimate	lower	upper	error	significance
bIntercept	1.1	0.855	1.33	13	0

6.4 Rainbow Trout - Adult

Parameter	estimate	lower	upper	error	significance
bIntercept	0.34	0.0768	0.601	170	0.0066

6.5 Walleye - Adult

Parameter	estimate	lower	upper	error	significance
bIntercept	0.652	0.343	0.946	43	0

7 Abundance

7.1 Mountain Whitefish - Subadult

Parameter	estimate	lower	upper	error	significance
bDenIntercept	5.38	4.86	5.93	6	0
bEffIntercept	-4.61	-5.07	-4.22	4	0
sDenSite	0.657	0.526	0.858	19	0
sDenSiteYear	0.407	0.358	0.457	7	0
sDenYear	0.531	0.348	0.835	44	0
s Eff Year Session	0.199	0.157	0.26	20	0

7.2 Mountain Whitefish - Adult

Parameter	estimate	lower	upper	error	significance
bDenIntercept	6.86	6.39	7.37	4	0
bEffIntercept	-5.33	-5.61	-5.06	2	0
sDenSite	0.7	0.563	0.913	19	0
sDenSiteYear	0.579	0.526	0.638	6	0
sDenYear	0.619	0.404	0.961	42	0
sEffYearSession	0.2	0.164	0.246	14	0

7.3 Rainbow Trout - Subadult

Parameter	estimate	lower	upper	error	significance
bDenIntercept	4.77	4.49	5.06	3	0
bEffIntercept	-3.25	-3.35	-3.15	1	0
sDenSite	0.47	0.362	0.593	17	0
sDenSiteYear	0.38	0.339	0.427	7	0
sDenYear	0.38	0.251	0.613	46	0
sEffYearSession	0.268	0.22	0.335	15	0

7.4 Rainbow Trout - Adult

Parameter	estimate	lower	upper	error	significance
bDenIntercept	5.15	4.95	5.39	2	0
bEffIntercept	-4	-4.14	-3.86	2	0
sDenSite	0.428	0.325	0.569	22	0
sDenSiteYear	0.352	0.304	0.398	8	0
sDenYear	0.101	0.00943	0.232	697	0
sEffYearSession	0.185	0.143	0.235	18	0

7.5 Walleye - Adult

Parameter	estimate	lower	upper	error	significance
bDenIntercept	5.88	5.55	6.22	3	0
bEffIntercept	-4.5	-4.66	-4.34	2	0
sDenSite	0.299	0.211	0.425	30	0
sDenSiteYear	0.367	0.33	0.407	6	0
sDenYear	0.476	0.312	0.74	42	0
s Eff Year Session	0.232	0.185	0.292	16	0

8 Capture Efficiency

8.1 Mountain Whitefish - Subadult

Parameter	estimate	lower	upper	error	significance
bEffIntercept	-4.78	-5.49	-4.33	4	0
sEffYearSession	0.599	0.088	1.42	468	0

8.2 Mountain Whitefish - Adult

Parameter	estimate	lower	upper	error	significance
bEffIntercept	-5.3	-5.71	-5.01	3	0
sEffYearSession	0.36	0.0245	0.882	1.06e + 03	0

8.3 Rainbow Trout - Subadult

Parameter	estimate	lower	upper	error	significance
bEffIntercept	-3.33	-3.47	-3.19	2	0
s Eff Year Session	0.408	0.29	0.547	24	0

8.4 Rainbow Trout - Adult

Parameter	estimate	lower	upper	error	significance
bEffIntercept	-4.02	-4.2	-3.86	2	0
sEffYearSession	0.292	0.0728	0.506	147	0

8.5 Walleye - Adult

Parameter	estimate	lower	upper	error	significance
bEffIntercept	-4.67	-4.94	-4.44	2	0
sEffYearSession	0.654	0.434	0.93	32	0

