BC Hydro

Columbia River Project Water Use Plan
Lower Columbia River Fish Management Plan
Lower Columbia River Fish Indexing Surveys
Implementation Year 14
Reference: CLBMON-45
Technical Report
Study Period 2020

CLBMON-45: Lower Columbia River Fish Population Indexing Survey 2020 Report

Author:
Golder Associates Ltd.
Poisson Consulting Ltd.
Okanagan Nation Alliance

Prepared for:
BC Hydro

November 2021

Okanagan Nation Alliance \#101-3535 Old Okanagan Hwy, Westbank, BC V4T 1V4 Phone: (250) 707-0095 Fax: (250) 707-0166

Disclaimer: Okanagan Nation Alliance Fisheries Department reports frequently contain preliminary data, and conclusions based on these may be subject to change. Reports may be cited in publications but their manuscript status (MS) must be noted. Please obtain the individual author's permission before citing their work.

Citation: Golder Associates Ltd., Poisson Consulting Ltd., and Okanagan Nation Alliance. 2021. CLBMON-45 Lower Columbia River Fish Population Indexing Survey 2020 Report. Report prepared for BC Hydro Generation, Water License Requirements, Castlegar, BC. 71 pages +8 app.

Executive Summary

BC Hydro has conducted flow management actions to reduce egg losses in the Lower Columbia River (LCR) during Mountain Whitefish (Prosopium williamsoni) and Rainbow Trout (Oncorhynchus mykiss) spawning and incubation since the mid-1990s. These actions include decreasing flows from Hugh L. Keenleyside Dam (HLK) in early winter to encourage Mountain Whitefish spawning at lower water level elevations and thereby reduce egg dewatering over the winter egg incubation period. In early spring, flows are managed to provide stable or increasing water levels during the Rainbow Trout spawning season, which reduces the likelihood of Rainbow Trout eggs and other larval fish from becoming stranded during spring flow management.

In 2007, BC Hydro completed the Water Use Planning process for its hydroelectric and storage facilities on the Columbia River. The Water Use Plan (WUP) Consultative Committee recommended the commissioning of the LCR Fish Population Indexing Program (CLBMON-45) to address data gaps regarding the effects of HLK operations on downstream fish communities. CLBMON-45 represents a continuation of BC Hydro's LCR Large River Fish Indexing Program (LRFIP), first established in 2001 to gather baseline information on fish distribution, life history characteristics, and population abundance data for select index species (i.e., Mountain Whitefish, Rainbow Trout, and Walleye [Sanders vitreus]). CLBMON-45 was conducted as part of the WUP from 2007 to 2019. The program was continued in 2020 to monitor the effects of Mountain Whitefish and Rainbow Trout egg dewatering on index fish species. This report summarizes the 2020 study year.

The two key management questions to be answered by CLBMON-45 are:

- What is the abundance, growth rate, survival rate, body condition, age distribution, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR?
- What is the effect of inter-annual variability in the Whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR?

The study area for CLBMON-45 includes the portion of the Columbia River between HLK and the Canada-US border (approximately 56.5 km of river habitat) and the 2.8 km section of the Kootenay River from Brilliant Dam (BRD) downstream to the confluence with the Columbia River.

Fish were sampled by boat electrofishing at night within nearshore habitats. In addition to the indexing sites sampled since 2001, additional sample sites were randomly selected in 2011 to 2020. Captured Mountain Whitefish, Rainbow Trout, and Walleye were measured for fork length, weighed, and implanted with a Passive Integrated Transponder (PIT) tag. Hierarchical Bayesian Models (HBMs) were used to estimate temporal and spatial variation in abundance, spatial distribution, growth, survival, and body condition. A maximum likelihood model was used to estimate mean annual length-at-age based on length-frequency data. The proportional ratio of age-1:2 Mountain Whitefish was used as an indicator of recruitment to assess annual variation and the effects of egg dewatering. For Mountain Whitefish and Rainbow Trout, a Beverton-Holt stock-recruitment model was fit to the data and egg dewatering was included as a covariate.

The estimated abundance of adult Rainbow Trout increased from $\sim 18,000$ in 2002 to $\sim 56,000$ in 2018 before decreasing to 46,000 in 2019 and 35,000 in 2020. High abundance of Rainbow Trout in recent years (2017-2018) coincided with a decline in body condition and growth. Conversely the recent decrease in abundance in 2019-2020 coincided with an increase in condition and growth. These results suggest intraspecies competition and density-dependent growth when abundance is high in the LCR.

For Mountain Whitefish, the estimated abundance of subadults in 2018 and $2019(10,000-13,000)$ was less than half than during the previous five years (31,000-33,000) but increased to 22,000 in 2020. Estimates of adult Mountain Whitefish abundance were relatively stable between 2010 and 2020 (52,000-71,000), except for 2018 when the estimate was substantially higher (108,000). Growth of Mountain Whitefish also decreased in recent years, with a predicted maximum growth rate of $140 \mathrm{~mm} / \mathrm{yr}$ in 2017 to 2019, followed by an increase to $223 \mathrm{~mm} / \mathrm{yr}$ in 2020. In earlier years, the maximum growth rate of Mountain Whitefish increased from $89 \mathrm{~mm} / \mathrm{yr}$ in 2005 to $247 \mathrm{~mm} / \mathrm{yr}$ in 2016. The body condition of adult Mountain Whitefish was fairly stable between 2010 and 2015, with effect sizes of a 2% to 3% increase in weight when controlling for length, but was greater in 2016 (5\%), 2019 (7\%) and 2020 (4\%).

Walleye abundance estimates were stable from 2012 to 2020 (10,000-16,000). Walleye abundance was greatest in 2003 to 2005 and 2011 (33,000-43,000), suggesting strong recruitment for these year-classes. The body condition of Walleye was high in 2012 to 2016 (3% to 5% effect sizes) and declined to more typical values during 2017 to 2020 (0\% to 1\%).

For Mountain Whitefish, the results suggested a negative relationship between estimated egg loss and age-1:2 ratio recruitment index, but the direction of the relationship was uncertain and not statistically significant ($P=0.5$). The largest estimated egg loss (59\%) on record occurred in the 2016 spawning year and corresponded to a large decrease in the age ratio recruitment index and a more than 50% decrease in the estimated abundance of age-1 Mountain Whitefish in 2018. This suggests that a 59% egg loss due to dewatering could have contributed to the large and biologically significant reduction in recruitment. In the most recent spawning year for which recruitment index data are available (2018), estimated egg Ioss (20\%) was within the range of typical values and the age-1:2 ratio increased to 60%. The uncertain relationship between age-1:2 ratio and egg loss suggests that other factors, such as environmental conditions or ecological interactions, strongly influence survival and recruitment.

The stock-recruitment analyses suggest that there was little to no effect of increasing the number of eggs deposited by spawners ("stock") on the resulting number of age-1 recruits for Mountain Whitefish or Rainbow Trout. This was interpreted as indicating that the numbers of spawners were sufficient to maintain the population at the carrying capacity of the habitat. The direction of the effect of egg loss on recruitment was uncertain and not statistically significant for Mountain Whitefish ($P=0.7$) or Rainbow Trout ($P=0.08$), which did not support an effect of dewatering on subsequent recruitment at the observed levels of stock abundance and egg loss. There were no years of data on the steeper part of the stock-recruitment curves, where decreases in spawners or egg losses would be expected to decrease subsequent recruitment. Therefore, the effects of egg losses at lower adult abundance are unknown based on these stock-recruitment models. These conclusions should be considered tentative because of the poor fit in the stock-recruitment relationships, and the possibility that sampling biases or environmental variability masked real effects of egg dewatering.

Keywords: Columbia River, Hugh L. Keenleyside Dam (HLK), Density Estimation, Fish Abundance

Table E1. Status of Management Questions and Hypotheses after Year 14 (2020) of the Lower Columbia River Fish Population Indexing Survey (CLBMON-45).

Management Questions	Management Hypotheses	Sub-Hypotheses	Year 14 (2020) Status
What is the abundance, growth rate, survival rate, body condition, age distribution, and spatial distribution of subadult and adult Whitefish, Rainbow Trout and Walleye in the Lower Columbia River?	$\mathrm{H}_{0} 1$: There is no change in the population levels of Whitefish in the Lower Columbia River over the course of the monitoring period.	$\mathrm{H}_{0} 1 \mathrm{a}$: There is no change in the abundance of subadult and adult Mountain Whitefish.	The hypothesis is rejected. Subadult Mountain Whitefish abundance was 60,000 to 66,000 in 2001 to 2002 but fluctuated between 7,000 and 43,000 from 2003 to 2020. The estimated abundance of subadult Mountain Whitefish in 2018 and $2019(10,000-13,000)$ was less than half than during the previous five years $(31,000-33,000)$ but increased to 22,000 in 2020. Estimates of adult Mountain Whitefish abundance were greater from 2001 to $2009(79,000-164,000)$ than during 2010 to 2020 , when estimates were lower and relatively stable $(52,000-$ 71,000) with the exception of 2018 when the estimated adult abundance was 108,000.
		$\mathrm{H}_{0} 1 \mathrm{~b}$: There is no change in the mean size-at-age of subadult and adult Mountain Whitefish.	The hypothesis is rejected. Although the mean length of age-0 Mountain Whitefish was relatively stable in most years, with mean fork lengths between 120 and 140 mm , there were exceptions, such as low mean length in $2001(102 \mathrm{~mm})$ and greater than average mean length in 2016 $(154 \mathrm{~mm}), 2018(142 \mathrm{~mm})$, and $2019(150 \mathrm{~mm})$. For older Mountain Whitefish, growth was assessed using the von Bertalanffy model instead of length-at-age. The growth coefficient had considerable inter-annual variation with effect sizes of -43% to $+60 \%$. The predicted maximum growth rate during early life (at a theoretical fork length of 0 mm) increased from $89 \mathrm{~mm} / \mathrm{yr}$ in 2005 to $247 \mathrm{~mm} / \mathrm{yr}$ in 2016, decreased to approximately $140-150 \mathrm{~mm} / \mathrm{yr}$ in 2017 to 2019, and increased to $223 \mathrm{~mm} / \mathrm{yr}$ in 2020.
		$\mathrm{H}_{0} 1 \mathrm{c}$: There is no change in the mean survival of subadult and adult Mountain Whitefish.	The hypothesis is rejected. Estimated survival of adult Mountain Whitefish ranged from 21% to 93% but has been $>55 \%$ since 2011. Annual variation in survival could not be estimated for subadults because of small numbers of recaptures.
		$\mathrm{H}_{0} 1 \mathrm{~d}$: There is no change in the morphological (condition factor) index of body condition of subadult and adult Mountain Whitefish.	The hypothesis is rejected. The body condition of Mountain Whitefish varied significantly among years with effects sizes ranging from -7% to $+6 \%$ for subadults and -16% to $+9 \%$ for adults. The body condition of subadult and adult Mountain Whitefish was fairly stable ($\leq 5 \%$ change) between 2010 and 2020 with the exception of adult Mountain Whitefish body condition increasing to 8% greater than a typical year in 2019.
		$\mathrm{H}_{0} 1 \mathrm{e}$: There is no change in the distribution of subadult and adult Mountain Whitefish.	The hypothesis cannot be rejected at this time. The spatial distribution of subadult and adult Mountain Whitefish was generally consistent between study years. There was a 11% decrease in the evenness in distribution between index sites for adult Mountain Whitefish between 2001 and 2007, but evenness was relatively stable since 2008.
	\mathbf{H}_{0} 2: There is no change in the population levels of Rainbow Trout in the Lower Columbia River over the course of the monitoring period.	$\mathrm{H}_{0} 2 \mathrm{a}$: There is no change in the abundance of subadult and adult Rainbow Trout	The hypothesis is rejected. The abundance of subadult Rainbow Trout declined significantly from 2001 to 2005 and fluctuated with no consistent trend from 2006 to 2017. The estimated abundance of subadult Rainbow Trout was lower in 2018 and $2019(9,000-11,000)$ than the previous six years when abundance was relatively stable (16,000-20,000) and returned to 20,000 individuals in 2020. The estimated abundance of adult Rainbow Trout tripled from 18,000 in 2002 to 56,000 in 2018 with a decrease to 46,000 in 2019 and 35,000 in 2020.
		$\mathrm{H}_{0} 2 \mathrm{~b}$: There is no change in the mean size-at-age of subadult and adult Rainbow Trout	The hypothesis is rejected. The estimated mean length of age-0 Rainbow Trout ranged from 90 mm to 139 mm between 2001 and 2020. Mean length of age-0 Rainbow Trout increased from 100 mm in 2010 to 139 mm in 2015 but decreased to near-average values (101-124 mm) in 2016 to 2020.

Management Questions	Management Hypotheses	Sub-Hypotheses	Year 14 (2020) Status
			Length-at-age of older age-classes was not assessed. The von Bertalanffy growth coefficient decreased from a 59\% effect size to 40% in 2006 to 2018, suggesting a significant decrease in growth during this period. This corresponded to a decrease in the predicted maximum growth rate during early life of $655 \mathrm{~mm} / \mathrm{yr}$ in 2006 to $249 \mathrm{~mm} / \mathrm{yr}$ in 2018. Maximum growth rate increased to $302 \mathrm{~mm} / \mathrm{yr}$ in 2019 and $406 \mathrm{~mm} / \mathrm{yr}$ in 2020.
		$\mathrm{H}_{0} 2 \mathrm{c}$: There is no change in the mean survival of subadult and adult Rainbow Trout	The hypothesis is rejected for adults but cannot be assessed for subadults. Estimated survival of adult Rainbow Trout increased gradually from 32\% in 2003 to 53% in 2011, followed by a decrease to 34% in 2012, and a gradual increase to 46% in 2020. Survival of subadults could not be estimated because of small numbers of recaptures.
		$\mathrm{H}_{0} 2 \mathrm{~d}$: There is no change in the morphological (condition factor) index of body condition of subadult and adult Rainbow Trout	The hypothesis is rejected. Body condition estimates for subadult and adult Rainbow Trout varied annually but were higher for both age-classes in 2002 and 2006 than other study years. Adult body condition declined from a $+3 \%$ effect size in 2011 to -7% in 2018, which coincided with increasing abundance estimates, and increased in 2019 (-2\%) and $2020(0 \%)$ when abundance decreased.
		$\mathrm{H}_{0} \mathbf{2 e}$: There is no change in the distribution of subadult and adult Rainbow Trout	The hypothesis cannot be rejected at this time. The spatial distribution of subadult and adult Rainbow Trout was generally consistent between study years. However, the evenness in the distribution between sites increased during the sampling period for both subadult ($\sim 8 \%$ change) and adult ($\sim 4 \%$ change) Rainbow Trout.
	$\mathrm{H}_{0} 3$: There is no change in the population levels of Walleye in the Lower Columbia River over the course of the monitoring period.	$\mathrm{H}_{0} 3 \mathrm{a}$: There is no change in the abundance of subadult and adult Walleye.	The hypothesis is rejected. Walleye abundance was significantly greater in 2003 to 2005 and $2011(>32,000)$ than in all other years. Estimates of Walleye abundance were greater in 2003 to 2011 (16,000-43,000) and lower in 2012 to $2020(10,000-16,000)$.
		$\mathbf{H}_{0} \mathbf{3 b}$: There is no change in the mean size-at-age of subadult and adult Walleye.	The hypothesis cannot be rejected at this time. Age data for Walleye were not available so assessment of growth relied on inter-year recaptures and the von Bertalanffy model. The results suggest large inter-annual variation in growth (-39% to 85% effect sizes) but there was considerable uncertainty in growth estimates due to highly variable growth among individuals and poor fit of the growth model. Predicted values of maximum growth rate during early life ranged from 35 to 78 mm , except in 2013 when the rate was $110 \mathrm{~mm} / \mathrm{yr}$.
		$\mathrm{H}_{0} 3 \mathrm{c}$: There is no change in the mean survival of subadult and adult Walleye.	The hypothesis cannot be rejected at this time. Survival estimates ranged from 33% to 63% between 2001 and 2020 but all credible intervals overlapped.
		$\mathrm{H}_{0} 3 \mathrm{~d}$: There is no change in the morphological (condition factor) index of body condition of subadult and adult Walleye.	This hypothesis is rejected. Walleye body condition varied from a -5\% effect size to $+5 \%$ between 2001 and 2020. Body condition was greatest in years when abundance was low, such as 2012 to 2015.
		$\mathrm{H}_{0} 3 \mathrm{e}$: There is no change in the distribution of adult and subadult Walleye.	The hypothesis cannot be rejected at this time. Walleye densities were similar among sites, except for greater densities in the Kootenay River. Evenness in the distribution of Walleye between sites was similar in all study years.

Golder, Poisson, and Okanagan Nation Alliance CLBMON-45 - Lower Columbia River Fish Population Indexing Survey

$\begin{array}{l}\text { Management } \\ \text { Questions }\end{array}$	$\begin{array}{l}\text { Management } \\ \text { Hypotheses }\end{array}$	Sub-Hypotheses

What is the effect of inter-annual variability in the Whitefish and Rainbow
Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the Lower Columbia River?

Year 14 (2020) Status

The effect of egg dewatering on fish abundance was analyzed using stock-recruitment models that included egg loss as a covariate For Mountain Whitefish, age ratios were also used as a recruitment index to test the effects of egg loss.
For Mountain Whitefish, the data were most consistent with a small negative effect of egg dewatering mortality on recruitment, but a large negative effect, or no effect, cannot be ruled out. There was also a negative but uncertain and not statistically significant elationship between the age-1:2 recruitment index and estimated egg losses across all years of the study (1999 to 2018 spawning years). However, the large estimated egg loss (59\%) in the 2016 spawning year corresponded to a large decrease in the recruitment index and a more than 50% decrease in the estimated abundance of age-1 Mountain Whitefish. In the stock-recruitment model, the direction of the effect of egg dewatering on recruitment was uncertain and not statistically significant, but a small negative effect was most likely, given the data

For Rainbow Trout, there was no evidence of negative effects of egg losses on recruitment at the observed levels of egg loss, which were less than 2% in all years. These conclusions for both Mountain Whitefish and Rainbow Trout should be considered uncertain ecause of the poor fit in modelled relationships, and the possibility that sampling biases or environmental variability masked real effects of egg dewatering.
Flow variability in the LCR is expected to have little effect on Walleye abundance because spawning and early life history occu utside of the study area.

Effects of flow variability on the growth, survival, body condition, and spatial distribution of the three index species are possible but kely involve indirect mechanisms such as changes in primary and secondary productivity (food availability) or habitat quality Possible effects of flow variability on these fish population metrics are discussed in this report.

Acknowledgements

The Lower Columbia River Fish Population Indexing Survey (CLBMON-45) is funded by BC Hydro. The Okanagan Nation Alliance, Golder Associates Ltd., and Poisson Consulting Ltd. would like to thank the following individuals for their contributions to the program:

BC Hydro

Teri Neighbour Burnaby, BC
Darin Nishi
Phil Bradshaw
Burnaby, BC
Guy Martel
Burnaby, BC
Burnaby, BC
The following members of the Okanagan Nation Alliance Fisheries Department contributed to the collection of data and preparation of this report.

Amy Duncan, MSc, RPBio Biologist, Project Manager
Evan Smith, BSc
Technician, Reporting
Eleanor Duifhuis, BSc
Technician
The following employees of GOLDER ASSOCIATES LTD. contributed to the collection of data and preparation of this report.

David Roscoe, MSc, RPBio Biologist, Report Author
Dustin Ford, RPBio
Chris King, Dipl Tech
Shawn Redden, RPBio
Sima Usvyatsov, PhD
Natasha Audy, Dipl Tech
Senior Fisheries Biologist, Project Advisor
Biological Technician, Field Lead
Senior Fisheries Biologist, Project Director
Biological Scientist, Data Analyst
Geoff Sawatzky
Biological Technician
Carrie McAllister
GIS Technician
Office Administrator
The following employee of Poisson Consulting Ltd. contributed to the preparation of this report.

Joseph Thorley, PhD, RPBio Nadine Hussein

Senior Computational Biologist, Co-Author Junior Computational Biologist

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Study Objectives 2
1.2 Key Management Questions 2
1.3 Management Hypotheses 2
1.4 Study Area and Study Period 3
2.0 METHODS 6
2.1 Data Collection 6
2.1.1 Discharge 6
2.1.2 Water Temperature 6
2.1.3 Habitat Conditions 6
2.1.4 Fish Capture 8
2.1.5 Generalized Random Tessellation Stratified Survey 8
2.1.6 Fish Processing 10
2.1.7 Scale Ageing 11
2.1.8 Geo-referenced Visual Enumeration Survey 11
2.1.9 Historical Data 12
2.2 Data Analyses 12
2.2.1 Data Compilation and Validation 12
2.2.2 Hierarchical Bayesian Analyses 13
2.2.3 Length-At-Age 14
2.2.4 Observer Length Correction 15
2.2.5 Growth 15
2.2.6 Site Fidelity 16
2.2.7 Capture Efficiency 16
2.2.8 Abundance 16
2.2.9 Spatial Distribution 17
2.2.10 Survival 17
2.2.11 Body Condition 18
2.2.12 Age Ratios 18
2.2.13 Fecundity and Egg Deposition 19
2.2.14 Stock-Recruitment Relationship 19
3.0 RESULTS 20
3.1 Physical Habitat 20
3.1.1 Columbia River Discharge 20
3.1.2 Columbia River Temperature 22
3.1.3 Kootenay River Discharge 23
3.1.4 Kootenay River Temperature 24
3.2 Catch 25
3.3 Length-At-Age and Growth Rate 27
3.3.1 Mountain Whitefish 28
3.3.2 Rainbow Trout 29
3.3.3 Walleye 31
3.3.4 Observer Length Correction 32
3.4 Spatial Distribution and Abundance 35
3.4.1 Site Fidelity 35
3.4.2 Efficiency 35
3.4.3 Mountain Whitefish 36
3.4.4 Rainbow Trout 38
3.4.5 Walleye 40
3.4.6 Geo-referenced Visual Enumeration Surveys 41
3.5 Survival 41
3.5.1 Mountain Whitefish 41
3.5.2 Rainbow Trout 42
3.5.3 Walleye 43
3.6 Body Condition 43
3.6.1 Mountain Whitefish 43
3.6.2 Rainbow Trout 43
3.6.3 Walleye 44
3.7 Age Ratios 44
3.8 Stock-Recruitment Relationship 46
3.8.1 Mountain Whitefish 46
3.8.2 Rainbow Trout 48
3.9 Other Species 50
4.0 DISCUSSION 51
4.1 Length-at-Age and Growth 51
4.1.1 Mountain Whitefish 51
4.1.2 Rainbow Trout 52
4.1.3 Walleye 54
4.2 Abundance 54
4.2.1 Mountain Whitefish 54
4.2.2 Rainbow Trout 56
4.2.3 Walleye 57
4.3 Spatial Distribution 57
4.3.1 Mountain Whitefish 57
4.3.2 Rainbow Trout 58
4.3.3 Walleye 58
4.4 Survival 58
4.4.1 Mountain Whitefish 58
4.4.2 Rainbow Trout 59
4.4.3 Walleye 60
4.5 Body Condition 60
4.5.1 Mountain Whitefish 60
4.5.2 Rainbow Trout 61
4.5.3 Walleye 61
4.6 Age Ratios 61
4.7 Stock-Recruitment Relationship 62
4.8 Summary 64
6.0 REFERENCES 65

List of Tables

Table 1: Summary of annual study periods and number of sites sampled for boat
electrofishing surveys conducted in the lower Columbia River, 2001 to 2018........ 4
Table 2: List and description of habitat variables recorded at each sample site in the lower Columbia River.
Table 3: List and description of variables recorded for each fish recorded in the lower Columbia River11

Table 4: Number of fish caught and observed during boat electrofishing surveys and their frequency of occurrence in sampled sections of the LCR, 1 October to 4 November 2018. This table includes data from Index and GRTS sites. 26
Table 5: Estimated minimum and maximum fork lengths (in mm) by age-class and year for Mountain Whitefish and Rainbow Trout in the lower Columbia River, 1990 to 1991 and 2001 to 2018. Estimates were derived from the length-at-age model (Section 2.2.3).
Table 6: Number of Northern Pike captured and observed in the lower Columbia RiverFish Population Indexing program by year. .. 50

Table 7: Comparison of growth parameters and length-at-age between the LCR and other populations of Mountain Whitefish.52
Table 8: Comparison of growth parameters and length-at-age between the LCR and other populations of Rainbow Trout. 53

List of Figures

Figure 1: Overview of the lower Columbia River Fish Population Indexing study area. 5
Figure 2: Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Columbia River at the Birchbank water gauging station, 2020 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at Birchbank from 2001 to 2019. The white line represents average mean daily discharge values over the same time period. 21
Figure 3: Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Columbia River at Hugh L. Keenleyside Dam, 2020 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at the dam from 2001 to 2019. The white line represents average mean daily discharge values over the same time period. 22
Figure 4: Mean daily water temperature (${ }^{\circ} \mathrm{C}$) for the Columbia River downstream of the confluence of the Kootenay River, 2020 (black line). The shaded area represents the minimum and maximum mean daily water temperature values from 2001 to 2019. The white line represents the average mean daily water temperature during the same time period. 23
Figure 5: Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Kootenay River at BRD, 2020 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at the dam from 2001 to 2019. The white line represents average mean daily discharge values over the same time period24

Figure 6: Mean daily water temperature (${ }^{\circ} \mathrm{C}$) for the Kootenay River downstream of BRD, 2020 (black line). The shaded area represents minimum and maximum mean daily water temperature values recorded from 2001 to 2019. The white line represents average mean daily water temperature values over the same time period.25

Figure 7: Growth curve showing length-at-age by species as predicted by the von Bertalanffy model for the lower Columbia River, 2001-2020.28

Figure 8: Mean fork length of age-0 Mountain Whitefish in the lower Columbia River, 1990 to 1991 and 2001 to 2020

28
Figure 9: Estimated percent change in the von Bertalanffy growth coefficient (mean with $95 \% \mathrm{Cls}$) relative to a typical year for Mountain Whitefish based on recaptured individuals in the lower Columbia River, 2001 to 2020.29

Figure 10: Predicted maximum growth rate (mean with $95 \% \mathrm{CIs}$) from the von Bertalanffy model for Mountain Whitefish based on recaptured individuals in the lower Columbia River, 2001 to 2020... 29
Figure 11: Mean fork length of age-0 Rainbow Trout in the lower Columbia River, 1990 to 1991 and 2001 to 2020
Figure 12: Estimated percent change in the von Bertalanffy growth coefficient (mean with 95% CIs) relative to a typical year for Rainbow Trout based on recaptured individuals in the lower Columbia River, 2001 to 2020.

Figure 13: Predicted maximum growth rate (mean with $95 \% \mathrm{Cls}$) from the von
Bertalanffy model for Rainbow Trout based on recaptured individuals in the lower
Columbia River, 2001 to 2020.

Figure 14: Estimated percent change in the von Bertalanffy growth coefficient (mean with 95% CIs) relative to a typical year for Walleye based on recaptured individuals $<450 \mathrm{~mm}$ in fork length in the lower Columbia River, 2001 to 2020. ... 31
Figure 15: Predicted maximum growth rate (mean with 95\% CIs) from the von Bertalanffy model for Walleye based on recaptured individuals in the lower Columbia River, 2001 to 2020.

Figure 16: Fork length-density plots for measured and estimated fork lengths of fish caught or observed in the lower Columbia River, 2013-2020. The black line shows fish that were caught. Observed data from the georeferenced visual survey are shown by coloured dashed lines

33
Figure 17: Fish length inaccuracy (bias) and imprecision by observer, year of observation and species. Observations use the length bias model of captured (mark-recapture surveys) compared to estimated (geo-referenced visual surveys) length-frequency distributions from the lower Columbia River, 2013-2020
Figure 18: Site fidelity, defined as the expected probability that a fish is recaptured at the same site where it was marked, by species and fork length in the lower Columbia River, 2001 to 2020.
Figure 19: Capture efficiency (mean with 95% CIs) by species from mark-recapture data from the lower Columbia River, 2001-2020. 35
Figure 20: Abundance (means with $95 \% \mathrm{Cls}$) of subadult (age-1; left panel) and adult (age-2 and older; right panel) Mountain Whitefish at index sites in the lower Columbia River, 2001-2020.
Figure 21: Density (means with 95\% CIs) of subadult (age-1; top panel) and adult (age-2 and older; bottom panel) Mountain Whitefish by river kilometre in the lower Columbia River, 2001-2020. .37
Figure 22: Estimated evenness in abundance between index sites for subadult (left) and adult (right) Mountain Whitefish by year.

37
Figure 23: Abundance (means with 95% CIs) of subadult (age-1; left panel) and adult (age-2 and older; right panel) Rainbow Trout at index sites in the lower Columbia River, 2001-2020.
Figure 24: Density (means with 95\% CIs) of subadult (age-1; top panel) and adult (age-2 and older; bottom panel) Rainbow Trout by river kilometre in the lower Columbia River, 2001-2020.

39
Figure 25: Estimated evenness in abundance between index sites for subadult (left) and adult (right) Rainbow Trout by year. ... 39
Figure 26: Abundance (means with 95% CIs) of adult Walleye (all age-classes) at index sample sites in the lower Columbia River, 2001-2020

40
Figure 27: Density (means with 95\% CIs) of adult Walleye (all age-classes) by river kilometre in the lower Columbia River, 2001-2020.
Figure 28: Estimated evenness in abundance between index sites for Walleye at index sites by year.41
Figure 29: Survival estimates (mean with 95\% CIs) for adult (age-2 and older) MountainWhitefish in the lower Columbia River, 2001-2020. ... 41

Figure 30: Abundance-based survival estimates (mean with 95\% CIs) for subadult and adult Mountain Whitefish by year.42
Figure 31: Survival estimates (mean with 95\% CIs) for adult (age-2 and older) RainbowTrout in the lower Columbia River, 2001-2020.42
Figure 32: Abundance-based survival estimates (mean with 95\% CIs) for subadult andadult Rainbow Trout42
Figure 33: Survival estimates (mean with 95\% CIs) for adult Walleye (all age-classes) inthe lower Columbia River, 2001-2020.43
Figure 34: Body condition effect size estimates (mean with 95\% CIs) for subadult (200 mm ; left panel) and adult (350 mm ; right panel) Mountain Whitefish in the lower Columbia River, 1990 to 1993 and 2001 to 2020. 43
Figure 35: Body condition effect size estimates (mean with 95\% CIs) for subadult (250 mm ; left panel) and adult (500 mm ; right panel) Rainbow Trout in the lower Columbia River, 1990 to 1993 and 2001 to 2020. 44

Figure 36: Body condition effect size estimates (median with 95\% CIs) by year for adult (600 mm) Walleye in the lower Columbia River, 1990 to 1993 and 2001 to 2020.44
Figure 37: Estimated proportion of Mountain Whitefish egg loss due to dewatering in the lower Columbia River by spawning year, 1999 to 2018, based on the egg loss model.
Figure 38: Proportion of age-1 to age-2 Mountain Whitefish in boat electrofishing catch in the lower Columbia River by spawning year, 1999 to 2018.
Figure 39: Relationship between the proportion of age-1 to age-2 Mountain Whitefish and the estimated proportion of Mountain Whitefish egg loss due to dewatering. Year labels represent the spawning year. The predicted relationship is indicated by the solid black line and dotted line represents the $95 \% \mathrm{Cl}$. 46
Figure 40: Predicted percent change in age-1 Mountain Whitefish abundance by egg loss in the spawn year relative to 10\% egg loss in the spawn year (with 95\% CIs). 46
Figure 41: Predicted stock-recruitment relationship between age-2+ spawners ("Stock") and subsequent age-1 Mountain Whitefish ("Recruits") by spawning year (with 95\% CIs). Estimated proportion of egg loss due to dewatering for each spawning year is shown by size of shaded circles.

47
Figure 42: Predicted egg to age-1 survival by total egg deposition (with 95\% CIs) for
Mountain Whitefish. .. 47
Figure 43: Predicted carrying capacity of age-1 Mountain Whitefish recruits by percentage egg loss (with 95\% CIs).
Figure 44: Predicted stock-recruitment relationship between age-2+ spawners ("Stock") and subsequent age-1 Rainbow Trout ("Recruits") by spawning year (with 95% CIs). Estimated proportion of egg loss due to dewatering for each spawning year is shown by size of shaded circles49
Figure 45: Predicted egg to age-1 survival by total egg deposition (with $95 \% \mathrm{CIs}$) for Rainbow Trout. 49
Figure 46: Predicted carrying capacity of age-1 Rainbow Trout recruits by percentage egg loss (with 95\% CIs). 49

Appendices

Appendix A - Maps
Appendix B - Habitat Summary Information
Appendix C - Modelling Methods and Parameter Estimates
Appendix D - Discharge and Temperature Data
Appendix E - Catch and Effort
Appendix F - Life History
Appendix G - Additional Results
Appendix H - Spatial Distribution Maps

Attachments

Attachment A - Lower Columbia River Fish Indexing Database

1.0 INTRODUCTION

In the mid-1990s, BC Hydro initiated water management from Hugh L. Keenleyside Dam (HLK) during the Mountain Whitefish (Prosopium williamsoni) and Rainbow Trout (Oncorhynchus mykiss) spawning seasons to reduce egg losses downstream of the dam. During Mountain Whitefish spawning and incubation (December to February), BC Hydro decreases flow from HLK (24 December to 21 January; Golder 2010a) to encourage spawning at lower water level elevations and to reduce egg dewatering over the winter and early spring when annual minimum flows typically occur. Subsequently, flows are managed (within the constraints of the Columbia River Treaty and flood protection considerations) to provide stable or increasing water levels during Rainbow Trout spawning (early April to late June) and incubation to reduce the likelihood that Rainbow Trout eggs (and other larval fishes) are dewatered.

BC Hydro implemented a Water Use Plan (WUP; BC Hydro 2005) for the Columbia River in 2007. As part of the WUP, the Columbia River Water Use Plan Consultative Committee recommended the establishment of the Lower Columba River (LCR) Fish Indexing Program (CLBMON-45) to address data gaps regarding the effects of water management at HLK (particularly during the Mountain Whitefish and Rainbow Trout spawning seasons) on downstream fish populations. The LCR Fish Indexing Program represents a continuation of the Large River Fish Indexing Program (LRFIP), a program initiated by BC Hydro in 2001 to monitor the fish community downstream of HLK.

In 2001, the LRFIP gathered baseline information on fish distribution, life history characteristics, and population abundance of fish species present in the LCR (Golder 2002). Between 2002 and 2006 (Golder 2003, 2004, 2005, 2006, 2007), the night-time boat electroshocking program was refined, based on the results of previous study years, to provide reliable estimates of fish population parameters for three index species: Mountain Whitefish, Rainbow Trout, and Walleye (Sanders vitreus). A detailed summary of the life history requirements for these three species was prepared by Golder (2009a, 2010b).

The final year of monitoring under the Water Use Plan was 2019. Monitoring was continued in 2020 to assess the effects of variation in the spawning protection flows on fish populations. Data collected under the LRFIP (2001-2006) and the current program (CLBMON-45; 2007-2020) were used to monitor populations of index fish species over time and to estimate the effects of the Mountain Whitefish and Rainbow Trout spawning protection flows on the fish populations.

1.1 Study Objectives

The objectives of CLBMON-45 (BC Hydro 2007) are:

- to extend time series data on the abundance, distribution, and biological characteristics of nearshore and shallow water fish populations in the LCR;
- to examine long-term trends in key index fish populations (i.e., Mountain Whitefish, Walleye, and Rainbow Trout) during the continued implementation of Mountain Whitefish and Rainbow Trout flows in the LCR;
- to build upon previous investigations for the further refinement of sampling strategy, sampling program, and analytical procedures to establish a long-term monitoring program for fish populations in the LCR;
- to update the existing electronic storage and retrieval system for fish population and habitat monitoring data for the Columbia River;
- to establish linkages between other biological monitoring programs being undertaken in the LCR, in particular, the Physical Habitat and Ecological Productivity Monitoring Program (CLBMON-44); and
- to identify gaps in data and understanding of current knowledge about fish populations and procedures for sampling them, and to provide recommendations for future monitoring and fisheries investigations.

Although the study objectives, management questions (Section 1.2), and management hypotheses (Section 1.3) from the Terms of Reference for 2007 to 2019 still apply, the focus of the monitoring program in 2020 and future years is to assess the effects of experimental manipulation of the Rainbow Trout spawning protection flows. During these years, discharge from HLK will be varied during the protection flow period, depending on operational constraints and environmental conditions, to dewater different percentages of Rainbow Trout eggs. Monitoring results from CLBMON-45 will be used to assess the effects of egg dewatering on the Rainbow Trout population in subsequent years.

1.2 Key Management Questions

Key management questions to be addressed by CLBMON-45 are:

- What is the abundance, growth rate, survival rate, body condition, age distribution, and spatial distribution of subadult and adult Whitefish, Rainbow Trout, and Walleye in the LCR?
- What is the effect of inter-annual variability in the Whitefish and Rainbow Trout flow regimes on the abundance, growth rate, survival rate, body condition, and spatial distribution of subadult and adult Whitefish, Rainbow Trout and Walleye in the LCR?

1.3 Management Hypotheses

Specific hypotheses to be tested under CLBMON-45 include:

- Ho_{1} : There is no change in the population levels of Whitefish in the LCR over the course of the monitoring period.
- $\mathrm{Ho}_{1 \mathrm{a}}$: There is no change in the abundance of adult and subadult Whitefish.
- $\mathrm{Ho}_{1 \mathrm{~b}}$: There is no change in the mean size-at-age of subadult and adult Whitefish.
- $\mathrm{Ho}_{1 \mathrm{c}}$: There is no change in the mean survival of adult and subadult Whitefish.
- $\mathrm{Ho}_{1 \mathrm{~d}}$: There is no change in the morphological (condition factor) index of body condition of adult and subadult Whitefish.
- $\mathrm{Ho}_{1 \mathrm{e}}$: There is no change in the distribution of adult and subadult Whitefish.
- Ho_{2} : There is no change in the population levels of Rainbow Trout in the LCR over the course of the monitoring period.
- $\mathrm{Ho}_{2 \mathrm{a}}$: There is no change in the abundance of adult and subadult Rainbow Trout.
- $\mathrm{Ho}_{2 \mathrm{~b}}$: There is no change in the mean size-at-age of subadult and adult Rainbow Trout.
- $\mathrm{Ho}_{2 \mathrm{c}}$: There is no change in the mean survival of adult and subadult Rainbow Trout.
- $\mathrm{Ho}_{2 \mathrm{~d}}$: There is no change in the morphological (condition factor) index of body condition of adult and subadult Rainbow Trout.
- $\mathrm{Ho}_{2 \mathrm{e}}$: There is no change in the distribution of adult and subadult Rainbow Trout.
- Ho_{3} : There is no change in the population levels of Walleye in the LCR over the course of the monitoring period.
- $\mathrm{Ho}_{3 \mathrm{a}}$: There is no change in the abundance of adult and subadult Walleye.
- Ho_{35} : There is no change in the mean size-at-age of subadult and adult Walleye.
- Ho_{3} : There is no change in the mean survival of adult and subadult Walleye.
- $\mathrm{Ho}_{3 \mathrm{~d}}$: There is no change in the morphological (condition factor) index of body condition of adult and subadult Walleye.
- $\mathrm{Ho}_{3 е}$: There is no change in the distribution of adult and subadult Walleye.

1.4 Study Area and Study Period

The study area for the LCR Fish Indexing Program encompasses the 56.5 km section of riverine habitat from HLK to the Canada-U.S. border (Figure 1). This study area also includes the Kootenay River below Brilliant Dam (BRD) and the Columbia-Pend d'Oreille rivers confluence below Waneta Dam. For the purposes of this study, the study area was divided into three sections. The upstream section of the Columbia River extended 10.7 km from HLK (river kilometre [RKm] 0.0) downstream to the Kootenay River confluence (RKm 10.7). The downstream section of the Columbia River extended 48.5 km from the Kootenay River confluence downstream to the Canada-U.S. border (RKm 56.5). The Kootenay River section was established as a separate sample section that extended 2.8 km from the Kootenay-Columbia rivers confluence upstream to BRD.

In 2020, sample sites were distributed throughout the study area in locations similar to all other study years since 2001. In total, nine index sites were sampled in the upstream section of the Columbia River (Appendix A, Figure A1), 15 index sites were sampled in the downstream section of the Columbia River (Appendix A, Figures A2 and A3), and four index sites were sampled in the Kootenay River (Appendix A, Figure A1). Site descriptions and UTM locations for all sites are listed in Appendix A, Table A1. Each of the 28 index sites was sampled four times (i.e., 4 sessions) between 5 and 31 October 2020. In addition to the four sessions at the index sites, a visual enumeration survey was also conducted at the index sites, as described in Section 2.1.8. Field sampling was also conducted in the late summer to fall during previous study years (Table 1).

In addition to the four sampling sessions at index sites described above, a fifth sampling session was conducted at 20 randomly selected, non-index sites. These sites were selected using a Generalized Random Tessellation Stratified (GRTS) survey (see Section 2.1.5). Session 5 was completed between 3 and 7 November 2020.

Table 1: Summary of annual study periods and number of sites sampled for boat electrofishing surveys conducted in the lower Columbia River, 2001 to 2020.

Year	Start Date	End Date	Number of Sites			Number of Sessions	Duration (in days)
			Index Sites ${ }^{\text {a }}$	GRTS Sites ${ }^{\text {b }}$	Georeferenced Visual Survey ${ }^{\text {c }}$		
2001	13 August	23 September	21	-	-	5	42
2002	16 September	27 October	24	-	-	6	42
2003	15 September	26 October	23	-	-	6	42
2004	13 September	30 October	23	-	-	7	48
2005	19 September	1 November	23	-	-	6	44
2006	18 September	2 November	23	-	-	6	46
2007	27 September	6 November	23	-	-	5	41
2008	22 September	3 November	23	-	-	5	43
2009	28 September	30 October	22	-	-	5	33
2010	27 September	30 October	28	-	-	5	34
2011	26 September	5 November	28	20	-	6	41
2012	24 September	25 October	28	20	-	5	32
2013	2 October	6 November	28	20	47	5	36
2014	6 October	7 November	28	20	28	5	33
2015	13 October	10 November	28	20	28	5	29
2016	3 October	4 November	28	20	28	5	33
2017	2 October	7 November	28	20	28	5	37
2018	1 October	4 November	28	20	28	5	35
2019	30 September	3 November	28	20	28	5	35
2020	5 October	7 November	28	20	28	5	34

a. Index sites that were longer than one habitat type were split up in 2002 and 2010. The same bank length was sampled in all years of the program and the difference in the number of sites sampled reflects changes in site naming. Exceptions were sites that were occasionally not sampled in some years because they could not be safely accessed.
b. GRTS sites were added to the program in 2011. See Section 2.1.5 for details.
c. Geo-referenced visual surveys started in 2013. See Section 2.1.8 for details. GRTS sites were also included in the visual survey in 2013 whereas only index sites were included in the visual survey in 2014 to 2020.