9 Survival

9.1 Mountain Whitefish

Parameter	estimate	lower	upper	error	significance
bEfficiencyIntercept	-3.86	-4.13	-3.61	3	0
bSurvivalInterceptStage[1]	-1.45	-2.74	-0.543	17	0.0076
bSurvivalInterceptStage[2]	0.25	-0.428	1.17	108	0.427
sSurvivalStageYear[1]	0.805	0.0631	2.55	1.38e + 03	0
sSurvival Stage Year [2]	0.911	0.368	2.31	189	0

9.2 Rainbow Trout

Parameter	estimate	lower	upper	error	significance
bEfficiencyIntercept	-2.38	-2.62	-2.19	4	0
bSurvivalInterceptStage[1]	-0.00377	-0.513	1.64	160	0.986
bSurvivalInterceptStage[2]	-0.551	-0.888	-0.198	20	0
sSurvivalStageYear[1]	0.455	0.178	1.38	261	0
sSurvivalStageYear[2]	0.469	0.25	0.936	94	0

9.3 Walleye

Parameter	estimate	lower	upper	error	significance
bEfficiencyIntercept	-3.3	-3.54	-3.08	3	0
bSurvivalInterceptStage	0.0647	-0.287	0.463	69	0.709
s Survival Stage Year	0.382	0.035	0.987	865	0

10 Condition

10.1 Mountain Whitefish - Subadult

Parameter	estimate	lower	upper	error	significance
bDayte	-0.00802	-0.0139	-0.0021	21	0.012
bDayte2	-0.00135	-0.00589	0.0029	36	0.551
bIntercept	4.76	4.74	4.78	0	0
bLength	3.18	3.15	3.22	1	0
sSite	0.032	0.023	0.0429	24	0
sWeight	0.0982	0.096	0.1	1	0
sYear	0.0332	0.0227	0.0519	41	0
sYearSite	0.0235	0.0175	0.0294	17	0

10.2 Mountain Whitefish - Adult

Parameter	estimate	lower	upper	error	significance
bDayte	-0.0105	-0.0169	-0.00504	16	0
bDayte2	-0.00904	-0.0148	-0.00287	21	0.002
bIntercept	6.3	6.26	6.34	0	0
bLength	2.85	2.82	2.87	0	0
sSite	0.026	0.0156	0.0412	49	0
sWeight	0.151	0.149	0.153	1	0
sYear	0.0639	0.0441	0.107	49	0
sYearSite	0.0425	0.0368	0.0487	8	0

10.3 Rainbow Trout - Subadult

Parameter	estimate	lower	upper	error	significance
bDayte	-0.0051	-0.00827	-0.00193	19	0.002
bDayte2	-0.000511	-0.00313	0.00211	42	0.717
bIntercept	5.38	5.37	5.4	0	0
bLength	2.95	2.93	2.96	0	0
sSite	0.0239	0.018	0.0315	21	0
sWeight	0.0821	0.0809	0.0832	1	0
sYear	0.0241	0.0167	0.0377	41	0
sYear S ite	0.0188	0.0154	0.022	10	0

10.4 Rainbow Trout - Adult

Parameter	estimate	lower	upper	error	significance
bDayte	0.00699	0.00285	0.0108	67	0
bDayte2	-0.00104	-0.00389	0.00201	39	0.453
bIntercept	6.85	6.83	6.87	0	0
bLength	2.77	2.74	2.79	0	0
sSite	0.0394	0.0314	0.0517	20	0
sWeight	0.0975	0.0956	0.0993	1	0
sYear	0.0286	0.0199	0.0474	47	0
sYear S ite	0.0227	0.0177	0.0276	14	0

10.5 Walleye - Adult

Parameter	estimate	lower	upper	error	significance
bDayte	0.0186	0.0152	0.0219	11	0
bDayte2	0.00157	-0.00125	0.00439	112	0.309
bIntercept	6.23	6.21	6.25	0	0
bLength	3.22	3.2	3.23	0	0
sSite	0.00992	0.00571	0.0151	46	0
sWeight	0.0957	0.0943	0.0972	1	0
sYear	0.0401	0.0281	0.0631	41	0
sYear S ite	0.0196	0.0164	0.0234	12	0

References

[1] Marc Kéry and Michael Schaub. Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Boston, 2011.