2.0 METHODS

2.1 Data Collection

2.1.1 Discharge

Discharge data were obtained from BC Hydro's Columbia Basin Hydrological Database. Data used in this report included discharge for the Columbia River below HLK (combined discharge from HLK and Arrow Lakes Generating Station), the Columbia River at Birchbank (Water Survey of Canada gauging station No. 08NE049), and the Kootenay River (combined discharge through the BRD and Brilliant Expansion $[\mathrm{BRX}]$ plants). Discharge values throughout this report are presented as cubic metres per second ($\mathrm{m}^{3} / \mathrm{s}$).

2.1.2 Water Temperature

Water temperatures for the mainstem Columbia River from 2001 to 2020 (except 2012 and 2017) were obtained at hourly intervals from the Water Survey of Canada gauging station at Birchbank. In 2012 and 2017, water temperature data from the Birchbank station were not available for a large portion of the year because of a data logger malfunction. Columbia River water temperatures presented for 2012 were measured near Fort Shepherd (used with permission from Columbia Power Corporation; Golder 2013a). Columbia River water temperature presented for 2017 were measured in Kinnaird Eddy, approximately 3 km downstream of the Kootenay-Columbia confluence (J. Crossman, BC Hydro, pers. comm.) during March to November and measured at Birchbank for the remainder of the year. Water temperatures for the mainstem Kootenay River were obtained at hourly intervals using an Onset Tidbit ${ }^{\text {TM }}$ temperature data logger (accuracy $\pm 0.5^{\circ} \mathrm{C}$) installed 1.8 km upstream of the Columbia-Kootenay rivers confluence. All available temperature data were summarized to provide daily average temperatures. Spot measurements of water temperature were obtained at all sample sites at the time of sampling using a hull-mounted digital thermometer (accuracy $\pm 0.2^{\circ} \mathrm{C}$).

2.1.3 Habitat Conditions

Several habitat variables were qualitatively assessed at all sample sites (Table 2). Variables selected were limited to those for which information had been obtained during previous study years and were intended to detect gross changes in habitat availability or suitability in the sample sites between study years. The data collected were not intended to quantify habitat availability or imply habitat preferences.

The type and amount of instream cover for fish were qualitatively estimated at all sites (Table 2). Surface water velocities were visually estimated and categorized at each site as low (less than $0.5 \mathrm{~m} / \mathrm{s}$), medium (0.5 to $1.0 \mathrm{~m} / \mathrm{s}$), or high (greater than $1.0 \mathrm{~m} / \mathrm{s}$). Water clarity was visually estimated and categorized at each site as low (less than 1.0 m depth), medium (1.0 to 3.0 m depth), or high (greater than 3.0 m depth). To determine visibility categories, the boat operator called out depths displayed on the boats depth sounder while driving the boat from the thalweg towards the shore. The netters looked over the bow of the boat to become familiar with how deep they could see based on the depths relayed by the boat operator. Mean and maximum depths were estimated by the boat operator based on the boat's sonar depth display.

Habitat at each site was categorized using the Bank Habitat Types Classification System (Appendix B, Table B1; R.L.\&L. 1995). The length of each bank habitat type within each site was calculated using ArcView® GIS software (Appendix B, Table B2). While electrofishing, netters estimated the number of observed fish that were not captured by species within each bank habitat type. Bank habitat types less than approximately 100 m in length were combined with adjacent bank habitat types to facilitate the netters' ability to remember observed fish counts.

Table 2: List and description of habitat variables recorded at each sample site in the lower Columbia River.

Variable	Description
Date	The date the site was sampled
Time	The time the site was sampled
Air Temp	Air temperature at the time of sampling (to the nearest $1^{\circ} \mathrm{C}$)
Water Temp	Water temperature at the time of sampling (to the nearest $1^{\circ} \mathrm{C}$)
Conductivity	Water conductivity at the time of sampling (to the nearest $10 \mu \mathrm{~S}$)
Cloud Cover	A categorical ranking of cloud cover (clear=0-10\% cloud cover; partly cloudy=10-50\% cloud cover; mostly cloudy=50-90\% cloud cover; overcast=90-100\% cloud cover)
Weather	A general description of the weather at the time of sampling (e.g., comments regarding wind, rain, or fog)
Water Surface Visibility	A categorical ranking of water surface visibility (low - waves; medium - small ripples; high flat surface)
Boat Model	The model of boat used during sampling
Range	The range of voltage used during sampling (high or low)
Percent	The setting on the "Percent of Range" dial, which affects voltage and duty cycle
Amperes	The average amperes used during sampling
Mode	The mode (AC or DC) and frequency (in Hz) of current used during sampling
Length Sampled	The length of shoreline sampled (to the nearest 1 m)
Time Sampled	The time of electrofisher operation (to the nearest 1 second)
Mean Depth	The estimated mean depth sampled (to the nearest 0.1 m)
Maximum Depth	The estimated maximum depth sampled (to the nearest 0.1 m)
Water Clarity	A categorical ranking of water clarity (high - greater than 3.0 m visibility; medium - 1.0 to 3.0 m visibility; low - less than 1 m visibility)
Instream Velocity	A categorical ranking of water velocity (high - greater than $1.0 \mathrm{~m} / \mathrm{s}$; medium - 0.5 to $1.0 \mathrm{~m} / \mathrm{s}$; low - less than $0.5 \mathrm{~m} / \mathrm{s}$)
Instream Cover	The type (i.e., interstices; woody debris; cutbank; turbulence; flooded terrestrial vegetation; aquatic vegetation; shallow water; deep water) and amount (as a percent) of available instream cover
Crew	The field crew that conducted the sampling
Sample Comments	Any additional comments regarding the sample

2.1.4 Fish Capture

Fish were captured using night-time boat electrofishing and methods similar to previous years of the project (Golder et al. 2020a). Physiological stress on fish associated with capture and processing is greater at warmer water temperatures (Golder 2002; Gale et al. 2013). Therefore, sampling in the present study (as in during most other study years) did not commence until after water temperatures decreased below $15^{\circ} \mathrm{C}$.

Boat electrofishing was conducted at all sites along the channel margin, typically within a range of 0.5 to 4.0 m water depth. Boat electrofishing employed a Smith-Root Inc. high-output Generator Powered Pulsator (GPP 7.5) electrofisher operated out of an outboard jet-drive riverboat with a three-person crew. The electrofishing procedure consisted of manoeuvring the boat downstream along the shoreline of each sample site. Two crew members positioned on a netting platform at the bow of the boat netted stunned fish, while a third individual operated the boat and electrofishing unit. The two netters attempted to capture all three index species. Captured fish were immediately sorted by the bank habitat type that they were captured in and placed into an onboard live well. Index species that avoided capture and all other species that were positively identified but avoided capture were enumerated by bank habitat type and recorded as "observed". Both time sampled (seconds of electrofisher operation) and length of shoreline sampled (in kilometres) were recorded for each sample site. Electrofishing sites ranged from 0.44 to 3.79 km in length. If a site could not be completed because of logistical reasons, the distance that was actually sampled was estimated and recorded on the site form, then used as the sampled length in the subsequent analyses.

To further reduce fish mortalities and stress on the fish associated with capturing and handling, compressed oxygen was pumped into the live well through an air stone.

Voltage was adjusted to the lowest voltage that had the desired effect on fishes i.e., forced swimming towards the anode (known as electrotaxis or galvanotaxis), or narcosis, which is when fish become immobilized by the electric field. This typically correspond to an amperage output of $\sim 1.75 \mathrm{~A}$ on the electroshocking boat used from 2001 to 2016. The boat used in 2017 to 2020 had a different amperage gauge that measured a different part of the electrical wave form than the previous boat. Amperages in 2020 ranged from 3.5 to 4.0 A. A pulsed direct current with a frequency of 30 Hz was used. These settings result in less electrofishing-induced injuries on Rainbow Trout than when using greater frequencies (60 or 120 Hz) and amperages (1.5 to 3.3. A as measured on older amperage gauges; Golder 2004, 2005).

To reduce the possibility of capturing the same fish at multiple sites in one session, fish were released near the middle of the site where they were captured so they were less likely to move upstream or downstream into an adjacent site after release. In previous years when releasing fish in the middle of site, fish were occasionally recaptured in a different site during the same session, but this was fairly rare (typically less than 5 times per year).

2.1.5 Generalized Random Tessellation Stratified Survey

In 2001, sites selected for inclusion in the LRFIP (Golder 2002) were based on sites established and data collected during surveys conducted in the early 1980's (Ash et al. 1981) and early 1990's (R.L.\&L. 1991). During those two programs, nearly all areas of the LCR were surveyed with individual site lengths determined by the length of shoreline traversed by the boat in the amount of time it took netters to fill the live well with fish (L. Hildebrand, Golder Associates Ltd., pers. comm.). A subsample of sites established during those original programs was selected for inclusion in the LRFIP in 2001 to provide a representative sample of general bank habitat types available throughout the LCR; however, emphasis was placed on sites known to contain higher densities of the three index species, which may result in overestimates of abundance in the entire LCR study area. This same subsample of sites has been used for annual
sampling since 2001, including the continuation of the survey program as part of CLBMON-45, which was initiated in 2007. Approximately 30% of the total shoreline habitat available in the LCR was repetitively sampled each year as part of the LRFIP and CLBMON-45.

The stratified sampling design detailed above represents a repeated measures concept, where a mark-recapture program is conducted annually at each site over an approximately five-week study period. The same sites are surveyed each year, resulting in annual estimates of abundance with relatively constant temporal and spatial sample design parameters. Stratified sampling programs like this may result in biased estimates because not all portions of a study area are surveyed or potentially available to be surveyed in any particular year. This bias can arise if inter-annual fish distribution changes with abundance rather than only with fish density. Additionally, repetitively sampling the same sites each session (i.e., within a year) may introduce biases due to fish moving between sampled and non-sampled sections of the study areas within or between sessions.

Starting in 2011, additional sites were randomly selected using the GRTS survey design (Stevens and Olsen 2004) and sampled after field crews completed the conventional mark-recapture program. The GRTS survey was conducted to identify potential biases and to provide a better understanding of the population dynamics of the three index species.

Portions of shoreline habitat that were not sampled as part of CLBMON-45 prior to 2011 were divided up into potential sites. Upstream and downstream boundaries of each site were established using several different criteria, including historic site delineations (i.e., sites surveyed during the 1990s; R.L.\&L. 1991), sampling effectiveness (e.g., overall length, ease of access, etc.), natural breaks in bank habitat type, and the location of obvious geographical boundaries (e.g., islands, tributary mouths, bridges, etc.). Established CLBMON-45 indexing sites ranged in length from 0.4 to 3.8 km ; these lengths were used as general guidelines when establishing the GRTS survey sites. Overall, 62 new GRTS survey sites ranging from 0.6 to 3.9 km in length, were established in areas of the LCR that were not sampled between 2001 and 2010 (Table A2). The same habitat variables recorded for indexing sites were also recorded for GRTS survey sites (Appendix B, Table B3). In general, there was a similar range of habitat types at indexing and GRTS survey sites.

The GRTS sampling design combines the features of stratified sampling with the benefits of a totally random design, ensuring full spatial coverage and randomization so that all potential habitats are surveyed. A feature of the GRTS strategy is that new sites may be selected during each study year; therefore, all fish habitats are included within the potential sampling "frame". Software used to create the GRTS design included the spsurvey package (Kincaid and Olsen 2016) in the statistical program R (R Core Team 2021), and ArcGIS. Each year since 2011, the GRTS methodology was used to select a subsample of 20 sites from the 62 GRTS survey sites. In addition, 15 "oversample" sites also were selected to replace selected GRTS sites that were unable to be sampled for logistical reasons. For the current project, excluded sites included those located immediately downstream of HLK, BRD, and Waneta Dam and inside the log booms at Zellstoff Celgar (all due to safety concerns), the perimeter of Waldie Island (a nature preserve), and the west shore of Zuckerberg Island (too shallow to safely navigate). Oversample sites also were used if the same site was selected more than once by the software. The use of oversample sites ensured that both randomness and spatial balance were maintained as part of the study design. GRTS sites selected in 2020 are presented in Appendix A, Table A2.

A single-pass boat electrofishing survey was conducted at each GRTS survey site between 3 and 7 November 2020 using the same procedures described above. The GRTS surveys were always conducted after sampling at index sites was completed. Fish captured during GRTS surveys were processed in the same manner as fish captured during the conventional mark-recapture program (Section 2.1.6).

2.1.6 Fish Processing

Site habitat conditions (Table 2) and the number of fish observed were recorded after sampling each site. Data collection for each captured fish included the variables in Table 3. The length (to the nearest 1 mm) and weight (to the nearest 1 g) of each fish was measured. All sampled fish were automatically assigned a unique identifying number by the database that provided a method of cataloguing associated ageing structures.

All index fish > 120 mm were marked with a Passive Integrated Transponder (PIT) tag (Datamars, FDX-B, food safe polymer, $11.4 \times 2.18 \mathrm{~mm}$, Hallprint Pty Ltd., Australia). For fish between 120 and 160 mm FL, tags were implanted into the abdominal cavity of the fish just off the mid-line and anterior to the pelvic girdle using a single shot applicator (model MK7, Biomark Inc., Boise, Idaho, USA). For fish >160 mm FL, tags were inserted with a single shot 12 mm polymer PIT tag applicator gun (Hallprint Pty Ltd., Australia) into the dorsal musculature on the left side below the dorsal fin near the pterygiophores. Only fish that were in good condition received PIT tags whereas fish in poor physical condition (e.g., large open wounds, unable to maintain upright orientation) were not tagged. All tags and tag injectors were immersed in an antiseptic (Super Germiphene ${ }^{\text {TM }}$) and rinsed with distilled water prior to insertion. Tags were checked to ensure they were inserted securely and the tag number was recorded in the LCR Fish Indexing Database.

During the 2001 to 2005 studies, fish were marked exclusively with T-bar anchor tags (i.e., PIT tags were not used). Fish captured during the present study that had previously been marked with and retained a T-bar anchor tag did not receive a second tag (i.e., a PIT tag) unless the T-bar anchor tag was not inserted properly, the tag number was illegible, or a large wound was present at the tag's insertion point (on these occasions, the T-bar anchor tag was carefully removed and a PIT tag was applied).

Table 3: List and description of variables recorded for each fish recorded in the lower Columbia River.

Variable	Description
Species	The species recorded
Size Class	A general size class for observed fish (YOY = age-0; Immature $=<250 \mathrm{~mm}$ FL; Adult $=>250 \mathrm{~mm}$ FL)
Length	The fork length to the nearest 1 mm
Weight	The wet weight to the nearest 1 g
Sex and Maturity	The sex and maturity (determined where possible through external examination)
Scale	Whether or not a scale sample was collected for ageing purposes
Tag Colour/Type	The type (i.e., T-bar anchor, PIT, or PIP tag) and colour (for T bar anchor tags only) of tag applied
Tag Number	The number of the applied tag
Condition	The general condition of the fish (e.g., alive, dead, unhealthy, etc.)
Preserve	Details regarding sample collection (e.g., stomach contents, DNA, whole fish, etc.)
Habitat Type	The bank habitat type where the fish was recorded
Comments	Any additional comments

Scale samples were collected from Mountain Whitefish and Rainbow Trout in accordance with the methods outlined in Mackay et al. (1990). All scales were stored in appropriately labelled coin envelopes and air-dried before processing. Scale samples were not collected from Walleye because scales are not a reliable ageing structure for Walleye (Mackay et al. 1990). Walleye are primarily seasonal residents in the LCR, which is used for feeding by adult and subadult cohorts. As a result, sensitive early life stages of Walleye are unlikely to be affected by river regulation in the study area.

2.1.7 Scale Ageing

In 2020, fish were not aged using scale samples. Various techniques have been used in past years of the program to assign ages using scale samples. For all ageing methods used in past years, only age-0, age-1, and sometimes age-2 fish could be reliably aged and there was considerable uncertainty and error in ages assigned to all age-3 and older age-classes (Golder et al. 2018). Therefore, Mountain Whitefish and Rainbow Trout captured between 2001 and 2020 were assigned age-classes based on their fork length and the length-at-age model (Section 2.2.3). Scale-based ages assigned during previous years of the program were not used in this report.

2.1.8 Geo-referenced Visual Enumeration Survey

A visual enumeration survey was conducted at each index site during the week before the mark-recapture indexing surveys began. The survey consisted of a boat electrofishing pass using the same methods as the mark-recapture survey (Section 2.1.4), except that fish were only counted and not captured. Two observers were positioned in the same location as they would have been for netting, where they identified, enumerated, and estimated the length of all fishes observed. Two other individuals recorded all the observation data dictated by the observers, and recorded the geographical location of each observation using a hand-held Global Positioning System (GPS) unit. The rationale behind these geo-referenced visual enumeration surveys was that by not having to net fish and then turn to put captured fish in the live well (and thereby not counting or capturing additional fish), continuous direct counts of observed fish would be more accurate than the intermittent observations made by netters during the mark-recapture surveys. In addition, the visual surveys provide fine-scale distribution data, which could be used to understand mesohabitat use by fishes in the LCR and better address management
questions regarding spatial distribution. Fish species counted and recorded in the survey were the three index species. The only other species recorded was Northern Pike because they are an invasive species of concern in the study area (see Section 4.2.4).

2.1.9 Historical Data

In addition to the data collected between 2001 and 2020, data collected in the study area between 1990 and 1996 (R.L.\&L. 1995, 1997) were also used in some analyses. Studies conducted during this period involved boat electrofishing and mark-recapture programs, with protocols very similar to the 2001 to 2020 monitoring studies, including many of the same sample sites. There were some differences in sampling methodology between the 1990s and the current sampling program including different electrofisher settings and tag types. Despite these relatively minor differences, the 1990s data were considered comparable to data collected between 2001 and 2020 and data from the 1990s with sufficient sample sizes were used in the analyses of length-at-age, growth and body condition. Incorporating data from the 1990s in the analyses provides a longer time series and historical context to better address management questions about fish population trends in the LCR.

2.2 Data Analyses

2.2.1 Data Compilation and Validation

Data were entered directly into the LCR Fish Indexing Database (Attachment A) using Microsoft® Access software. The database has several integrated features to ensure that data are entered correctly, consistently, and completely.

Various input validation rules programmed into the database checked each entry to verify that the data met specific criteria for that particular field. For example, all species codes were automatically checked upon entry against a list of accepted species codes that were saved as a reference table in the database; this feature forced the user to enter the correct species code for each species (e.g., Rainbow Trout had to be entered as "RB"; the database would not accept "RT" or "rb"). Combo boxes were used to restrict data entry to a limited list of choices, which kept data consistent and decreased data entry time. For example, a combo box limited the choices for Cloud Cover to: Clear; Partly Cloudy; Mostly Cloudy; or Overcast. The user had to select one of those choices, which decreased data entry time (e.g., by eliminating the need to type out "Partly Cloudy") and ensured consistency in the data (e.g., by forcing the user to select "Partly Cloudy" instead of typing "Part Cloud" or "P.C."). The database contained input masks that required the user to enter data in a pre-determined manner. For example, an input mask required the user to enter the Sample Time in 24 -hour short-time format (i.e., HH:mm:ss). Event procedures ensured that data conformed to the underlying data in the database. For example, after the user entered the life history information for a particular fish, the database automatically calculated the body condition of that fish. If the body condition was outside a previously determined range for that species (based on the measurements of other fish in the database), a message box would appear on the screen informing the user of a possible data entry error. This allowed the user to double-check the species, length, and weight of the fish before it was released. The database also allowed a direct connection between the PIT tag reader and the data entry form, which eliminated transcription errors associated with manually recording a 15 -digit PIT tag number.

All raw data collected as part of the program between 2001 and 2020 are included in the LCR Fish Indexing Database (Attachment A).

For all figures in this report, sites are ordered by increasing distance from HLK (RKm 0.0) based on the upstream boundary of each site. Unless stated otherwise, black points represent sites located on the left bank (as viewed facing downstream) and red points represent sites located on the right bank (as viewed facing downstream).

2.2.2 Hierarchical Bayesian Analyses

The temporal and spatial variation in abundance, growth, body condition, and survival were analyzed using Hierarchical Bayesian Models (HBMs). The book 'Bayesian Population Analysis using WinBUGS: A hierarchical perspective' by Kéry and Schaub (2011) provides an excellent reference for hierarchical Bayesian methods. In short, a hierarchical Bayesian approach:

- Allows complex models to be logically defined using the BUGS language (Kéry and Schaub 2011: 41).
- Permits the incorporation of prior information (Kéry and Schaub 2011: 41).
- Readily handles missing values.
- Provides readily interpretable parameter estimates whose reliability does not depend on the sample size.
- Allows derived quantities, such as the percent change in the expected weight of a 200 mm FL Mountain Whitefish at a particular site in a typical year, to be readily calculated (Kéry and Schaub 2011: 41).
- Enables the efficient modelling of spatial and temporal variations and correlations (Kéry and Schaub 2011: 78-82).
- Permits the separation of ecological and observational processes (Kéry and Schaub 2011: 44).

The analyses were implemented using R version 4.0.5 (R Core Team 2021) and the mbr family of packages. Models were fit using JAGS (Plummer 2015) and STAN (Carpenter et al. 2017). The one exception is the length-at-age estimates which were produced using the mixdist package (Macdonald 2012) in R, which implements Maximum Likelihood with Expectation Maximization. The technical aspects of the analyses, including the general approach, model definitions, and the resultant parameter estimates are provided in Appendix C. In addition, the statistical methodology, sample code, parameter estimates, and figures of results are available online (Thorley and Hussein 2021).

The parameters are summarized in terms of the point estimates, the lower and upper 95\% confidence/credible limits (CLs), the p-value (Kéry and Schaub 2011, 37, 42), and the s-value (Greenland 2019). For Bayesian models, the point estimate is the median (50th percentile) of the MCMC samples and the 95% credible limits are the 2.5 th and 97.5 th percentiles. Credible limits are the Bayesian equivalent of confidence limits. The range from the lower CL to the upper CL is referred to as the credible/confidence interval (CI). For maximum likelihood models, the point estimate is the maximum likelihood estimate (MLE), and 95% confidence intervals are the MLE $\pm 1.96 \times$ SD, where $S D$ is the standard deviation.

P-values were used to assess statistical significance. As p-values are not always intuitive and are easy to misinterpret, s-values are presented as an alternative statistic to help understand the significance of the results. An s-value can be considered a test of directionality. More specifically it indicates how surprising (in bits) it would be to discover that the true value of the parameter is in the opposite direction to the estimate. An s-value (Rafi and Greenland 2019) is the Shannon transform (-log to base 2) of the corresponding p-value (Kery and Schaub 2011; Greenland and Poole 2013). A surprisal value of 4.3 bits,
which is equivalent to a p-value of 0.05 indicates that the surprise would be equivalent to throwing 4.3 heads in a row. The condition that non-essential explanatory variables have s-values 4.3 bits provides a useful model selection heuristic (Kery and Schaub 2011).

Model adequacy was assessed using posterior predictive checks described in Thorley and Hussein (2021).

The results were displayed graphically by plotting the modeled relationships between a particular variable (e.g., year) and the response variable with the remaining variables held constant. Continuous and discrete fixed variables were held constant at their mean and first level values, respectively, while random variables were held constant at their typical values (expected values of the underlying hyperdistributions) (Kéry and Schaub 2011, 77-82). When informative, the influence of particular variables was expressed in terms of the effect size (i.e., percent change in the response variable) with 95% Cls (Bradford et al. 2005).

If the model assumptions are correct, there is 95% probability that the actual values lie within the credible intervals (CIs). Consequently, if two estimates have non-overlapping Cls, then the direction of the difference between them is relatively certain and the difference is statistically significant. It is important to note that estimates can have overlapping Cls but the direction of the difference between them can still be relatively certain and significantly different. For example, the uncertainty in the annual abundance estimates depend on the differences between years, as well as the abundance in a typical year. As the uncertainty in the abundance in a typical year affects all the estimates, it can cause the Cls to overlap even if the direction of the differences between years are significantly different. If it is important to establish the statistical significance of a difference or trend where the CIs overlap, this can be determined from the posterior probability distributions.

2.2.3 Length-At-Age

The length-at-age analysis was conducted to 1) determine length-at-age cutoffs by life stage (age-0 fry, age-1 subadult, or age-2 and older adult); and 2) compare length-at-age among years. The expected length-at-age of Mountain Whitefish and Rainbow Trout was estimated from annual length-frequency distributions using a finite mixture distribution model (Macdonald and Pitcher 1979).

There were assumed to be four distinguishable normally-distributed age-classes for Mountain Whitefish (age-0, age-1, age-2 and age-3+) and three for Rainbow Trout (age-0, age-1, age-2+). Initially the model was fitted to the data from all years combined. The model was then fitted to the data for each year separately with the initial values set to the estimates from the combined values. The only constraints were that the standard deviations of the MW age-classes were identical in the combined analysis and fixed at the value from the combined analysis in the individual years. For each Mountain Whitefish and Rainbow Trout, the probability of belonging to each age-class was predicted by the model, and the age-class with the highest probability was assigned to each fish.

Rainbow Trout and Mountain Whitefish were categorized as fry (age-0), subadult (age-1) or adult (age-2 or older) based on their length-based ages. Walleye could not be separated by life stage due to a lack of discrete modes in the length-frequency distributions for this species. Consequently, all captured Walleye were considered adults.

Because of low numbers of recaptured fish in the 1990s historical data, only years between 1990 and 1996 with sufficient recapture data were used for length-at-age analyses. The results include plots of the age-class density for each year by length as predicted by the length-at-age model. Density is a measure
of relative frequency for continuous values. To compare among years, mean length-at-age was plotted for age-0 fish. Length-at-age of age-1 and older age-classes are not presented because the size depends on growth during more than one year, which complicates interpretation.

2.2.4 Observer Length Correction

The annual bias (inaccuracy) and error (imprecision) in observer's estimates of fish length during the geo-referenced visual survey were quantified and used to correct lengths before assigning life stages based on length-at-age cutoffs. Bias and error were quantified using a function that minimized the divergence of the length distribution of the observed fish (visual survey) and the length distribution of the measured fish (mark-recapture survey). The percent length correction that minimized the Jensen-Shannon divergence (Lin 1991) between the two distributions provided a measure of the inaccuracy while the minimum divergence (the Jensen-Shannon divergence was calculated with log to base 2 which means it lies between 0 and 1) provided a measure of the imprecision.

Key assumptions of the length correction model include the following:

- The length-frequency distribution varied among years.
- The expected length bias and error for a given observer varied among but not within years.

2.2.5 Growth

Annual growth was estimated from inter-annual recaptured fish using the Fabens (1965) method for estimating the von Bertalanffy (1938) growth curve.

Key assumptions of the growth model include the following:

- The mean value of maximum length $\left(L_{\infty}\right)$ was constant.
- The growth coefficient (k) varied randomly with year.
- The residual variation in growth was normally distributed.

In the von Bertalanffy growth model, the growth coefficient, k , represents the rate at which fish approach the asymptotic size $\left(L_{\infty}\right)$. Plots of growth show the effect size (percent change) relative to a typical year in the annual estimates of the mean growth coefficient. In addition to plots of the growth coefficient, the maximum growth in mm per year was calculated by multiplying the growth coefficient by the asymptotic length and plotted for each year. The maximum growth rate can be interpreted as the maximum growth during early life (i.e., theoretical growth rate when fish are 0 mm in length) and can be used to compare between populations or years (Gallucci and Quinn 1979; Shuter et al. 1998).

The estimated growth curve for Walleye predicted unrealistic length-at-age values, which was attributed to highly variable growth even for large fish (e.g., 0-60 mm per year for 500 mm Walleye). To try to address this concern, the growth model was re-run using only Walleye less than 450 mm in fork length and these results are included in the report to represent the growth coefficient of smaller adult Walleye (mostly 300-450 mm) in the study area. As predictions of length-at-age were not realistic for younger fish, even after removing fish larger than 450 mm , Walleye were not included in the plot showing length-at-age predicted by the von Bertalanffy curve. Despite this limitation, estimates of the growth coefficient and maximum growth rate, which are of interest for assessing the management questions, are considered reliable indicators of growth for typical adult Walleye ($300-450 \mathrm{~mm}$) in the study area.

2.2.6 Site Fidelity

The extent to which fish remained at the same site between sample sessions was evaluated using a logistic analysis-of-covariance (ANCOVA; Kery 2010). The model estimated the probability of a recaptured fish being caught at the same site where it was previously encountered.

Key assumptions of the site fidelity model include the following:

- Expected site fidelity varied with body length.
- Observed site fidelity was described by a Bernoulli distribution.

Length as a second-order polynomial was not found to be a significant predictor for site fidelity so was not included in the model.

Site fidelity was defined as the probability of fish remaining at the same site between sessions in a particular year. The estimated probability of being caught at the same site versus a different site from the logistic ANCOVA was converted into the site fidelity by assuming that those fish which were recaptured at a different sampling site represented 32% of fish that left the site. The correction factor corresponds to the proportion of shoreline of the LCR that is included in index sites. This correction accounts for the fact that fish that leave the site where they were initially captured may move to different index sites within the study area, or to parts of LCR that are not index sites.

Site fidelity estimates also were used to adjust the capture efficiencies in the analysis of mark-recapture data (see Section 2.2.7).

2.2.7 Capture Efficiency

The probability of capture was estimated using a recapture-based binomial model (Kéry and Schaub 2011: 134-136, 384-388).

Key assumptions of the capture efficiency model include the following:

- The capture probability varied randomly by session within year.
- The probability of a marked fish remaining at a site was the estimated site fidelity.
- The number of recaptures was described by a binomial distribution.

2.2.8 Abundance

The abundance of each index fish species was estimated using the catch data from the mark-recapture survey and the observer count data from geo-referenced visual surveys using an over-dispersed Poisson model (Kéry and Schaub 2011: 55-56). The model used the estimates of capture efficiency from the mark-recapture data (Section 2.2.7) to generate the estimated density of captured and uncaptured fish at each site. Observer count efficiency was estimated for the geo-referenced visual surveys, and was calculated by adjusting the capture efficiency based on the ratio of counted (visual surveys) to captured fish (four mark-recapture sessions). Count efficiency was then used in the model to estimate the total density of counted and uncounted fish present at each site. Abundance estimates represent the total number of fish in the study area.

Key assumptions of the abundance model include the following:

- The capture efficiency at a typical fish density was the point estimate for a typical sample session from the capture efficiency model.
- The count efficiency from the visual survey varied from the capture efficiency from the mark-survey.
- The capture efficiency (but not the count efficiency) varied with fish density.
- The fish density varied randomly with site, year and site within year.
- The overdispersion varied by visit type.
- The catches and counts were described by a Poisson-gamma distribution.

Plots of annual abundance represent the estimated total number of fish at all sites combined. Plots showing the variation in abundance by site show the lineal density (fish/km) at each site. Abundance was estimated separately for subadults (age-1) and adults (age-2 and older), where ages were based on fork length and the cutoffs from the length-at-age model (Section 2.2.3).

2.2.9 Spatial Distribution

Changes in the spatial distribution of index species over time were assessed by calculating the Shannon index of evenness (Shannon and Weaver 1949; Pielou 1966) in each year for each species and life stage. The index was calculated using the following formula where S is the number of sites and p is the proportion of the total density belonging to the i th site.

$$
E=\frac{-\sum_{i=1}^{S}\left(p_{i} \log \left(p_{i}\right)\right)}{\log (S)}
$$

An evenness value of 100% would indicate the same density at all sites while an evenness of 0% would indicate that all the fish are clustered a single site.

2.2.10 Survival

The annual survival rate was estimated by fitting a Cormack-Jolly-Seber (CJS) model (Kéry and Schaub 2011: 172-175, 220) to inter-annual recapture data. Survival was only estimated for adults because sparse recapture data for subadults resulted in uninformative estimates.

Key assumptions of the survival model include the following:

- Survival varied randomly with year.
- The encounter probability varied with the total bank length sampled.

In addition to the recapture-based CJS estimate of survival, survival was estimated based on the estimated abundances of subadult (age-1) and adult (age-2 and older) fish. The subadult (S_{t}) and adult $\left(A_{t}\right)$ abundance estimates were used to calculate the subadult and adult survival (\emptyset_{t}) in year t based on the relationship:

$$
\emptyset_{t}=\frac{A_{t}}{S_{t-1}+A_{t-1}}
$$

Abundance-based survival was estimated for Mountain Whitefish and Rainbow Trout. This analysis assumes the same survival rate for subadult and adult fish.

2.2.11 Body Condition

Condition was estimated via an analysis of the weight-length relationship (He et al. 2008). Key assumptions of the condition model include the following:

- Weight varied with length and date.
- Weight varied randomly with year.
- The relationship between length and weight varied with date.
- The relationship between length and weight varied randomly with year.
- The residual variation in weight was log-normally distributed.

Only previously untagged fish were included in models to avoid potential effects of tagging on body condition.

2.2.12 Age Ratios

This program's management questions regard the effect of variability on the flow regime, which can result in variable amounts of egg mortality due to dewatering, on abundance of fish in the LCR. The abundance of fish in the LCR is determined in part by the number of eggs that hatch, survive, and are recruited to the subadult and adult populations. To monitor inter-annual changes in recruitment, ratios of age-1:age-2 fish were calculated and used as an index of annual recruitment. The age ratio analysis used ages assigned based on the length-at-age model (Section 2.2.3). Age ratio analyses were conducted for Mountain Whitefish, which was the only species for which there were data regarding the proportion of age-1 and age-2 fish from 2001 to 2020. The age ratio could not be assessed for Rainbow Trout because age- 2 individuals could not be reliably distinguished from age-3 and older based on their fork lengths.

The proportional ratio of age-1 to age-2 Mountain Whitefish (age-1:2 ratio) for each year from 2001 to 2020 was obtained from the length-at-age models. Years with strong recruitment are expected to result in greater age-1:2 ratios than years with weaker recruitment. This ratio does not depend on estimates of capture efficiency and is not affected by violations of the assumptions of the mark-recapture models.

The age-1:2 ratio for a given spawning year $\left(r_{t}\right)$ was calculated based on the abundance of age-1 $\left(N^{1}\right)$ and age-2 $\left(N^{2}\right)$ fish two years after the spawning year $(t+2)$:

$$
r_{t}=\frac{N_{t+2}^{1}}{N_{t+2}^{1}+N_{t+2}^{2}}
$$

Mountain Whitefish in the LCR spawn in November and December, hatch primarily in March and April of the following year (referred to as the hatch year), and are therefore age-1 two years after the spawning year $(t+2)$. To test for effects of egg loss from dewatering on the recruitment index $\left(r_{t}\right)$, the ratio of estimated egg loss $\left(L_{t}\right)$ affecting each spawning year was calculated:

$$
L_{t}=\log \left(Q_{t} / Q_{t-1}\right)
$$

This ratio was used to represent egg loss because the losses during the spawning year $\left(Q_{t}\right)$ are expected to affect the proportion of age-1 fish two years later $\left(N_{t+2)}^{1}\right)$ whereas the proportion of age-2 fish $\left(N_{t+2}^{2}\right)$ is expected to be affected by egg losses three years prior $\left(Q_{t-1}\right)$. The ratio was logged to ensure it was symmetrical about zero (Tornqvist et al. 1985). Annual egg loss estimates were provided by BC Hydro and were calculated using the Mountain Whitefish Egg Stranding Model, which estimates egg dewatering and mortality using hourly hydrological data, bathymetry, and information regarding spawning timing and location (Golder 2013b).

The relationship between the recruitment index, r_{t}, and egg losses, L_{t}, was estimated using a hierarchical Bayesian logistic regression (Kéry 2010) loss model. Key assumptions of the final model include the following:

- The log odds of the proportion of age-1 fish varied linearly with the log of the ratio of the percent egg losses.
- The residual variation was normally distributed.

The relationship between egg dewatering and subsequent recruitment is expected to depend on stock abundance (Subbey et al. 2014) which might be changing over the course of the study. Consequently, preliminary analyses allowed the slope of the regression line to change through time. The change was not significant and was therefore removed from the final model. The effect of dewatering on Mountain Whitefish recruitment was expressed in terms of the predicted percent change in age-1 Mountain Whitefish abundance by egg loss in the spawn year relative to 10% egg loss in the spawn year. The egg loss in the previous year was fixed at 10%. The percent change could not be calculated relative to 0% in the spawn or previous year because L_{t} is undefined in either case.

2.2.13 Fecundity and Egg Deposition

The number of eggs produced per spawning female, known as the fecundity, and the total number of eggs deposited by the population per spawning year were calculated to be used in the stock-recruitment analysis (Section 2.2.14).

The relationship between fecundity (F) and body weight (W) for Mountain Whitefish was estimated from data collected by Boyer et al. (2017) for the Madison River, Montana. The data were analysed using an allometric model of the form: $F=\alpha W^{\beta}$, where α and β are estimated coefficients. The model assumed that the residual variation in fecundity was log-normally distributed.

For Rainbow Trout, the fecundity (F) in year t of an adult female Rainbow Trout was calculated from the expected weight (W) in grams using the equation: $F_{t}=3.8 \times W_{t}^{0.9}$. This equation was developed using data from Rainbow Trout in Kootenay Lake (Andrusak and Thorley 2019).

The weights used in fecundity calculations were the year-specific expected weights from an average-length fish from the condition model (Section 2.2.11).

The total egg deposition (E_{t}) in year t was calculated from the estimated fecundity (F_{t}) and adult abundance $\left(A_{t}\right)$, assuming that the population was 50% female, using the equation: $E_{t}=F_{t} \times A_{t} \times 0.5$.

2.2.14 Stock-Recruitment Relationship

Understanding the relationship between the number of spawning adults, which is sometimes referred to as the "stock," and the resulting number of individuals recruited to the catchable population of fish ("recruitment") is one of the most important issues in fisheries biology and management (Myers 2001). At low spawner abundance, recruitment is expected to be driven by density-independent factors and the number of recruits will increase with the number of spawners. At high spawner abundance, density-dependent factors such as competition for limited resources can result in a decrease in per capita recruitment with increasing numbers of spawners. Stock-recruitment relationships often use the number of spawners as a proxy for the reproductive output of the population (Subbey et al. 2014) but this approach does not account for differences in body size and fecundity of the population. Estimates of egg production or deposition may provide a more accurate estimate of reproductive output of the population.

For the LCR, the relationship between the estimated number of eggs deposited ("stock") and the resultant number of subadults the following year ("recruitment") was estimated using a Bayesian Beverton-Holt stock-recruitment model (Walters and Martell 2004):

$$
R=\frac{\alpha E}{1+\beta E}
$$

where E is the estimated number of eggs deposited, R is the estimated number of age- 1 subadults (recruits), α is the recruits per egg (survival from egg to age-1) at low density and β determines the density-dependence. The ratio of α to β defines the carrying capacity, which is the predicted maximum value of the mean number of recruits at large values of egg deposition.

With respect to the Mountain Whitefish and Rainbow Trout protection flows, it is important to understand if and when egg losses due to dewatering affect the number of recruits in the LCR. Mortality of incubating eggs due to dewatering could affect density-dependent mortality of eggs or rearing juveniles, which would change the stock-recruitment curve compared to in the absence of dewatering. To test for effects of egg loss, the estimated proportional egg loss was included as a predictor variable affecting the number of recruits in the stock-recruitment model. Egg loss estimates were obtained from the Mountain Whitefish Egg Stranding Model (Golder 2013b) and from Poisson et al. (2020) for Rainbow Trout.
Key assumptions of the stock-recruitment model include:

- The egg to recruit survival at low numbers of egg deposition was likely less than 1% (the prior distribution of α was a zero truncated normal distribution with a standard deviation of 0.005).
- The expected log number of recruits was affected by the proportional egg loss.
- The residual variation in the number of recruits was log-normally distributed.

The stock-recruitment relationship was calculated for Mountain Whitefish and Rainbow Trout. Age ratio and stock-recruit results are presented in terms of the spawning year. For Rainbow Trout, which spawn from March to July and hatch in June to August in the LCR (Irvine et al. 2015), the spawning year is the same as the hatch year. For Mountain Whitefish, spawning occurs mostly in November to December in the LCR and hatch occurs mostly between March and April; therefore, the hatch year is one year greater than the corresponding spawning year. For both species, the age-0 life stage is defined as the first year beginning on the hatch date.

3.0 RESULTS

3.1 Physical Habitat

3.1.1 Columbia River Discharge

Discharge in the LCR downstream of the confluence of the Kootenay and Columbia rivers in 2020 was near average for most of the year (Figure 2; Appendix D, Figure D1). One notable exception was during the first half of the sampling period, when discharge was lower than average and decreased to near the historic minimum value from 2001 to 2019. As in previous years of the study, discharge in the LCR followed a bimodal pattern with a peak during spring freshet and a smaller second peak during early winter associated with hydropower generation.

Figure 2: Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Columbia River at the Birchbank water gauging station, 2020 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at Birchbank from 2001 to 2019. The white line represents average mean daily discharge values over the same time period.

In 2020, mean daily discharge in the Columbia River below HLK (upstream of the confluence with the Kootenay River) was near average for most of the year (Figure 3; Appendix D, Figure D2). Similar to discharge in the Columbia River below Birchbank, discharge downstream of HLK decreased to historic minimum values during the first half of the sampling period, followed by a sharp increase to near-average values.

Figure 3: Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Columbia River at Hugh L. Keenleyside Dam, 2020 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at the dam from 2001 to 2019. The white line represents average mean daily discharge values over the same time period.

3.1.2 Columbia River Temperature

In 2020, daily mean water temperature in the Columbia River was near average for most of the year (Figure 4), with some periods during late summer and fall when water temperature was up to $2^{\circ} \mathrm{C}$ greater than average. Between 2001 and 2020, water temperature in the Columbia River at Birchbank reached a maximum daily mean temperature of approximately $16^{\circ} \mathrm{C}$ to $19^{\circ} \mathrm{C}$, with peak temperatures occurring during mid-August. Spot temperature readings for the Columbia River taken at the time of sampling ranged between $9.2^{\circ} \mathrm{C}$ and $15.3^{\circ} \mathrm{C}$ (Appendix B, Table B3).

Figure 4: Mean daily water temperature $\left({ }^{\circ} \mathrm{C}\right)$ for the Columbia River downstream of the confluence of the Kootenay River, 2020 (black line). The shaded area represents the minimum and maximum mean daily water temperature values from 2001 to 2019. The white line represents the average mean daily water temperature during the same time period.

3.1.3 Kootenay River Discharge

In 2020, mean daily discharge in the Kootenay River below BRD was near historic maximums in February, near historic minimums in mid-March to mid-April, and near average for the remainder of the spring and summer (Figure 5). Mean daily discharge was approximately $100 \mathrm{~m}^{3} / \mathrm{s}$ below average during the sampling period in 2020, when flows were near $200 \mathrm{~m}^{3} / \mathrm{s}$ instead of near $300 \mathrm{~m}^{3} / \mathrm{s}$.