LOWER COLUMBIA RIVER FISH POPULATION INDEXING SURVEYS - 2012 INVESTIGATIONS

APPENDIX H

HBM Additional Figures

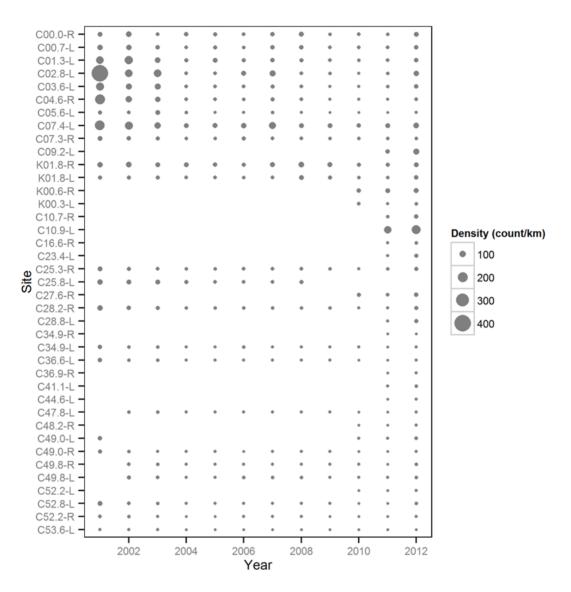


Figure H1: Count density of Mountain Whitefish (all age-classes combined) by year and site in the Lower Columbia River, 2001-2012.

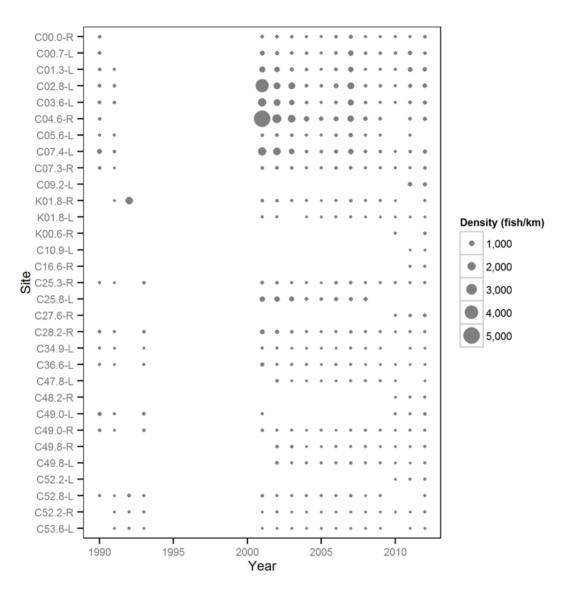


Figure H2: Absolute density of subadult Mountain Whitefish by year and site in the Lower Columbia River, 1990-2012.

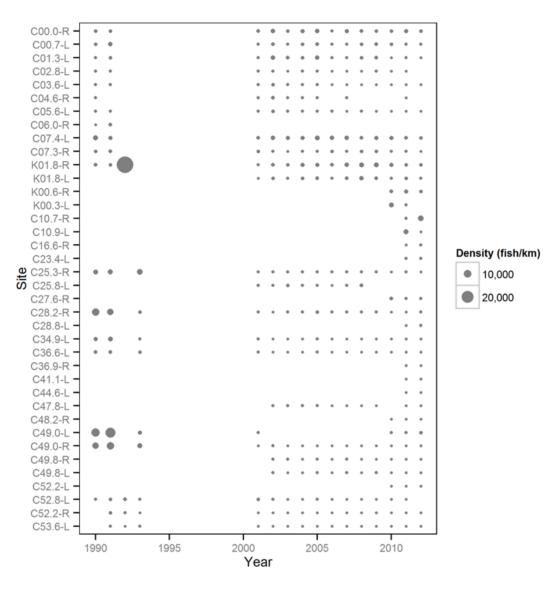


Figure H3: Absolute density of adult Mountain Whitefish by year and site in the Lower Columbia River, 1990-2012.