Figure 5: Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Kootenay River at BRD, 2020 (black line). The shaded area represents minimum and maximum mean daily discharge values recorded at the dam from 2001 to 2019. The white line represents average mean daily discharge values over the same time period.

3.1.4 Kootenay River Temperature

Mean daily water temperature in the Kootenay River downstream of BRD was near average most of the year in 2020, with the exception of greater than average temperature in September and October, (approximately $2^{\circ} \mathrm{C}$ to $3^{\circ} \mathrm{C}$ colder). The historical data from 2001 to 2019 indicate that annual maximum mean water temperatures of approximately $19^{\circ} \mathrm{C}$ occur in August and annual minimum average temperatures of $4^{\circ} \mathrm{C}$ occur in January and February (Figure 6). Spot temperature readings for the Kootenay River taken at the time of sampling ranged between $9.8^{\circ} \mathrm{C}$ and $16.5^{\circ} \mathrm{C}$ (Appendix B, Table B3).

Figure 6: Mean daily water temperature (${ }^{\circ} \mathrm{C}$) for the Kootenay River downstream of BRD, 2020 (black line). The shaded area represents minimum and maximum mean daily water temperature values recorded from 2001 to 2019. The white line represents average mean daily water temperature values over the same time period.

3.2 Catch

In total, 13,867 fish were recorded in the LCR in 2020 (Table 4). This total included both captured fish and observed fish that were identified to species at both the index and GRTS sites combined. Comparison of catch between years was limited to index sites, which were sampled in all study years (Appendix E, Table E1). At index sites, the total number of fish recorded in 2020 ($n=10,615$) was comparable to 2018 ($n=13,149$) and $2019(n=12,111)$, but lower than in $2016(n=20,170)$ and $2017(n=29,080)$. The total number of sportfish species captured and observed in $2020(n=6,255)$ was lower than all previous years from 2001 to 2019 (range: 6,701 to 28,471).

Table 4: Number of fish caught and observed during boat electrofishing surveys and their frequency of occurrence in sampled sections of the LCR, 5 October to 7 November 2020. This table includes data from index and GRTS sites.

Species	Columbia River Upstream		Kootenay River		Columbia River Downstream		All Sections	
	$\boldsymbol{n}^{\text {a }}$	$\%^{\text {b }}$	$\boldsymbol{n}^{\text {a }}$	\% ${ }^{\text {b }}$	$\boldsymbol{n}^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$
Sportfish								
Brook Trout (Salvelinus fontinalis)	1	<1	0	0	4	<1	5	<1
Brown Trout (Salmo trutta)	0	0	1	<1	5	<1	6	<1
Bull Trout (Salvelinus confluentus)	3	<1	0	0	3	<1	6	<1
Burbot (Lota lota)	2	<1	0	0	19	<1	21	<1
Kokanee (Oncorhynchus nerka)	6	<1	0	0	3	<1	9	<1
Lake Whitefish (Coregonus clupeaformis)	16	1	15	3	187	3	218	2
Mountain Whitefish (Prosopium williamsoni)	838	42	139	31	1677	25	2654	29
Northern Pike (Esox lucius)	3	<1	0	0	1	<1	4	<1
Rainbow Trout (Oncorhynchus mykiss)	728	37	154	35	4008	59	4890	53
Smallmouth Bass (Micropterus dolomieui)	0	0	0	0	6	<1	6	<1
Walleye (Sanders vitreus)	333	17	120	27	800	12	1253	14
White Sturgeon (Acipenser transmontanus)	64	3	14	3	36	1	114	1
Sportfish Subtotal	1994	100	443	99	6749	100	9186	100
Non-sportfish								
Northern Pikeminnow (Ptychocheilus oregonensis)	48	2	19	6	14	1	81	2
Peamouth (Mylocheilus caurinus)	4	<1	1	<1	0	0	5	<1
Redside Shiner (Richardsonius balteatus)	68	3	6	2	63	3	137	3
Sculpin spp. (Cottidae)	1446	62	184	54	1693	83	3323	71
Sucker spp. (Catostomidae)	747	32	129	38	257	13	1133	24
Tench (Tinca tinca)	1	<1	0	0	1	<1	2	<1
Non-Sportfish Subtotal	2314	99	339	100	2028	100	4681	100
Total	4308	100	782	100	8777	100	13867	100

a Includes fish observed and identified to species; does not include intra-year recaptured fish.
${ }^{\text {b }}$ Percent composition of sportfish or non-sportfish catch.
${ }^{\text {c }}$ Not identified to species or species combined for analysis.
Summaries of catch and effort and life history metrics were used to provide supporting information and to help set initial parameter values in some of the statistical models. Although these summaries are important, they are not presented nor specifically discussed in detail in this report. However, these metrics are provided in the appendices for reference purposes and are referred to when necessary to support or discount results of the models. Metrics presented in the appendices include:

- captured and observed fish count data by site and bank habitat type (Appendix B, Table B4), 2020;
- catch and percent composition by species, 2001 to 2020 (Appendix E, Table E1);
- catch-rates for all sportfish (Appendix E, Table E2) and non-sportfish (Appendix E, Table E3), 2020;
- length-frequency histograms by section for Mountain Whitefish (Appendix F, Figure F1), Rainbow Trout (Appendix F, Figure F2), and Walleye (Appendix F, Figure F3), 2020;
- length-frequency histograms by year for Mountain Whitefish (Appendix F, Figure F4), Rainbow Trout (Appendix F, Figure F5), and Walleye (Appendix F, Figure F6), 2001 to 2020; and
- length-weight relationships by year for Mountain Whitefish (Appendix F, Figure F7), Rainbow Trout (Appendix F, Figure F8), and Walleye (Appendix F, Figure F9), 2001 to 2020.

3.3 Length-At-Age and Growth Rate

Outputs from the length-at-age model are presented in Table 5 and represent the best estimates of the length cut-offs between age-classes of Mountain Whitefish and Rainbow Trout during each sample year. Based on the length-at-age model, four age-classes were distinguishable for Mountain Whitefish and three were distinguishable for Rainbow Trout (Table 5). Length-density plots show the relative frequency of lengths by age-class (Appendix G; Figures G1 and G2). Separate age-classes were not distinguishable based on length-frequency data for Walleye so all individuals were classified as adults. The von Bertalanffy growth curves show the average rate of growth and asymptotic size for Mountain Whitefish and Rainbow Trout (Figure 7). The von Bertalanffy growth curve for Walleye is not shown because predictions of length-at-age were not realistic for younger fish, as discussed in Section 3.3.3.

Table 5: Estimated minimum and maximum fork lengths (in mm) by age-class and year for Mountain Whitefish and Rainbow Trout in the lower Columbia River, 1990 to 1991 and 2001 to 2020. Estimates were derived from the length-at-age model (Section 2.2.3).

Year	Mountain Whitefish				Rainbow Trout		
	Age-0	Age-1	Age-2	Age-3+	Age-0	Age-1	Age-2+
1990	≤ 164	$165-274$	≥ 275	≥ 275	≤ 151	$152-358$	≥ 359
1991	≤ 144	$145-226$	$227-295$	≥ 296	≤ 123	$124-349$	≥ 350
2001	≤ 141	$142-258$	$259-344$	≥ 345	≤ 130	$131-329$	≥ 330
2002	≤ 163	$164-261$	$262-344$	≥ 345	≤ 151	$152-355$	≥ 356
2003	≤ 159	$160-263$	$264-354$	≥ 355	≤ 157	$158-347$	≥ 348
2004	≤ 158	$159-249$	$250-342$	≥ 343	≤ 139	$140-337$	≥ 338
2005	≤ 168	$169-263$	$264-363$	≥ 364	≤ 159	$160-351$	≥ 352
2006	≤ 175	$176-284$	$285-357$	≥ 358	≤ 166	$167-369$	≥ 370
2007	≤ 171	$172-280$	$281-337$	≥ 338	≤ 162	$163-380$	≥ 381
2008	≤ 170	$171-247$	$248-340$	≥ 341	≤ 142	$143-344$	≥ 345
2009	≤ 169	$170-265$	$266-355$	≥ 356	≤ 144	$145-343$	≥ 344
2010	≤ 177	$178-272$	$273-352$	≥ 353	≤ 139	$140-342$	≥ 343
2011	≤ 163	$164-269$	$270-348$	≥ 349	≤ 152	$153-349$	≥ 350
2012	≤ 162	$163-268$	$269-346$	≥ 347	≤ 148	$149-349$	≥ 350
2013	≤ 185	$186-282$	$283-349$	≥ 350	≤ 165	$166-360$	≥ 361
2014	≤ 178	$179-284$	$285-362$	≥ 363	≤ 151	$152-342$	≥ 343
2015	≤ 167	$168-278$	$279-366$	≥ 367	≤ 161	$162-340$	≥ 341
2016	≤ 163	$164-283$	$284-352$	≥ 353	≤ 151	$152-343$	≥ 344
2017	≤ 158	$159-270$	$271-355$	≥ 356	≤ 130	$131-322$	≥ 323
2018	≤ 177	$178-262$	$263-346$	≥ 347	≤ 136	$137-315$	≥ 316
2019	≤ 188	$189-282$	$283-363$	≥ 364	≤ 154	$155-319$	≥ 320
2020	≤ 166	$167-291$	$292-365$	≥ 366	≤ 150	$151-352$	≥ 353

Figure 7: Growth curve showing length-at-age by species as predicted by the von Bertalanffy model for the lower Columbia River, 2001-2020.

3.3.1 Mountain Whitefish

The mean fork length of Mountain Whitefish fry (age-0) in 2020 (138 mm; Figure 8) was within the typical range of most previous years (120 to 140 mm) and followed two years of greater than average length-at-age in 2018 and 2019 (149 and 142 mm, respectively). Two years, 1991 and 2001, had smaller length-at-age (approximately 100 mm) for age-0 Mountain Whitefish than all other years. The length-at-age of age-1, age-2, and age-3 and older age-classes are not presented because they depend on growth in more than one previous year, which complicates interpretation.

Figure 8: Mean fork length of age-0 Mountain Whitefish in the lower Columbia River, 1990 to 1991 and 2001 to 2020.

Analysis of growth of recaptured Mountain Whitefish indicated generally increasing annual growth between 2005 and 2016 with the exception of 2012 (Figure 9). Growth was lower in 2017 to 2019, with effect sizes of -2% to -12%, and increased to 45% in 2020. These effect sizes are based on the growth
coefficient, k , in a particular year compared to a typical year. The predicted maximum growth rate during early life (at a fork length of 0 mm) increased from $89 \mathrm{~mm} / \mathrm{yr}$ in 2005 to $247 \mathrm{~mm} / \mathrm{yr}$ in 2016, decreased to approximately $140 \mathrm{~mm} / \mathrm{yr}$ in 2017 to 2019, and was $223 \mathrm{~mm} / \mathrm{yr}$ in 2020 (Figure 10).

Figure 9: Estimated percent change in the von Bertalanffy growth coefficient (mean with 95\% CIs) relative to a typical year for Mountain Whitefish based on recaptured individuals in the lower Columbia River, 2001 to 2020.

Figure 10: Predicted maximum growth rate (mean with 95\% CIs) from the von Bertalanffy model for Mountain Whitefish based on recaptured individuals in the lower Columbia River, 2001 to 2020.

3.3.2 Rainbow Trout

The length-at-age model indicated an increase in the mean length of Rainbow Trout fry (age-0) from 105 mm in 2011 to 139 mm in 2015 (Figure 11). Mean length of age-0 Rainbow Trout varied from 101 to 125 mm between 2016 and 2020 with large and overlapping credible intervals. The greater uncertainty in the estimates from 2015 to 2020 than previous years was due to lower catches of age-0 Rainbow Trout during these recent years. Catches of age-0 Rainbow Trout ranged from 2 to 18 fish per year between 2015 and 2020 and between 20 and 316 fish per year between 2001 and 2014. Mean length-at-age of fry was much lower in $1991(88 \mathrm{~mm})$ and $2001(90 \mathrm{~mm})$ than other years. Length-at-age is not presented for subadult (age-1) or adult (age-2 and older) Rainbow Trout because more than one previous year affects the length-at-age, which complicates interpretation.

Figure 11: Mean fork length of age-0 Rainbow Trout in the lower Columbia River, 1990 to 1991 and 2001 to 2020.

Analysis of annual growth of recaptured Rainbow Trout indicated a low growth coefficient in 2003 and 2004 (-14\% to -30\% effect size; Figure 12). Estimates of the growth coefficient generally declined from a 59% effect size in 2006 to -40% in 2018. The estimated growth coefficient increased to -27% in 2019 and -1% in 2020, suggesting a recovery in growth to near-average values.

The predicted maximum growth during early life suggested a similar trend as the growth coefficient with a decrease from $655 \mathrm{~mm} / \mathrm{yr}$ in 2006 to $249 \mathrm{~mm} / \mathrm{yr}$ in 2018 and an increase to $406 \mathrm{~mm} / \mathrm{yr}$ in 2020 (Figure 13). These maximum growth rates represent the theoretical maximum growth rate when fish are 0 mm in length, and therefore should not be interpreted as the rate for the entire first year of life. Regardless, the large decrease in maximum growth rate during the study period (655 to $249 \mathrm{~mm} / \mathrm{yr}$) suggests a substantial change in growth.

Figure 12: Estimated percent change in the von Bertalanffy growth coefficient (mean with 95\% CIs) relative to a typical year for Rainbow Trout based on recaptured individuals in the lower Columbia River, 2001 to 2020.

Figure 13: Predicted maximum growth rate (mean with 95\% CIs) from the von Bertalanffy model for Rainbow Trout based on recaptured individuals in the lower Columbia River, 2001 to 2020.

3.3.3 Walleye

Analysis of annual growth of recaptured Walleye indicated a below average growth coefficient in 2020 with an effect size of -21%, which was within the range of effect sizes observed in most years (typical range of -22% to 34%; Figure 14). The estimated growth coefficient generally increased from $2010(-22 \%$ effect size) until 2016 (32\%), but there was a very high growth coefficient (85\%) in 2013. Credible intervals for the growth coefficient were large because of large variability in the annual growth among recaptured Walleye of all sizes. For instance, annual growth of Walleye initially captured at $\sim 300 \mathrm{~mm}$ in fork length varied from ~ 15 to $70 \mathrm{~mm} /$ year, and growth of Walleye initially captured at $\sim 500 \mathrm{~m}$ ranged from ~ 5 to 60 mm (data not shown). Because of the large variability in annual growth, especially for the largest Walleye, the von Bertalanffy curve (Figure 7) and effect size based on the model's growth coefficient (Figure 14) were calculated using only Walleye $<450 \mathrm{~mm}$ in fork length. Predicted values of maximum growth rate during early life ranged from 35 to 78 mm , except in 2013 when the maximum growth rate was $110 \mathrm{~mm} / \mathrm{yr}$ (Figure 15).

Figure 14: Estimated percent change in the von Bertalanffy growth coefficient (mean with 95\% CIs) relative to a typical year for Walleye based on recaptured individuals $\mathbf{8 4 5 0} \mathbf{~ m m}$ in fork length in the lower Columbia River, 2001 to 2020.

Figure 15: Predicted maximum growth rate (mean with 95\% CIs) from the von Bertalanffy model for Walleye based on recaptured individuals in the lower Columbia River, 2001 to 2020.

3.3.4 Observer Length Correction

The lengths of fish estimated by observers were compared to the measured lengths of captured fish to estimate bias in the observer's estimates. The length bias model using this data suggested that most observers underestimated fork lengths for all three index species (Figure 16). The inaccuracy for Mountain Whitefish varied by observer with bias of -40 to 40 mm relative to captured fish of known length (Figure 17). Inaccuracy of Rainbow Trout lengths varied between -60 and 10 mm . Inaccuracy in estimated Walleye fork lengths ranged between -80 and 40 mm . Estimates of observer bias were used to correct estimated fork lengths (Appendix G, Figure G12) before classifying fish into age-classes for abundance analyses.

Figure 16: Fork length-density plots for measured and estimated fork lengths of fish caught or observed in the lower Columbia River, 2013-2020. The black line shows fish that were caught. Observed data from the georeferenced visual survey are shown by coloured dashed lines.

Species \bullet Mountain Whitefish \triangle Rainbow Trout \square Walleye

Figure 17: Fish length inaccuracy (bias) and imprecision by observer, year of observation and species. Observations use the length bias model of captured (mark-recapture surveys) compared to estimated (geo-referenced visual surveys) length-frequency distributions from the lower Columbia River, 2013-2020.

3.4 Spatial Distribution and Abundance

3.4.1 Site Fidelity

Site fidelity was greater for Rainbow Trout and Walleye ($\sim 20 \%$ to 62%) than for Mountain Whitefish (14% to 27%; Figure 18). Site fidelity decreased with increasing fork length for all three species but the predicted slope indicated a larger effect of length for Rainbow Trout than for Mountain Whitefish or Walleye (Figure 18).

Figure 18: Site fidelity, defined as the expected probability that a fish is recaptured at the same site where it was marked, by species and fork length in the lower Columbia River, 2001 to 2020.

3.4.2 Efficiency

Estimated capture efficiency was greatest for Rainbow Trout (3.0\% to 4.6\%) and lowest for Mountain Whitefish ($\sim 1 \%$; Figure 19). Capture efficiency was lower for adult (3.0\%) than subadult (4.6\%) Rainbow Trout but similar between subadult and adult Mountain Whitefish. The estimated capture efficiency of Walleye was 1.9%. For most species and age-classes, capture efficiency was similar among sampling sessions and years without any apparent seasonal or temporal trends (Appendix G, Figures G3-G7). One exception was that in some years the capture efficiency of subadult Rainbow Trout and Walleye decreased in subsequent sample sessions (Appendix G, Figures G5 and G7). Estimates of capture efficiency were used to estimate total abundance in the sample sites (Section 3.4.3-3.4.5).

Figure 19: Capture efficiency (mean with 95\% CIs) by species from mark-recapture data from the lower Columbia River, 2001-2020.

3.4.3 Mountain Whitefish

The estimated abundance of subadult Mountain Whitefish in index sites in the LCR was much greater in 2001 and $2002(60,000-66,000)$ than all other years (Figure 20). In 2018 to 2020, the estimated abundance of subadult Mountain Whitefish (10,000-22,000) was less than the values from the previous five years (31,000-33,000). Estimates of adult Mountain Whitefish abundance have been relatively stable between 2010 and 2020 (52,000-71,000) with the exception of 2018 when the estimate was higher $(108,000)$.

Figure 20: Abundance (means with 95\% CIs) of subadult (age-1; left panel) and adult (age-2 and older; right panel) Mountain Whitefish at index sites in the lower Columbia River, 2001-2020.

The density of both subadult and adult Mountain Whitefish was highest near the confluence of the Columbia and Kootenay rivers and lowest near the Canada-US border (Figure 21). Subadult Mountain Whitefish densities were highest in low water velocity areas, such as Balfour Bay (RKm 2.8), just downstream of the log booms near Zellstoff-Celgar (both banks; RKm 4.5), upstream and downstream of Norn's Creek Fan (RKm 7.4), and along the left bank between Waldie Island and Tin Cup Rapids (RKm 9.2; Figure 21). Subadult Mountain Whitefish densities were low in the Kootenay River and in the Columbia River downstream of the Kootenay River confluence, river sections that typically have higher water velocities. Density estimates of adult Mountain Whitefish were generally higher in sites known to contain suitable spawning habitat for this species. These areas include Norn's Creek Fan (RKm 7.4) downstream to CPR Island, the Kootenay River, between the Kootenay River confluence (RKm 10.6) and Kinnaird Bridge (RKm 13.4), and the Genelle area (RKm 27.0).

Figure 21: Density (means with 95\% CIs) of subadult (age-1; top panel) and adult (age-2 and older; bottom panel) Mountain Whitefish by river kilometre in the lower Columbia River, 2001-2020.

The evenness in the distribution of subadult Mountain Whitefish among index sites did not show a consistent trend between 2001 and 2020 (Figure 22; left panel). Evenness of adult Mountain Whitefish distribution declined by 11% from 2001 (92\%) to 2007 (81\%) and ranged from 78% to 85% between 2008 and 2020 (Figure 22; right panel). The density of subadult Mountain Whitefish at randomly selected non-index sites sampled during the GRTS survey was similar, on average, to the density at index sites (Appendix G, Figure G13). The density of adult Mountain Whitefish was greater at random sampled GRTS sites than at index sites, with the difference ranging from 50% to 150% in most years (Appendix G, Figure G13).

Figure 22: Estimated evenness in abundance between index sites for subadult (left) and adult (right) Mountain Whitefish by year.

3.4.4 Rainbow Trout

The abundance of subadult Rainbow Trout declined from 2001 to 2005 and fluctuated with no long-term increase or decrease from 2006 to 2017 (Figure 23). The estimated abundance of subadult Rainbow Trout was lower in both 2018 and $2019(9,000-11,000)$ than the previous six years when abundance was relatively stable $(16,000-20,000)$ and returned to 20,000 individuals in 2020. Adult Rainbow Trout abundance estimates increased from $\sim 18,000$ in 2002 to 56,000 in 2018, with a decrease to 46,000 in 2019 and 35,000 in 2020.