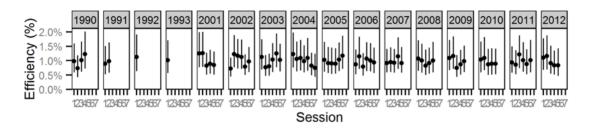


Figure H4: Capture efficiency (median with 95% credible intervals) by sampling session and year based on mark-recapture data for subadult Mountain Whitefish in the Lower Columbia River, 1990-2012.

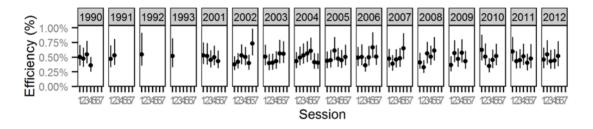


Figure H5: Capture efficiency (median with 95% credible intervals) by sampling session and year based on mark-recapture data for adult Mountain Whitefish in the Lower Columbia River, 1990-2012.

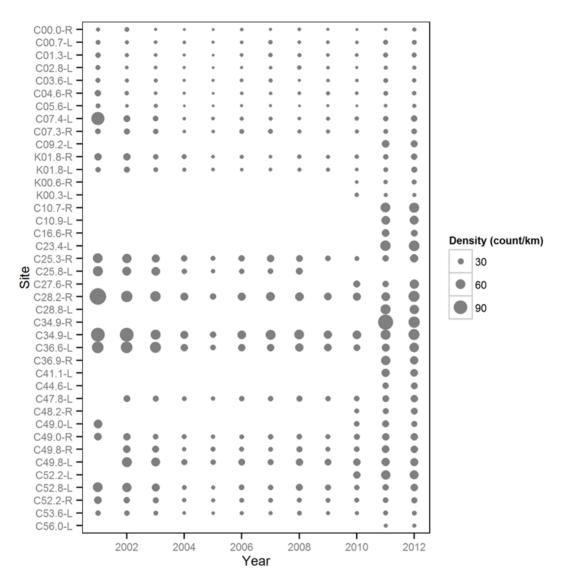


Figure H6: Count density of Rainbow Trout (all age-classes combined) by year and site in the Lower Columbia River, 2001-2012.

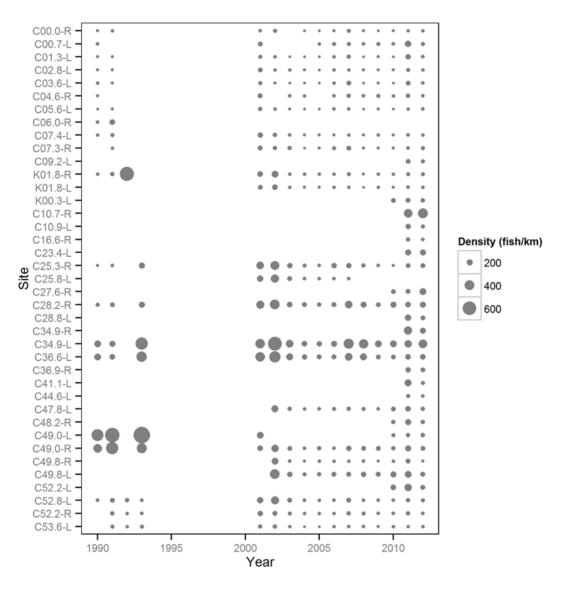


Figure H7: Absolute density of subadult Rainbow Trout by year and site in the Lower Columbia River, 2001-2012.

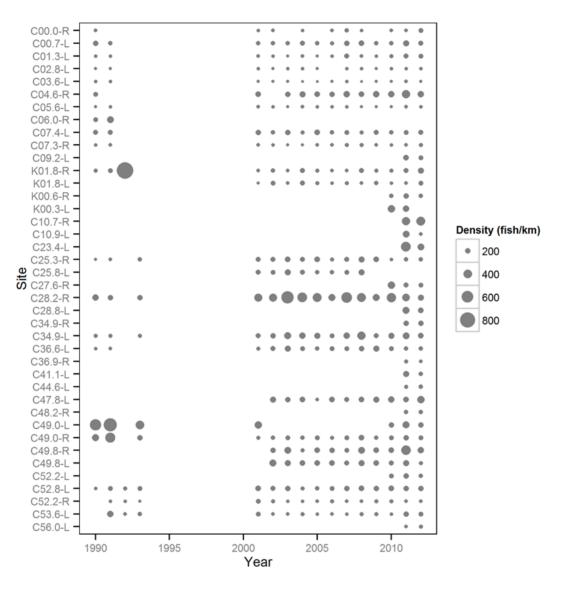


Figure H8: Absolute density of adult Rainbow Trout by year and site in the Lower Columbia River, 2001-2012.

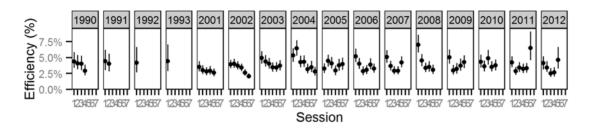


Figure H9: Capture efficiency (median with 95% credible intervals) by sampling session and year based on mark-recapture data for subadult Rainbow Trout in the Lower Columbia River, 1990-2012.

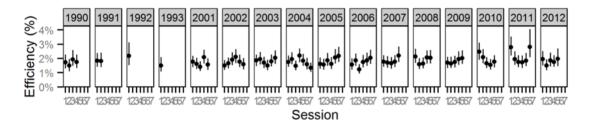


Figure H10: Capture efficiency (median with 95% credible intervals) by sampling session and year based on mark-recapture data for adult Rainbow Trout in the Lower Columbia River, 1990-2012.

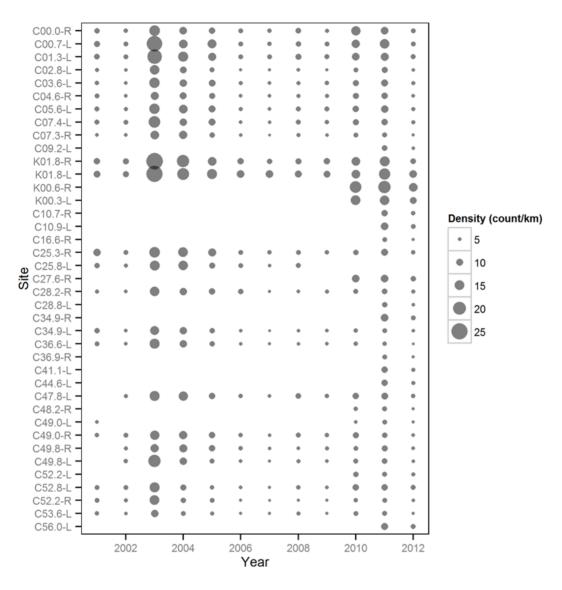


Figure H11: Count density of Walleye (all age-classes combined) by year and site in the Lower Columbia River, 2001-2012.