Rainbow Trout site-level density estimates had large credible intervals (Figure 24), particularly at sites that were only sampled between 2012 and 2020 (GRTS sites). The analysis suggests higher densities of subadult Rainbow Trout in most sites between Genelle (RKm 21.0) and Beaver Creek (RKm 47.8) than in other sections of the study area (Figure 24). The distribution of adult Rainbow Trout was similar to that of subadults with greater densities in the Columbia River between the Kootenay River confluence and the Beaver Creek confluence and lower densities in the Columbia River upstream of the Kootenay River confluence (Figure 24). Adult Rainbow Trout densities were substantially higher below the Bear Creek confluence (Sites C46.4-L and C45.6-L), from the Birchbank side channel to Murphy Creek (both banks; C30.5-R and C30.6-L), between the Champion Creek and Jordan Creek confluences (Site C24.3-L), and on the opposing bank downstream of the Kootenay River confluence (Site C11.5-R) when compared to neighbouring sites.

Figure 23: Abundance (means with 95\% CIs) of subadult (age-1; left panel) and adult (age-2 and older; right panel) Rainbow Trout at index sites in the lower Columbia River, 2001-2020.

Figure 24: Density (means with 95\% CIs) of subadult (age-1; top panel) and adult (age-2 and older; bottom panel) Rainbow Trout by river kilometre in the lower Columbia River, 2001-2020.

Evenness in the abundance of subadult Rainbow Trout between index sites generally increased from 2002 (87\%) to 2020 (95\%), with the exception of lower evenness in 2008 (Figure 25; left panel). The evenness of adult Rainbow Trout distribution in index sites increased between the early 2000s (91% to 95%) and 2020 (97%; Figure 25; right panel). The density of Rainbow Trout was approximately 100% to 250% greater at randomly selected non-index sites sampled during the GRTS survey than at index sites for both subadults and adults (Appendix G, Figure G14).

Figure 25: Estimated evenness in abundance between index sites for subadult (left) and adult (right) Rainbow Trout by year.

3.4.5 Walleye

Since 2001, Walleye abundance fluctuated with peaks in 2003 to 2005 and in 2011 (Figure 26). Walleye abundance estimates remained relatively stable between 2012 and 2020 ($10,000-16,000$). Density estimates for Walleye were greatest in the Kootenay River (Sites K0.6-R, K0.3-L and K1.38L), downstream of HLK (Site C1.3-L), in a small bay downstream of Bear Creek (Site C45.6-L), and at the site adjacent to the Canada-US border (C56.0-L; Figure 27). Density estimates for all other areas were similar and did not suggest differences in Walleye densities among sites.

The evenness in abundance of Walleye between index sites decreased from $\sim 98 \%$ in the early 2000s to values 96% to 97% in 2010 to 2020 (Figure 28). The density at sites randomly selected non-index sites sampled during the GRTS survey was comparable to but slightly lower than the density at index sites (Appendix G, Figure G15).

Figure 26: Abundance (means with 95% CIs) of adult Walleye (all age-classes) at index sample sites in the lower Columbia River, 2001-2020.

Figure 27: Density (means with 95\% CIs) of adult Walleye (all age-classes) by river kilometre in the Iower Columbia River, 2001-2020.

Figure 28: Estimated evenness in abundance between index sites for Walleye at index sites by year.

3.4.6 Geo-referenced Visual Enumeration Surveys

The visual surveys provided data regarding the within-site distribution of fish in the LCR. Maps showing the observed densities of the three index species by age-class distributed throughout sample sites are provided as an example of the spatial dataset (Appendix H). This type of map can be used to identify important fish habitats, and to compare to future years to assess the effects of flow regime variations on fish distribution and habitat usage.

3.5 Survival

3.5.1 Mountain Whitefish

For adult Mountain Whitefish, annual survival estimates varied from 21% to 93%. Adult survival generally increased between 2002 and 2008 and was relatively stable between 2011 and 2020 (58\%-84\%; Figure 29). The inter-annual capture efficiency, on which the survival estimate was based, was approximately 1\%-4\% (Appendix G, Figure G8).

Figure 29: Survival estimates (mean with 95\% CIs) for adult (age-2 and older) Mountain Whitefish in the lower Columbia River, 2001-2020.

The abundance-based survival estimates for subadult and adult Mountain Whitefish show a decreasing trend between 2007 to 2019 with the exception of 2018 when survival was estimated over 100\% (Figure 30). Abundance-based survival was relatively high in 2020, with an estimate of 83\%. Overall, annual abundance-based survival estimates ranged between 60% and 100% except for lower values in 2003, 2006 and 2019 (44% to 48\%).

Figure 30: Abundance-based survival estimates (mean with $95 \% \mathrm{Cls}$) for subadult and adult Mountain Whitefish by year.

3.5.2 Rainbow Trout

Survival estimates of Rainbow Trout increased gradually from 32\% in 2003 to 53% in 2011, followed by a decrease to 34% in 2012, and a gradual increase to 46% in 2020 (Figure 31). The inter-annual capture efficiency was 7\%-8\% (Appendix G, Figure G9).

Figure 31: Survival estimates (mean with 95\% CIs) for adult (age-2 and older) Rainbow Trout in the lower Columbia River, 2001-2020.

Abundance-based survival of Rainbow Trout showed an increasing trend between 2002 and 2011 and high inter-annual variation with no consistent trend thereafter (Figure 32). Abundance-based survival estimates decreased incrementally in the last three years (2018 to 2020). Estimates were lowest in 2002 (33\%) and highest in 2015 (96\%).

Figure 32: Abundance-based survival estimates (mean with $95 \% \mathrm{Cls}$) for subadult and adult Rainbow Trout.

3.5.3 Walleye

The estimated survival of Walleye ranged between 42% and 63% throughout the study period, with the exception of a drop in survival to 33% in 2004 (Figure 33). In recent years, the results indicated a decrease in survival from 61% in 2016 to 42% in 2019, but an increase to 56% in 2020 . However, credible intervals overlapped for all years. The inter-annual capture efficiency was $3 \%-4 \%$ (Appendix G, Figure G10).

Figure 33: Survival estimates (mean with 95\% CIs) for adult Walleye (all age-classes) in the lower Columbia River, 2001-2020.

3.6 Body Condition

3.6.1 Mountain Whitefish

The body condition of subadult Mountain Whitefish varied little from 2008 to 2015 (-1\% to 2\%), but was lower in 2017 (-2\%) and greater in 2016 and 2018-2020 (3\%; Figure 34; left panel). Adult Mountain Whitefish body condition was also stable between 2010 and 2015, with effect sizes of 2% to 3%, but was greater in 2016 (5\%), 2019 (7\%) and 2020 (4\%; Figure 34; right panel). Adult body condition was much lower in the 1990s than between 2001 and 2020, with effect sizes 6% to 16% lower than a typical year.

Figure 34: Body condition effect size estimates (mean with 95\% CIs) for subadult (200 mm ; left panel) and adult (350 mm ; right panel) Mountain Whitefish in the lower Columbia River, 1990 to 1993 and 2001 to 2020.

3.6.2 Rainbow Trout

The estimated body condition of subadult and adult Rainbow Trout was higher in 2002 and 2006 than in other study years (Figure 35). Since 2008, subadult body condition was relatively stable with effect sizes near 0\% except for higher body condition in 2013 (3\%) and low body condition in 2017 (-4\%). Adult body condition declined from 3% in 2011 to -7\% in 2018, which coincided with increasing abundance estimates (Section 3.4.4). Adult body condition was near average in 2019 and 2020.

Figure 35: Body condition effect size estimates (mean with 95\% CIs) for subadult ($\mathbf{2 5 0} \mathbf{~ m m}$; left panel) and adult (500 mm ; right panel) Rainbow Trout in the lower Columbia River, 1990 to 1993 and 2001 to 2020.

3.6.3 Walleye

Walleye body condition fluctuated with no consistent trend between 1990 and 2011 (Figure 29). Body condition estimates were high in 2012 to 2016 (3% to 5%) and declined to more typical values during 2017 to 2020 (0\% to 1\%).

Figure 36: Body condition effect size estimates (median with 95\% Cls) by year for adult (600 mm) Walleye in the lower Columbia River, 1990 to 1993 and 2001 to 2020.

3.7 Age Ratios

The estimated proportion of Mountain Whitefish egg mortality due to dewatering ranged from 7\% in 2010 to 59\% in 2016 (Figure 37). The age-1:2 ratio for Mountain Whitefish was used as an indicator of annual recruitment strength and ranged from a minimum of 25% for the 2003 spawning year to a maximum of 79% in 2005 (Figure 38). For the 2016 spawning year, which corresponds to catch of age-1 and age-2 individuals during the 2018 survey, the age-1:2 ratio decreased to 33%, which was substantially lower than the previous six years when the ratio ranged from 64% to 73%. The decrease in age-1:2 ratio for the 2016 spawning year coincided with the large estimated egg loss that year, when an estimated 59% of eggs were dewatered. However, the age-1:2 ratio remained low (44\%) in 2017 when the egg loss estimate was only 14%. In the most recent spawning year for which data are available (2018), estimated egg loss (20\%) was within the range of typical values and the age-1:2 ratio increased to 60%.

To test for the effect of egg loss on the age-1:2 ratio, the logged ratio of age-1 egg loss to age-2 egg loss was used as the predictor variable to account for both age-1 egg loss one year prior and age-2 egg loss two years prior. There was no clear directionality in the relationship between the age-1:2 ratio and estimated egg losses (s-value=1.1, $P=0.5$). The data suggested a negative relationship between age-1:2 ratio and logged egg loss ratio (Figure 39) but large variability resulted in a non-statistically significant regression slope. Although this relationship was not significant, the effect size of egg loss on recruitment
is shown in Figure 40. The model predicts a 23\% decrease in recruitment at 50\% egg loss compared to the recruitment at 10% egg loss (Figure 40). At 50% egg loss, although the mean prediction was a 23% decrease (relative to 10% egg loss), the 95% credible interval for the effect on recruitment ranged from a 64% decrease to a 76% increase, which indicates considerable uncertainty in the relationship. This uncertainty was due to highly variable recruitment at similar levels of egg loss. For instance, recruitment was either high (2011 and 2012) or low (2002, 2008, and 2016) during the greatest levels of egg loss (Figure 39). This suggests that there was not a consistent negative effect of egg loss on the age-1:2 recruitment index based on the available data, and that factors other than egg loss are contributing to the large variability in age-1:2 ratio.

Age ratios could not be estimated for Rainbow Trout because reliable scale-based ages were not available and age-2 fish could not be identified by fork length alone, like they were for Mountain Whitefish, because of overlapping length distributions between age-2 and older age classes of Rainbow Trout.

Figure 37: Estimated proportion of Mountain Whitefish egg loss due to dewatering in the lower Columbia River by spawning year, 1999 to 2018, based on the egg loss model.

Figure 38: Proportion of age-1 to age-2 Mountain Whitefish in boat electrofishing catch in the lower Columbia River by spawning year, 1999 to 2018.

Figure 39: Relationship between the proportion of age-1 to age-2 Mountain Whitefish and the estimated proportion of Mountain Whitefish egg loss due to dewatering. Year labels represent the spawning year. The predicted relationship is indicated by the solid black line and dotted line represents the $95 \% \mathrm{Cl}$.

Figure 40: Predicted percent change in age-1 Mountain Whitefish abundance by egg loss in the spawn year relative to $\mathbf{1 0 \%}$ egg loss in the spawn year (with 95\% CIs).

3.8 Stock-Recruitment Relationship

3.8.1 Mountain Whitefish

The stock-recruitment relationship indicated large variation in the recruitment for Mountain Whitefish data in the LCR (Figure 41). Based on the available data, the variability in recruitment was not related to the number of spawning adults or the estimated egg loss due to dewatering. The majority of years suggested little effect of increasing the estimated number of eggs deposited by spawning adults ("stock") on the resulting number of age-1 recruits, which is consistent with density-dependent survival, where egg survival is lower at high numbers of spawners (Figure 42). An exception was the 2005 spawning year that had the greatest number of adults and greater recruitment than all other years. There were no years with data that allowed assessment of the shape of the curve at small stock size. Therefore, the egg survival at low stock abundance and the number of spawners below which the number of recruits is predicted to decrease is not known based on this analysis.

The direction of the effect of egg dewatering mortality on recruitment was highly uncertain (Figure 43). The effect of egg dewatering mortality on recruitment had an s -value of 0.4 , which is equivalent to a p-value of 0.7 , and suggests that the effect is not statistically significant. However, the stock-recruitment curve did not have any data on the lower part of the curve where decreased stock or increased egg loss would be expected to result in a large decrease in recruitment. Estimates of the effect of egg dewatering mortality showed high uncertainty with the possible effect size ranging from a 127% increase to a 63% decrease in recruitment when egg dewatering mortality was 40%. The most likely effect (i.e., predicted mean value) was a 13\% decrease in recruitment when egg dewatering mortality was 40%. Therefore, the data were most consistent with a small negative effect of egg dewatering mortality on recruitment but a large negative effect, or positive effect, cannot be ruled out.

Figure 41: Predicted stock-recruitment relationship between age-2+ spawners ("Stock") and subsequent age-1 Mountain Whitefish ("Recruits") by spawning year (with 95\% Cls). Estimated proportion of egg loss due to dewatering for each spawning year is shown by size of shaded circles.

Figure 42: Predicted egg to age-1 survival by total egg deposition (with 95\% CIs) for Mountain Whitefish.

Figure 43: Predicted carrying capacity of age-1 Mountain Whitefish recruits by percentage egg loss (with 95% Cls).

3.8.2 Rainbow Trout

The stock-recruitment model for Rainbow Trout predicted little effect of increasing number of eggs deposited by spawners ("stock") on the resulting number of age-1 recruits (Figure 44). The actual recruitment decreased with increasing number of eggs, especially in 2017 and 2018 when the estimated number of eggs was the greatest, and recruitment was the lowest (Figure 44). In the most recent spawning year for which data are available, 2019, the estimated number of eggs spawned was the third largest, and the number of recruits was near-average and consistent with the density-dependent stock-recruitment curve.

There were no data points on the lower part of the stock-recruitment curve (< 10 million eggs) where a decrease in recruitment but an increase in egg survival is predicted by the curve. As with Mountain Whitefish, no data are available to inform the number of spawners (or egg deposition) required to reach the carrying capacity for recruits, or the egg survival rate at low spawner abundance.

The effect of egg loss on recruitment was positive but not statistically significant, and the 95\% Cls included the possibility of a negative effect (s-value $=3.5$; $P=0.08$) (Figure 46). The predicted effect size at an egg loss of 1.0% was a 44% increase in recruitment (Figure 46). However, at an egg loss of 1.0%, the credible interval showed that the effect size could be anywhere between a 4% decrease and a 119% increase in recruitment, given the data. This indicates considerable uncertainty in the effect of egg loss on recruitment of Rainbow Trout. Overall, observed egg losses were relatively small, with estimates of less than 1.0% in 17 of 19 years, and a maximum of 1.6%, which occurred in 2006.

Figure 44: Predicted stock-recruitment relationship between age-2+ spawners ("Stock") and subsequent age-1 Rainbow Trout ("Recruits") by spawning year (with 95\% CIs). Estimated proportion of egg loss due to dewatering for each spawning year is shown by size of shaded circles.

Figure 45: Predicted egg to age-1 survival by total egg deposition (with 95\% CIs) for Rainbow Trout.

Figure 46: Predicted carrying capacity of age-1 Rainbow Trout recruits by percentage egg loss (with 95\% Cls).

3.9 Other Species

Northern Pike (Esox Lucius) were first observed during the LCR Fish Indexing Program in 2010 and the number of individuals captured and observed increased in successive years from 2010 to 2013 (Table 6). Encounters with Northern Pike on the LCR Fish Indexing Program began to decline in 2014 with the introduction of a Northern Pike gill netting suppression program (Wood 2018, ONA 2019), and have remained low since those efforts have been in effect. In 2020, only four Northern Pike were captured or observed during the indexing program. The on-going suppression and monitoring program captured and removed 143 Northern Pike from the LCR in 2020, of which 123 were young-of-the-year (ONA 2021).

Since 2010, Northern Pike have been recorded during the LCR Fish Indexing Program in all three sections of the study area (Upper Columbia, Lower Columbia, and Kootenay River). However, 90\% of the Northern Pike captured or observed were captured in the upper section upstream of the Columbia-Kootenay confluence. During the 2020 indexing survey, 3 of the 4 Northern Pike were captured in the upper section of the Columbia River and one was captured in the lower section of the Columbia River. As required by the provincial fish collection permit issued by MFLNRORD, all captured Northern Pike were euthanized.

Table 6: Number of Northern Pike captured and observed in the lower Columbia River Fish Population Indexing program by year.

Year	\# Observed	\# Captured	Total \#
Prior to 2010	0	0	0
2010	3	4	7
2011	1	8	9
2012	10	1	11
2013	90	45	135
2014	16	9	25
2015	6	3	9
2016	0	4	4
2017	7	4	11
2018	1	2	3
2019	8	17	25
2020	2	2	4

Other aquatic invasive species captured or observed within the LCR in 2020 (Table 4) include five Brook Trout (Salvelinus fontinalis), six Brown Trout (Salmo trutta), six Smallmouth Bass (Micropterus dolomieui), and two Tench (Tinca tinca).

In 2020, 21 Burbot were recorded at index sites in the LCR, which was similar to catches from 2013 to 2019 (6-25 Burbot per year) but lower than catches from 2003 to 2012, which ranged from 33 to 247 Burbot per year (Appendix E, Table E1).

One hundred and fourteen White Sturgeon (73 adults and 41 immatures) were recorded (all observed; none captured) during the 2020 survey. Observational information for these fish is provided in Attachment A.

The number of sculpin ($n=3050$) captured and observed in index sites in 2020 was similar to 2018 and 2019 but lower than all previous years from 2001 to 2017 (Appendix E, Table E1). In 2001 to 2017, the number of sculpin ranged from 2,724 to 51,925. The number of Redside Shiner captured and observed in $2020(n=125)$ was also lower than previous years (range: 375 to 40,151). Observations of these
small-bodied species are often clustered in a few locations (e.g., near HLK) and numbers are highly variable among years. Variability in the numbers observed is likely partly due to difficulty in observing these smaller fishes, especially if water surface visibility is affected by weather.

4.0 DISCUSSION

The first management question of this monitoring program assesses annual fish population metrics in the LCR. Annual estimates and observed trends or differences are summarized in Sections 4.1 to 4.5.

The second management question is whether variability in the Mountain Whitefish or Rainbow Trout flow regimes is related to fish population metrics. The most important aspect of flow regime variability that could affect fish populations is reduction in discharge that could dewater incubating eggs or early life stages. The effect of discharge reductions on Mountain Whitefish and Rainbow Trout populations is addressed with the analyses of age ratio (Section 4.6) and stock-recruitment (Section 4.7). Variability in the flow regime could also affect populations of the index species in other ways, such as effects on availability or suitability of habitat, water temperature, or ecological interactions. Where relevant, we discuss which of the metrics (length-at-age, abundance, condition, and survival) are most likely to be affected by annual variability in the flow regime, and whether trends in fish metrics occurred in years of atypical discharge or water temperature.

4.1 Length-at-Age and Growth

For Mountain Whitefish and Rainbow Trout, the mean length of age-0 individuals was used as an indicator of growth during the first year of life. For all three index species, a von Bertalanffy growth model was parameterised using data from inter-year recaptured fish. The growth coefficient from the model represents the rate of approach to the asymptotic length. A lower value of the growth coefficient indicates a flatter curve and a slower rate of approach to the asymptotic length. The maximum growth rate during early life represents the growth rate at a theoretical fork length of zero and has units ($\mathrm{mm} / \mathrm{yr}$) that are easier to understand than the growth coefficient (units of yr^{-1}). Together, the growth coefficient and maximum growth rate were used to assess inter-annual variation in growth of sub-adult and adult fish of the index species.

4.1.1 Mountain Whitefish

There was little variation in the mean length of age-0 Mountain Whitefish from 2001 to 2015, when mean fork lengths were between approximately 120 and 140 mm (Figure 8). Mean length of age-0 Mountain Whitefish was greater than average in 2018 and 2019, but returned to a more typical value in 2020. Recent years with increased length of young-of-the-year Mountain Whitefish in 2018 and 2019 corresponded to low abundance of subadults, which could indicate increased growth due to decreased competition for resources.

The length-at-age model was used to assign age-class groupings based on length-frequency data. For Mountain Whitefish, the model classified age-0, age-1, and age-2 fish, whereas age-3 and older fish (age-3+) were grouped together because individual age-classes for older fish could not be distinguished by fork length. Separating age-2 fish from the age-3 and older age-class allowed these length-based ages to be used for the age-1:2 ratio, which was used as an indicator of annual recruitment strength (Section 4.7).

The von Bertalanffy growth model based on inter-year recapture suggested generally increasing growth from 2006 to 2016, slower growth from 2017 to 2019, and fast growth in 2020. The effect size for the growth coefficient was 58% in 2016, -8% to -11% in 2017-2019 and 45% in 2020. The predicted maximum growth rate declined from $245 \mathrm{~mm} / \mathrm{yr}$ in 2016 to approximately $140 \mathrm{~mm} / \mathrm{yr}$ in 2017-2019 but increased to $223 \mathrm{~mm} / \mathrm{yr}$ in 2020. The decline in the von Bertalanffy growth coefficient and predicted maximum growth during early life history in 2017 to 2019 was relatively large, compared to the range observed from 2001 to 2016 and 2020, but the population-level impacts of these changes in growth are not known.

To provide context of growth in the LCR compared to other rivers, estimates of von Bertalanffy growth parameters and length-at-age of juvenile age-classes were compared to values from the literature (Table 7). Estimates of the growth coefficient, k, were greater in the LCR than other populations, but the asymptotic size (L_{∞}) and length-at-age were comparable, based on the selected literature reviewed. Rapid growth during early life stages in the LCR, as suggested by the relatively large values of k and maximum growth rate, may be related to the warm water temperatures, large volume, and low elevation of the LCR, attributes that correspond to faster growth of Mountain Whitefish, compared to smaller, cooler streams (Pettit and Wallace 1975; Meyer et al. 2009).