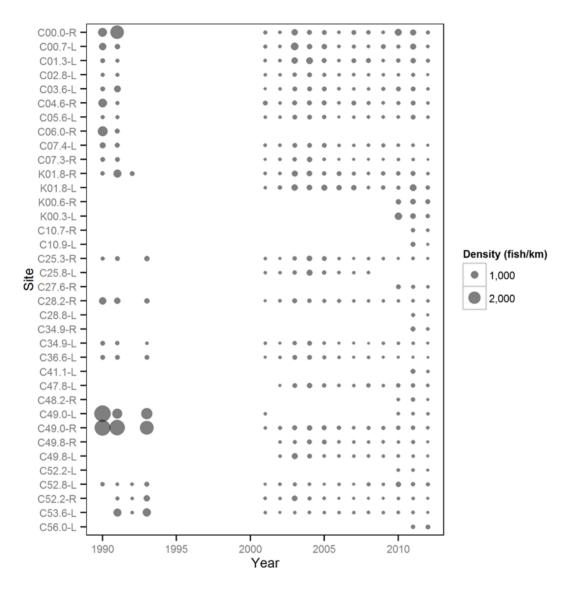


Figure H12: Absolute density of adult Walleye by year and site in the Lower Columbia River, 2001-2012.

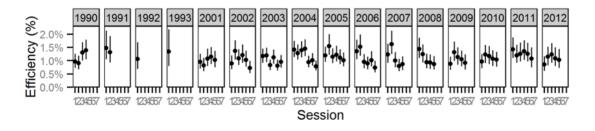
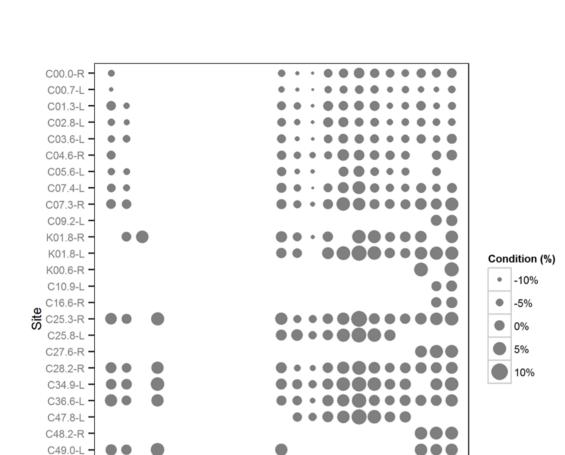



Figure H13: Capture efficiency (median with 95% credible intervals) by sampling session and year based on mark-recapture data for adult Walleye in the Lower Columbia River, 1990-2012.

2000

Year

Figure H14: Body condition effect size estimate (median with 95% credible interval) by site and year for subadult Mountain Whitefish in the Lower Columbia River, 1990 to 2012.

2005

•••••

.

2010

C49.0-R -

C49.8-R -

C52.2-L -

C52.2-R -

C53.6-L

 \bullet

1995

1990

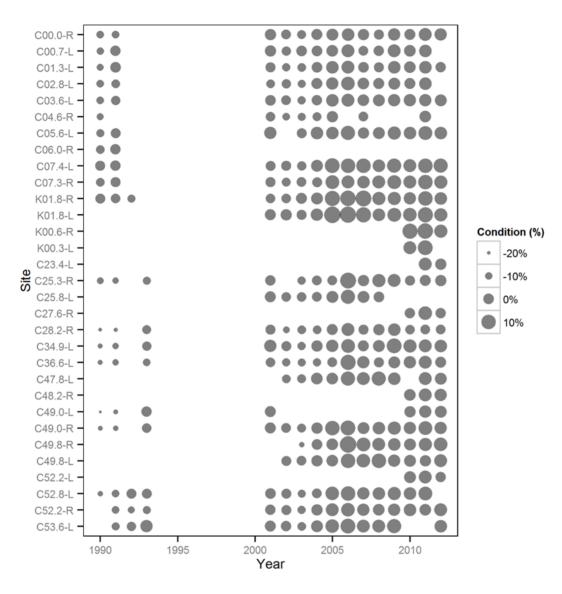


Figure H15: Body condition effect size estimate (median with 95% credible interval) by site and year for adult Mountain Whitefish in the Lower Columbia River, 1990 to 2012.

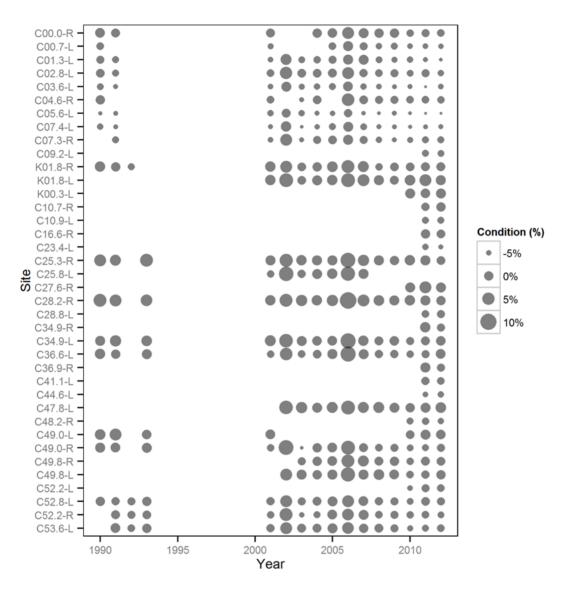


Figure H16: Body condition effect size estimate (median with 95% credible interval) by site and year for subadult Rainbow Trout in the Lower Columbia River, 1990 to 2012.

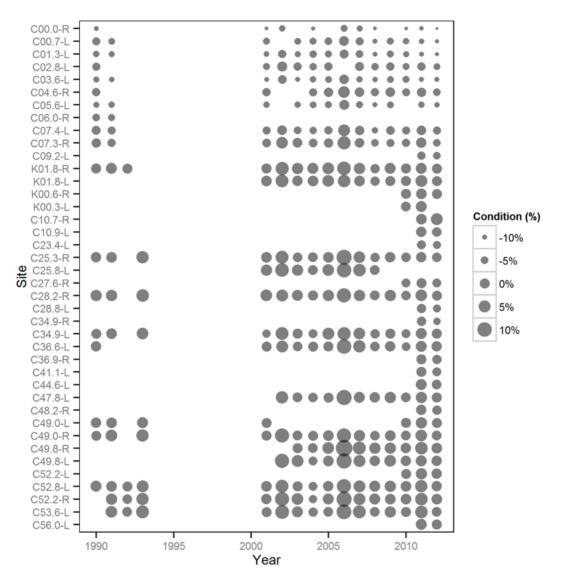


Figure H17: Body condition effect size estimate (median with 95% credible interval) by site and year for adult Rainbow Trout in the Lower Columbia River, 1990 to 2012.

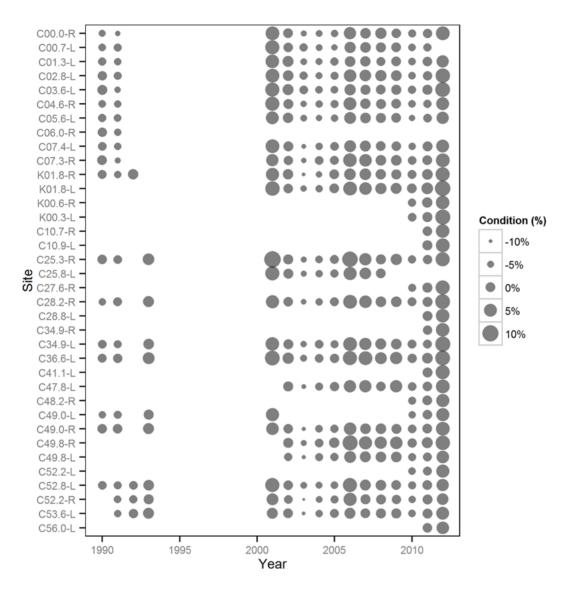


Figure H18: Body condition effect size estimate (median with 95% credible interval) by site and year for adult Walleye in the Lower Columbia River, 1990 to 2012.

\cas1-s-filesrv1\data\active_2010\1492 biosciences\10-1492-0102 | cr fish indexing\reports\2012 report\appendices\appendix h - hba additional figures\additional figures revised.docx

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd.
201 Columbia Avenue
Castlegar, British Columbia, V1N 1A8
Canada
T: +1 (250) 365 0344