Table 7: Comparison of growth parameters and length-at-age between the LCR and other populations of Mountain Whitefish.

von Bertalanffy Parameters ${ }^{\mathbf{a}}$		Mean Length-At-Age (mm) in Fall		Source $^{\mathbf{c}}$	Study Location	
k	L_{∞}	Max. Growth $^{\mathbf{b}}$	Age-0			
0.39	395	154	130	226	This report	Lower Columbia River, BC
$0.31-0.33$	$453-472$	148	140	230		Madison River, Montana, USA
$0.26-0.31$	$382-409$	113	134	226	Meyer et al. 2009	5th to 7th order streams, Idaho, USA
0.20	446	88	88	169	Golder and Gazey 2019	Peace River, BC

a. Values are mean, or typical values. If a range is presented, it corresponds to the range of values for different groupings such as sexes or samples sites.
b. Predicted maximum growth during early life history was calculated by multiplying estimates of k and L_{∞} (Gallucci and Quinn 1979; Shuter et al. 1998).
C. A non-exhaustive literature search was conducted and selected studies are included for comparison.

4.1.2 Rainbow Trout

The mean length of age-0 Rainbow Trout ranged between 100 and 125 mm in all years except 2015 (139 mm) and 1991/2001 ($\sim 90 \mathrm{~mm}$; Figure 11). The trend in length-at-age of age-0 Rainbow Trout did not agree with the trend in growth for older individuals suggested by the von Bertalanffy growth coefficient, which decreased from a 59\% effect size in 2006 to -40\% in 2018 (Figure 12). A decrease in growth coefficient indicates a flatter growth curve and slower approach to the asymptotic size than in recent years. The corresponding decrease for the maximum growth rate was from $655 \mathrm{~mm} / \mathrm{yr}$ in 2006 to $250 \mathrm{~mm} / \mathrm{yr}$ in 2018. These maximum growth rates correspond to growth at a theoretical fork length of zero and therefore do not suggest that Rainbow Trout grow at that rate (e.g., $650 \mathrm{~mm} / \mathrm{yr}$) for the entire first year of life. However, the large difference in values between 2006 ($643 \mathrm{~mm} / \mathrm{yr}$) and 2018 ($247 \mathrm{~mm} / \mathrm{yr}$) suggest a substantial and biologically important change in the growth of Rainbow Trout during this period.

The increase in maximum growth rate in 2018 ($302 \mathrm{~mm} / \mathrm{yr}$) and 2019 ($406 \mathrm{~mm} / \mathrm{yr}$) indicate increasing growth, and corresponded with small decreases in adult abundance estimates, which reflects density dependent growth of Rainbow Trout in the LCR.

Compared to populations in other rivers, Rainbow Trout in the LCR had high values of the growth coefficient (k), maximum growth, and length-at-age (Table 8), suggesting relatively rapid growth during early life stages. As with Mountain Whitefish, rapid growth during early life of Rainbow Trout in the LCR may be related to relatively warm and stable water temperatures and abundant food availability, compared to smaller or higher elevation streams. Metrics of primary and secondary productivity in the LCR were on the moderate to high end of values reported in the literature from other large rivers (Plewes et al. 2017), which supports the hypothesis of good food availability supporting rapid growth rates of Rainbow Trout in the LCR.

The different trends suggested by length-at-age (fluctuating up and down between 2006 and 2019) and the growth model (continuous decline from 2006 to 2018) could reflect differences in growth between life stages. This is because mean length of age-0 fish reflects growth during the first year of life, whereas the growth rate and the coefficient from the von Bertalanffy model were primarily driven by larger sub-adult and adult fish that were more commonly recaptured during the survey. Therefore, the interpretation is that growth of age-0 Rainbow Trout has fluctuated up and down over the past 15 years, but growth of sub-adult and adult Rainbow Trout has consistently declined from 2006 to 2018.

The decreasing growth of sub-adult and adult Rainbow Trout from 2006 to 2018 coincided with increasing adult abundance and may reflect density-dependence and reduced growth due to intra-specific competition. Mean length-at-age of age-0 Rainbow Trout may not have consistently declined over the same time because they were not in direct competition with adults for food or other resources.

Table 8: Comparison of growth parameters and length-at-age between the LCR and other populations of Rainbow Trout.

von Bertalanffy Parameters ${ }^{\text {a }}$			Mean Length-At-Age (mm) in Fall		Source ${ }^{\text {c }}$	Study Location
k	L_{∞}	Max. Growth ${ }^{\text {b }}$	Age-0	Age-1		
0.86	483	413	114	271	This report	Lower Columbia River, BC
0.51	409	209	n/a	n/a	Seals et al. 2014	Deschutes River, Oregon, USA
0.47	522	245	n/a	n/a	Baker et al. 1991	Kenai River, Alaska, USA
0.37	425	157	n/a	n/a	Fetherman et al. 2014	Colorado River, Colorado, USA
$\begin{gathered} 0.34- \\ 1.0 \end{gathered}$	$\begin{gathered} 330- \\ 740 \end{gathered}$	288	n/a	n/a	FishBase.org	Canada, Australia, Mexico
0.21	566	116	n/a	163	Golder and Gazey	Peace River, BC
0.17	924	157	n/a	n/a	Andrusak and Andrusak 2015	Kootenay Lake, BC
$\begin{gathered} 0.19- \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 416- \\ 887 \end{gathered}$	n/a	n/a	$\sim 190-240$	Cox 2000	Lakes in southern interior BC
n/a	n/a	n/a	~ 100	n/a	Korman 2009	Colorado River, Arizona, USA

a. Values are mean, or typical values. If a range is presented, it corresponds to the range of values for different groupings such as sexes or samples sites.
b. Predicted maximum growth during early life history was calculated by multiplying estimates of k and L_{∞} (Gallucci and Quinn 1979; Shuter et al. 1998).
C. A non-exhaustive literature search was conducted and selected studies are included for comparison.

4.1.3 Walleye

Estimates of the von Bertalanffy growth coefficient for Walleye were variable and uncertain. For instance, effect sizes relative to a typical year ranged from -39% to 85% across years (high variability), and the $95 \% \mathrm{Cl}$ of the 2019 estimate ranged from -52% to 17% (high uncertainty). The predicted maximum growth rate in 2020 was $46 \mathrm{~mm} / \mathrm{yr}$ with a $95 \% \mathrm{Cl}$ of 26 to $74 \mathrm{~mm} / \mathrm{yr}$.

One of the main issues leading to variable and uncertain growth is the variability in annual growth across the whole range of sizes. If some 450 mm fish grow 5 mm per year but some grow 60 mm per year, then the model has a difficult time predicting the size at which growth slows as fish approach the asymptotic length. Another limitation of the von Bertalanffy model for Walleye was the lack of small, young fish in the data set. Lack of information about the size-at-age or inter-year growth of age-0 and age-1 hinders estimation of the growth coefficient. For these reasons, predictions of length-at-age for Walleye were not realistic and the von Bertalanffy curve was not presented in Figure 7. However, the growth coefficient and maximum growth rate can be used as relative indicators of growth, to compare inter-annual variation of growth of Walleye of the sizes used in the model (~ 300 to 450 mm).

Highly variable growth of Walleye is likely related to sexual dimorphism, sexual maturity, and investment of energy in reproduction versus somatic growth. The amount of energy used for somatic growth (i.e., increase in body size) versus reproduction is expected to change throughout the lifespan of fishes, which may require different growth models for before and after sexual maturity, and can differ between males and females (Lester et al. 2004). Male Walleye have slower growth rates before and after sexual maturity than females (Henderson et al. 2003) and had smaller asymptotic size that was reached at a younger age than females (Rennie et al. 2008). Differences between mature and immature fish and males and females likely explain the highly variable growth rates that led to uncertain estimates of growth parameters in the LCR. Alternative growth models that account for sex differences and different phases of growth are possible (Quince et al. 2008; Ohnishi et al. 2012) and could be considered for modelling growth in the LCR but may require additional data (e.g., sex ratios, reproductive information, energy budgets) that are not available for the LCR.

The large differences in the growth coefficient (-39\% to 85\% effect sizes; Figure 14) and maximum growth rate (35 to $110 \mathrm{~mm} / \mathrm{yr}$; Figure 15) suggested substantial variability in Walleye growth between years. However, a lack of age data, limited number of inter-year recaptures, and high variability in growth are all factors that hinder growth analyses. Substantially more recaptures would be required to generate more certain estimates of changes in Walleye growth using current methods. Walleye feed in the LCR during the summer and fall but a large number of individuals migrate out of the LCR into Lake Roosevelt in the late fall and early winter months (R.L.\&L. 1995). The seasonal residency of a proportion of the Walleye population means that factors outside of the LCR likely also influence the growth of Walleye in the study area.

4.2 Abundance

4.2.1 Mountain Whitefish

In 2018 and 2019, the estimated abundance of subadult Mountain Whitefish $(10,000-13,000)$ was one third less than the values from the previous five years ($>30,000$); this may be attributed to poor recruitment from the 2016 and 2017 spawning years (Figure 38). Poor recruitment from the 2016 cohort may have been related to the large estimated egg dewatering mortality that year (59\%). In 2020, the estimated abundance of subadult Mountain Whitefish increased to 22,000.

Overall, the data indicated stable abundance of adult Mountain Whitefish in the LCR during the last ten years. The estimated abundance of adult Mountain Whitefish ranged between 52,000 and 71,000 from 2010 to 2020 with the exception of 2018 when the estimate was 108,000 (Figure 20). The increase in adult abundance in 2018 may be related to high proportions of age-1 Mountain Whitefish in 2016 and 2017 (2014 and 2015 spawning years) recruiting into to the adult population (Appendix F, Figure F4). Relatively strong recruitment from the 2014 and 2015 spawning years was supported by the age-1:2 ratio (Figure 38) and coincided with relatively low levels of estimated egg loss (13\% to 18\%; Figure 37).

Differences in electrofisher settings during the first two years of the monitoring program in 2001 and 2002 may have contributed to high abundance estimates of subadult Mountain Whitefish in 2001 and 2002. Pulse frequencies used were 120 or 60 Hz in 2001 and 2002, 60 or 30 Hz in 2003, and 30 Hz from 2004 to 2020. Higher pulse frequencies are more effective for catching smaller-bodied fish than lower frequencies (Dolan and Miranda 2003) and therefore the high catch of age-1 Mountain Whitefish in 2001 and 2002 could have been because of the high pulse frequency used. If this was the case, greater capture efficiency estimates 2001 and 2002 would also be expected, but this was not observed in the LCR data (Appendix G, Figure G3). It may be that higher pulse frequency led to greater catch of age-1 in 2001 and 2002, but a change in capture efficiency was not detected because of the small number of age-1 recaptures. If age-1 abundance estimates in 2001 and 2002 are biased high, then it would also affect the stock-recruitment analysis.

Little is known about the factors influencing the abundance of Mountain Whitefish in the LCR but there is some information to suggest that predation on Mountain Whitefish by piscivorous fish species could play a role. Walleye feed on Mountain Whitefish (Wydoski and Bennett 1981), and densities of subadult Mountain Whitefish decreased from 2001 to 2005, while Walleye densities generally increased during that time period. Walleye stomach content data collected in the fall of 2009 (Golder 2010b) and 2010 (Ford and Thorley 2011) did not indicate that young Mountain Whitefish are a major food source for Walleye. However, age-0 Mountain Whitefish may be more susceptible to Walleye predation during the early to mid-summer (i.e., when they are smaller) than during the fall (i.e., when they are larger). Mountain Whitefish were the most common prey item found in the stomachs of Northern Pike caught by gill-netting in the upstream section of the LCR, comprising 42% of the prey fish identified (Baxter and Doutaz 2017) and 100% of the prey identified in the fall (Baxter and Neufeld 2015). Therefore, there is potential for Northern Pike to influence the abundance and distribution of Mountain Whitefish in the upper LCR.

Since 2002, more than 148,000 hatchery-reared juvenile White Sturgeon have been released into the Transboundary Reach section of the LCR (BC Hydro 2018). Although most of these fish would have been too small to prey on Mountain Whitefish during the early 2000s, predation by White Sturgeon may have influenced Mountain Whitefish abundance in more recent years. White Sturgeon are capable of feeding on both subadult and adult Mountain Whitefish, and as many as 12 adult Mountain Whitefish have been recorded in the stomach contents of a single adult White Sturgeon (R.L.\&L. 2000). White Sturgeon become piscivorous at approximately 500 mm FL (Scott and Crossman 1973). In the LCR, this equates to an approximately age-3 individual (Golder 2009b); therefore, predation by White Sturgeon on Mountain Whitefish is expected to have increased since approximately 2005.

One of the management questions is related to the effects of variation in flow regime on Mountain Whitefish abundance. This program estimated subadult and adult abundance but the multiple cohorts and large number of factors that can affect survival and abundance of adults likely make it difficult to detect a relationship with annual flow variation. The effects of flow variability and specifically, egg dewatering, would most likely be detected by measuring fry (age-0) abundance. However, reliable estimates of fry density were not possible using the current sampling method because boat electrofishing
is not efficient for sampling very shallow ($<30 \mathrm{~cm}$) habitats that are likely preferred by fry. The analysis of age ratios as a recruitment index (Section 4.7) provides an alternative way to assess the effects of flow variation on recruitment.

4.2.2 Rainbow Trout

The estimated abundance of subadult Rainbow Trout ranged from 12,000 to 21,000 in most years. Exceptions were greater abundance in 2001-2002, 2007 and 2011 (27,000-33,000) and lower abundance in $2018(11,000)$ and $2019(9,000$; Figure 23).

The estimated abundance of adults tripled from 18,000 in 2002 to 56,000 in 2018 and decreased to 46,000 in 2019 and 35,000 in 2020. In comparison, estimates of spawner abundance based on visual observations and an area-under-the-curve model increased from $-3,000$ spawners in 2001 to 10,000-14,000 in 2015 to 2020 (Thorley et al. 2020). It is not clear why spawner estimates had a different trend than adult population estimates and or why subadult abundance did not increase at all over the same time period. Possible reasons for these discrepancies include:

1) capture efficiency for adults was low ($<3 \%$), which provided little information about annual or inter-session variation in recapture rates, and could have masked real changes in Rainbow Trout abundance;
2) some of the adults counted during the spawner surveys migrate into the study area to spawn but leave before the fall and are therefore not sampled by the indexing program;
3) with increasing total abundance, Rainbow Trout could be more widely distributed in the river during the non-spawning season, with little change in density in the index sites, which would result in underestimates of total abundance based on only indexing sites.

Another discrepancy between the spawner survey and mark-recapture estimates was that the abundance of spawners remained at similarly high levels from 2013 to 2020, suggesting the system may have reached carrying capacity for adult Rainbow Trout, whereas the mark-recapture abundance estimates continued to increase between 2013 and 2018, followed by small decreases in 2019 and 2020. This difference could be because not all the age-2 and older Rainbow Trout included in the abundance estimate are mature spawners, or because of sampling biases and differences between the survey methods like those listed above. Despite the differences in the spawner and mark-recapture estimates, both data sets suggest that the carrying capacity for adult Rainbow Trout has been reached, as the abundance was stable or decreasing slightly in recent years.

The abundance of age-1 Rainbow Trout was lower in 2018 and $2019(9,000-11,000)$ than in the previous six years when abundance was relatively stable (16,000-20,000). This coincided with a similar decrease in age-1 Mountain Whitefish in 2018 and 2019. Intuitively, the decrease in age-1 Mountain Whitefish could be related to the large estimated egg loss due to dewatering for the 2016 spawning year (Section 3.7); however, the discharge reduction that caused the Mountain Whitefish egg loss for the 2016 spawning year occurred in the winter of 2017, which was before the age-1 Rainbow Trout from 2018 were spawned. Therefore, the decrease in age-1 Rainbow Trout could not have been caused by the discharge reductions that dewatered a high proportion of Mountain Whitefish eggs from the 2016 spawning year. This raises the possibility that some common factor other than egg dewatering caused the decrease in age-1 recruits of both Mountain Whitefish and Rainbow Trout in 2018.

4.2.3 Walleye

Walleye abundance was greater in 2003 to 2005 and 2011 than in other study years. These results likely reflect strong year-classes of Walleye present in the study area during those years. Walleye migrate into the LCR to feed in summer and fall but spawn and complete early life history further downstream in the Columbia River watershed (e.g., Lake Roosevelt and its tributaries). Abundance in the LCR depends on suitable feeding conditions but also largely on factors that influence spawning success and early life stage survival and growth outside of the study area. Based on length-frequency data and Lake Roosevelt length-at-age data (unpublished data, Washington Department of Fish and Wildlife, Spokane Tribe of Indians, and Colville Confederated Tribes), age-2 and age-3 fish are the most dominant age-classes present in the study area during most study years; therefore, the abundance of this species in the study area during any particular year is strongly influenced by the spawning success of this species during the previous two to three years.

Years with high abundance (e.g., 2003-2005, 2011) were generally associated with lower than normal body condition and survival, suggesting density-dependence and resource competition in years of high abundance in the LCR. Variability in the flow regime in the LCR is less likely to be related to the abundance of Walleye than the abundance of other index species, because the abundance of Walleye in the LCR is thought to depend on spawning and early life history in Lake Roosevelt.

4.3 Spatial Distribution

4.3.1 Mountain Whitefish

Subadult Mountain Whitefish densities were greatest in the 10-km section between HLK and the Kootenay River confluence. This distribution is likely related more to channel morphology than the presence or operation of the dam. Large bays and backwater areas, which are preferred habitats for subadult Mountain Whitefish, are more common near HLK than downstream of the Kootenay River confluence. Specific examples include Balfour Bay (RKm 2.6), downstream of the log booms near Zellstoff-Celgar (RKm 5.1), and upstream of Norn's Creek Fan (i.e., Lions Head RKm 7.4). These areas have exhibited increases in aquatic vegetation abundance (dominantly Eurasian watermilfoil [Myriophyllum spicatum]) between 2001 and 2020 (Attachment A). Since 2010, Northern Pike have been captured in these same areas. Mountain Whitefish were found to be one of the main components of Northern Pike diets in this reach, based on stomach content analysis (Baxter and Doutaz 2017). Effects of predation by Northern Pike on the distribution or survival of subadult Mountain Whitefish are not known. Fine scale distributional data are only available since 2013 and not prior to colonization by Northern Pike.

The spatial distribution of adult Mountain Whitefish during the fall sample period may be related to the location of key spawning areas for this species. Densities of adults were highest near Norn's Creek Fan, in the downstream portions of the Kootenay River, upstream of Sullivan Creek, and near the City of Trail Airport. Norn's Creek Fan, the Kootenay River, and the City of Trail Airport area are known Mountain Whitefish spawning locations (Golder 2012), whereas the site located upstream of Sullivan Creek is close to a known spawning area (i.e., Lower Cobble Island), which may indicate that Mountain Whitefish use these areas for holding purposes prior to spawning. The densities of adult Mountain Whitefish were greater at randomly sampled non-index sites than at index sites, with the difference ranging from 50% to 150% in most years. A similar trend, but even larger difference, was observed for Rainbow Trout, as discussed in Section 4.3.2.

The evenness in the distribution of adult Mountain Whitefish between index sites decreased between 2001 and 2006 but was stable between 2006 and 2019 (Figure 22). These results do not suggest any large changes in the spatial distribution of Mountain Whitefish.

4.3.2 Rainbow Trout

Subadult Rainbow Trout densities were noticeably higher in the Columbia River between the Kootenay River confluence and Genelle, and from Birchbank downstream to the Beaver Creek confluence, compared to other portions of the study area. A large portion of these areas are not included in the index sites and are only occasionally sampled during the GRTS survey. Low sampling effort in the areas with the highest densities of age-1 Rainbow Trout could make it more difficult to detect trends in recruitment and may help explain why estimates of subadult abundance did not increase while adult abundance increased drastically during recent years. No large changes in the evenness of the spatial distribution of subadults across index sites were observed during the study period.

The densities of adult Rainbow Trout at randomly sampled non-index sites (i.e., sites that were not systematically sampled prior to 2011) were 100% to 250% greater than densities at index sites. The high densities of Rainbow Trout in previously unsampled portions of the study area indicate that a large portion of the overall Rainbow Trout population is potentially missed during the typical mark-recapture sampling at index sites. These results suggest the importance of continuing to sample in randomly sampled sites, as well as the indexing sites, to detect changes in fish abundance and distribution that may not be detected by sampling only the indexing sites.

The results indicated increasing evenness in distribution of Rainbow Trout between index sites between the early 2000s and 2020. The period of increasing evenness corresponded to increasing abundance of Rainbow Trout in the LCR. This could be because at low abundance, Rainbow Trout were more concentrated in sites with the highest quality habitat, whereas at higher overall abundance, density increased disproportionately more at lower quality sites, because higher quality sites had reached their carrying capacity.

4.3.3 Walleye

Walleye densities were high immediately downstream of HLK and BRD (Figure 27). Sculpin species and Redside Shiner are a common prey fish for Walleye based on stomach sample analyses and in 2010, results indicated higher densities of sculpin species and Redside Shiner in this portion of the study area (Ford and Thorley 2011). In addition, Walleye densities are probably higher immediately downstream of HLK and BRD because they are feeding on fish entrained through the dams.

Walleye densities were similar throughout the remaining sections of the LCR. Their wide distribution throughout the study area indicates an ability to utilize a wide variety of habitats and tolerate a wide range of habitat conditions. This reflects the primary use of the LCR as a summer and fall feeding area, and as a result, this species is generally found wherever prey fish are present.

The data did not suggest any temporal change in the evenness in the spatial distribution across index sites during the study period.

4.4 Survival

4.4.1 Mountain Whitefish

Estimated survival of adult Mountain Whitefish varied substantially among study years (21\% to 93\%) but has been above 50% in all years except for 2002 and 2004 (Figure 29). The high survival rate of adults was not unexpected, as Mountain Whitefish are known to be a relatively long-lived species with most populations containing individuals greater than 10 years of age (McPhail 2007; Meyer et al. 2009). In comparison, estimated survival rates ranged between 63% and 91% (mean 82%) for Mountain Whitefish in Idaho (Meyer et al. 2009).

Currently, each of the management hypotheses is tested using separate models, which simplifies the testing of the hypotheses. This approach also allows the model outputs to be checked for inconsistencies. When this check was conducted on subadult and adult Mountain Whitefish abundance, the estimates were not compatible with survival estimates for some years. For instance, if a subadult survival rate of 50% is assumed, then half of the 33,000 subadults in 2017 would be recruited into the 2018 adult population (16,500 recruits), in addition to the 52,000 surviving adults (62,000 adults in 2017 and 84% survival), which yields a predicted adult population of 68,000 . This prediction is much lower than the 2018 adult population estimate of 108,000. These types of discrepancies are also illustrated by the abundance-based survival estimates (Figure 30), which were more than 100\% some years. However, in other years such as 2017, the population estimate $(61,700)$ agreed well with the predicted population $(61,900)$ based on 2016 abundance, estimated adult survival (68%), and an assumed subadult survival of 50%. Years when survival and abundance estimates are not compatible indicate that either the abundance or survival model (or possibly both) make at least one unreliable assumption concerning Mountain Whitefish biology or behaviour that biases the estimates.

One possible explanation for the inconsistency between survival and abundance estimates is that the large-scale spawning migrations by adult Mountain Whitefish during the study period results in the loss of tagged fish from sample sites at a substantially greater rate than that estimated by the site fidelity model. If a fish moved from the shallow water margins, where sampling occurred, into the main channel, that fish would not be available for recapture and the site fidelity model would underestimate the losses of tagged fish. This bias would result in an underestimation of capture efficiency and a concomitant overestimation of abundance.

Mountain Whitefish recapture probabilities were less than half of those for Rainbow Trout and Walleye, which further suggests that fish movements could be influencing recapture estimates. In addition, during BC Hydro's MCR Fish Population Indexing Program (CLBMON-16), recapture rates for adult Mountain Whitefish were greater in the spring than in fall from 2011 to 2016, possibly because Mountain Whitefish were moving into and out of the study area in the fall study period for spawning migrations (Golder et al. 2017). Based on telemetry data collected under CLBMON-48 (Golder 2009c), a substantial proportion of the adult Mountain Whitefish population in the LCR undertakes spawning related movements, often to other areas of the river during the fall study period. This would explain why abundance estimates are inconsistent with estimates of survival in the LCR and would account for lower recapture estimates for Mountain Whitefish when compared to other species in the LCR.

4.4.2 Rainbow Trout

Adult survival ranged from 32% to 53% across all study years (Figure 31). For adult Rainbow Trout, both survival and abundance increased gradually between 2003 and 2011. However, survival decreased to between 33% and 44% during 2012 to 2019. Lower survival during recent years coincided with high abundances, as indicated by mark-recapture estimates (Section 3.4.4) and spawner surveys (Thorley et al. 2020), which may reflect density-dependent survival and intra-specific competition for resources.

Survival of adults is unlikely to be affected directly by variability in the flow regime, although changes in productivity related to flow variability could affect growth or condition, which could ultimately affect survival. Flow variability is more likely to affect the survival of juvenile fish, through effects on habitat, displacement, or stranding. This is true for Rainbow Trout as well as Mountain Whitefish. Survival cannot be assessed using the mark-recapture data for juvenile fish because they are not effectively sampled by boat electrofishing. The effect of flow variability on survival and recruitment of juveniles can be assessed using the stock-recruitment models and age ratio analyses.

4.4.3 Walleye

The estimated survival of Walleye was 56% in 2020, which was near average compared to previous years. Some years that had lower survival, such as 2004 (33% survival), were associated with high abundance of Walleye but there was not a consistent relationship between abundance and survival, which suggest that factors other than density are also influencing adult survival. As a large portion of the Walleye population is thought to be migratory and spend only part of the year in the LCR before moving downstream into Lake Roosevelt (R.L.\&L. 1995), annual survival could be confounded by fish movements, and affected by factors outside of the study area.

4.5 Body Condition

4.5.1 Mountain Whitefish

The body condition of subadult and adult Mountain Whitefish was fairly stable ($\leq 5 \%$ change; Figure 34) between 2010 and 2018. The body condition of adult Mountain Whitefish was higher in 2019 (7\%) and 2020 (4\%). Across all years when data were available, the effect sizes for the body condition of subadult Mountain Whitefish ranged between -7% to 6% and between -16% to 9% for adult Mountain Whitefish (Figure 34). Fluctuations in body condition are known to affect reproductive potential and population productivity in other fish species (Ratz and Lloret 2003). However, it is not known what percent change in body condition is biologically significant and could affect populations of Mountain Whitefish. The Canadian Environmental Effects Monitoring (EEM) program for mining and pulp and paper effluents considers a 10% change in fish body condition to be the critical threshold for higher risk to the environment (Munkittrick et al. 2009; Environment Canada 2012). This criterion suggests that the range of 25% variation (-16% to 9%) in adult Mountain Whitefish body condition could be biologically significant. Studies of the effects of body condition on reproduction and other life history processes are required to understand the implications of body condition variation in Mountain Whitefish and other index fish species in the LCR.

Lower body condition (-6\% to -16\% effect size) of adult Mountain Whitefish in the early 1990s compared to between 2001 and 2020 could be related to lower water quality and industrial pollution. A number of industries including a pulp and paper mill, a fertilizer plant, and a metal smelter contributed to much poorer water quality in the 1980s and early 1990s than since the mid-1990s (MacDonald Environmental Services Ltd. 1997). Fish health monitoring studies in the early 1990s found that Mountain Whitefish had higher rates of stress-related abnormalities compared to fish from reference sites, which was thought to be related to degraded water quality (Nener et al. 1995). Reductions in industrial pollution have resulted in improved water quality and fish health in the LCR since the mid-1990s (CRIEMP 2005), which likely explains the greater body condition in 2001 to 2020 than during the early 1990s.

Little is known about what factors influence changes in body condition or growth of Mountain Whitefish in the LCR. In the Skeena River, a large, unregulated river in British Columbia, food abundance was the main factor limiting growth and abundance for Mountain Whitefish (Godfrey 1955 as cited by Ford et al. 1995). Mountain Whitefish body condition also is likely related to the abundance of invertebrate prey in the LCR. With regard to the program's second management question, variability in the flow regime could affect invertebrate abundance, which in turn could affect the body condition of insectivorous fish including Mountain Whitefish. The LCR Physical Habitat and Ecological Productivity program suggested that water velocity and discharge variability can affect invertebrate productivity, especially during the Mountain Whitefish protection flow period (Olson-Russello et al. 2015), which supports a potential pathway between flow variability, food availability, and Mountain Whitefish body condition. Information about the relative abundance of invertebrates in the LCR has been collected (Olson-Russello et al. 2015)
but is only available for five years (2008-2010, 2012, and 2014), which means that relationships between annual flow variability, invertebrates, and fish cannot be compared across the entire timespan of the fish indexing program (2001-2020).

The small spatial differences in body condition suggest that either there is little variation attributable to habitat differences among sites, or that fish do not stay within particular sites long enough to result in large inter-site differences in body condition. Therefore, sample site was not included in the body condition models for Mountain Whitefish or other species. The low site fidelity estimates support the idea that fish movements may prevent large inter-site differences in body condition, especially for Mountain Whitefish, which had the lowest site fidelity estimates.

4.5.2 Rainbow Trout

The body condition of Rainbow Trout was greater in 2002 and 2006 than in other study years for both subadult and adult life stages. Both water temperature and discharge in the Columbia River were near historical averages in 2002 and 2006 which suggests that variations in flow regime do not explain the inter-annual differences in Rainbow Trout body condition. However, the relationship between flow variability and invertebrate productivity suggested by Olson-Russello et al. (2015) and discussed in Section 4.5.1 also has implications for Rainbow Trout. Changes in invertebrate abundance due to flow variability would be expected to affect food availability and possibly body condition of Rainbow Trout.

The 10\% decrease in body condition of adult Rainbow Trout between 2011 and 2018 coincided with high and increasing abundance. This may indicate an increase in intra-specific competition for food that caused the decrease in body condition and growth (Section 4.1) during this period. Conversely, adult Rainbow Trout body condition and growth estimates increased in 2019 and 2020, which coincided with a decrease in abundance. These trends suggest that the population was at carrying capacity when above 50,000 adults, as reduced growth in the post-recruit (i.e., adult) life stage is expected when populations are near carrying capacity (Lorenzen 2008). Body condition values of Rainbow Trout in the LCR were generally higher than those recorded downstream of Revelstoke Dam during the same time of the year (CLBMON-16; Golder et al. 2020b).

4.5.3 Walleye

Body condition of Walleye was greater in 2012 to 2014 than in most previous years and were near-average in 2015 to 2020. The years with high body condition (2012 to 2014) had low abundance estimates of Walleye, suggesting density-dependent growth that could be due to intra-specific competition for food and cover, similar to that reported for this species by other researchers (Forney 1977; Hartman and Margraf 1992; Porath and Peters 1997). However, there was not a consistent relationship between abundance and body condition across all years of the monitoring program. Variability in the flow regime is less likely to have direct effects on food availability and body condition of Walleye compared to insectivorous fish species, because Walleye are piscivorous.

4.6 Age Ratios

The proportional ratio of age-1:2 Mountain Whitefish was used as an indicator of recruitment to assess the effects of egg dewatering. Greater egg dewatering is expected to reduce subsequent recruitment of age-1 Mountain Whitefish, which would be reflected by lower age-1:2 ratios. The age-1:2 ratio ranged from 25% to 79% between the 1999 and 2018 spawning years, which suggests substantial inter-annual variation in recruitment during the monitoring period. Across all years of available data, the direction of the relationship between the age-1:2 ratio recruitment index and the estimated annual egg loss ratio was uncertain. The data indicated a negative relationship between estimated egg loss ratio and
age-1:2 ratio but the relationship was uncertain and not statistically significant. The large credible intervals around the relationship (Figures 39 and 40) indicate that although a small negative effect of egg loss on Mountain Whitefish recruitment is most likely, a large negative or positive effect of egg dewatering cannot be excluded. The uncertainty in the relationship between age-1:2 ratio and egg loss ratio (Figure 39) and large variability in this recruitment index was likely because of other factors, such as environmental conditions and ecological interactions, that influenced survival and recruitment more than egg dewatering during most study years.

The 2016 spawning year had a large decline in the recruitment index (33\% compared to 64\%-73\% in previous six years) and coincided with the largest estimated egg loss on record (59\%). This suggests that 59% egg loss due to dewatering could have had a negative effect on the recruitment of Mountain Whitefish. The abundance estimate of age-1 Mountain Whitefish decreased from 31,000-33,000 in the previous five years to 13,000 in 2018, suggesting a biologically significant change in recruitment. However, there was also a decrease in recruitment of age-1 Rainbow Trout in 2018, which could not have been related to the discharge reductions that affected Mountain Whitefish recruitment in 2018 because that cohort of Rainbow Trout had not yet been spawned (Section 4.2.2). In addition, the recruitment index for Mountain Whitefish remained low in the 2017 spawning year (44\%), even though egg dewatering was much lower (14\%) than in 2016. These results suggest that factors other than egg dewatering could have contributed to the decrease in age-1 recruits of both Mountain Whitefish and Rainbow Trout in 2018.

Mark-recapture population estimates of subadults could also be used to assess recruitment and the effects of egg dewatering. However, capture efficiencies for subadult Mountain Whitefish are low (<1\%) and the mark-recapture estimates are based on several untested assumptions, such as no migration out of the study area between capture sessions. If assumptions are violated or low recapture rates are not accurately reflecting changes in capture efficiency, then it could mask trends in subadult abundance and make it difficult to detect the effects of dewatering. Because the age-1:2 ratio is based on proportions of ages in the catch, this recruitment index would not be affected by undetected changes in capture efficiency, and therefore is likely a more robust method to assess the effects of egg dewatering in the LCR.

Age-1:2 ratios were not used for Rainbow Trout in the LCR because age data are only available for Rainbow Trout from 2001 to 2012, whereas scales were collected but not analyzed for Rainbow Trout from 2013 to 2020. Ages assigned using scale analysis were not reliable for age-2 and older fish and were therefore not used in the data analysis. Using length-based ages for the age-1:2 ratio is not possible for Rainbow Trout because the length-at-age model cannot distinguish age-2 and age-3 fish, and therefore all age-2 and older fish are grouped in a single category.

4.7 Stock-Recruitment Relationship

For both Mountain Whitefish and Rainbow Trout, the stock-recruitment data indicated no relationship between the estimated number of eggs deposited by spawners and age-1 recruits, and large variability in the number of recruits produced by a particular number of eggs. The lack of relationship between stock and recruitment was interpreted as being consistent with density-dependent survival and recruitment at the observed stock sizes. There may not have been a clear relationship between stock and recruitment because even at the smaller stock sizes, the number of spawners was sufficient to fully seed the habitat with eggs or fry.

In other words, it may appear that there is no clear relationship between spawners and recruitment if the range of spawner abundance observed is not sufficiently large (Myers and Barrowman 1996). Alternatively, errors in the measurement of either stock or recruits can mask real relationships and make recruitment appear independent of spawning stock size (Walters and Ludwig 1981). In the LCR, it could be that imprecise estimates of abundance, especially for age-1 fish that have lower recapture rates, could be masking trends in abundance and relationships between adults and age-1 recruits.

For Mountain Whitefish, the estimated effect of egg loss on recruitment was negative but the CIs included a positive effect. However, the only data points were on the relatively flat part of the estimated stock-recruitment curve, where a decrease in spawners or egg loss due to dewatering would not be predicted to decrease the resulting recruits substantially. Based on the estimated stock-recruitment curve, years with substantially fewer adults and/or larger egg loss would be needed to detect a decrease in recruitment related to egg dewatering. Predictions of the effect of egg dewatering from the stock-recruitment indicated a high degree of uncertainty in the relationship between egg dewatering and recruitment. These predictions showed that the data were most consistent with a small negative effect of egg dewatering mortality on recruitment but a large negative or positive effect cannot be ruled out.

For Rainbow Trout, estimated egg losses were small between 2001 and 2019, with estimates less than 1.0% in 17 of 19 years, and the greatest observed egg loss of 1.6%. The stock-recruitment model predicted a positive effect of egg loss on recruitment of age-1 Rainbow Trout (Figure 46) but the direction of the effect was uncertain and not statistically significant.

Egg mortality due to dewatering cannot realistically have a positive causal effect on recruitment of juveniles. The unexpected positive effect of egg loss on recruitment was likely due to other, unmeasured factors that are correlated with both egg dewatering and recruitment success. For instance, lower water levels during the spawning season could be associated with lower amounts of subsequent egg dewatering, but have some other negative effect on spawning and recruitment success, such as less available spawning habitat and greater competition than during higher water levels.

Based on the available data, there is no evidence of negative effects of egg losses less than 2% on recruitment of Rainbow Trout in the LCR. Although the data do not support an effect of egg loss on recruitment at the range of adult abundances observed, the effects of egg loss at lower abundance, or higher levels of egg loss (>1.6\%) are unknown based on this analysis.

Conclusions regarding the effect of egg dewatering drawn from the stock-recruitment analyses should be considered uncertain because of the poor fit of modeled relationships, and the possibility that sampling biases or environmental variability masked real effects of egg dewatering. Poor fit of stock-recruitment models with fisheries data is common in the literature for marine and freshwater environments. Failure of these models has been attributed to numerous possible factors, such as errors in measurement (Walters and Ludwig 1981), incorrect spatio-temporal scales (Hutchinson 2008), or environmental variability (Myers 1998). In the LCR, estimates of capture efficiency and abundance of age-1 Mountain Whitefish and age-1 Rainbow Trout are hindered by small numbers of recaptured fish. This is partly because this age-class is not as effectively sampled as larger fish by the boat electrofisher and because a large proportion of this life stage likely uses shallow habitat not sampled during this program. Low and uncertain estimates of capture efficiency mean that changes in abundance of age- 1 fish may not be detected by abundance estimates. For this reason, the age-1:2 ratio is considered a more reliable test of the effect of egg loss than the stock-recruitment analysis.

4.8 Summary

The sampling program conducted since 2001 provides a high-quality, long-term dataset to address the first management question, which is about changes in fish population metrics over time in the LCR. Hierarchical Bayesian models suggested that the abundance of adult Rainbow Trout increased substantially between 2001 and 2018, with small decreases in 2019 and 2020, and high abundances in recent years coincided with a decline in body condition, growth, and survival, suggesting density-dependence and that the adult population is near the habitat's carrying capacity. Data for Walleye suggested relatively low but stable abundance from 2012 to 2020 compared to earlier years. The estimated abundance of adult Mountain Whitefish declined since 2001 but was relatively stable from 2010 to 2020. In 2018 and 2019, the estimated abundance of age-1 Mountain Whitefish was lower than most previous years while the estimated abundance of adults remained stable between 2010 and 2020 except for an increase in 2018. Length-at-age of age-0 Mountain Whitefish and body condition of Mountain Whitefish suggested relatively little change in growth during the monitoring period.

The second management question for this monitoring program pertains to the effects of inter-annual flow variability on fish population metrics of the index species. One of the ways that flow variability can affect fish populations is through egg dewatering during discharge reductions. The effect of egg dewatering on fish abundance was assessed through the analysis of age ratios as a recruitment index and through stock-recruitment models that included egg loss as a covariate. For Mountain Whitefish, the direction of the relationship between the age-1:2 recruitment index and estimated egg losses across all years of the study (1999 to 2018 spawning years) was uncertain and not statistically significant. However, the large estimated egg loss (59\%) in the 2016 spawning year corresponded to a large decrease in the age ratio recruitment index and a greater than 50% decrease in the estimated abundance of age-1 Mountain Whitefish. Egg loss was not a clearly directional or statistically significant covariate in the stock-recruitment model for Mountain Whitefish. The stock-recruitment analysis had large variability in Mountain Whitefish recruitment for a particular level of egg loss or spawner abundance, which resulted in weak predictive ability and suggested that other unknown factors likely have a large influence on recruitment in the LCR.

For Rainbow Trout, there was no evidence of negative effects of egg losses on recruitment at the observed levels of egg loss, which were less than 2% in all years. These conclusions for both Mountain Whitefish and Rainbow Trout should be considered tentative because of the poor fit in modelled relationships, and the possibility that sampling biases or environmental variability masked real effects of egg dewatering.

Flow variability in the LCR is expected to have less of an effect on Walleye than Rainbow Trout and Mountain Whitefish because the abundance of Walleye is thought to depend on spawning and early life history survival outside of the study area. In addition, effects of flow variability on invertebrate productivity, if they occur, would not have direct effects on food availability that could impact the condition or growth of a piscivorous species like Walleye.

6.0 REFERENCES

Andrusak, G.F., and Andrusak, H. 2015. Gerrard Rainbow Trout Growth and Condition with Kokanee Prey at Low Densities. A Redfish Consulting Ltd. Report for Fish and Wildlife Compensation Program - Columbia, Nelson, BC.
Andrusak, G.F., and J.L. Thorley. 2019. Determination of Gerrard Rainbow Trout Stock Productivity at Low Abundance: Final Report. A Ministry of Forests, Lands and Natural Resource Operations Report COL-F19-F-2703. Nelson, B.C.: Fish; Wildlife Compensation Program - Columbia Basin, Habitat Conservation Trust Foundation; Freshwater Fisheries Society of British Columbia.
Ash, G., W. Luedke, and B. Herbert. 1981. Fisheries inventory and impacts assessment in relation to the proposed Murphy Creek Project on the Columbia River, B.C. Prepared for BC Hydro by R.L.\&L. Environmental Services Ltd. (Revised January 1984). 329 pp.
Baker, T., R. Lafferty, and T.J. Quinn II. 1991. A general growth model for mark-recapture data. Fisheries Research 11: 257-281.
Baxter, J.T.A. and Neufeld, M. 2015. Lower Columbia River Invasive Northern Pike Suppression and Stomach Analysis - 2014. Prepared for Teck Trail Operations. 22 pp.
Baxter, J.T.A. and D.J. Doutaz. 2017. Lower Columbia River Invasive Northern Pike Suppression - 2016 Update. Report prepared for Teck Trail Operations. 16 pp.
BC Hydro. 2005. Columbia River Project, Water Use Plan. 41 pp. +1 app.
BC Hydro. 2007. Columbia River Project Water Use Plan, Monitoring Program Terms of Reference Lower Columbia Fish Management Plan (CLBMON-45 Lower Columbia River Fish Indexing Surveys). 18 pp .
BC Hydro. 2018. Lower Columbia River Juvenile Detection Program (CLBMON-29). Year 10 Data Report. Report by BC Hydro. Castlegar, BC. 77 pp.
Bradford, M. J., J. Korman and P. S. Higgins. 2005. Using confidence intervals to estimate the response of salmon populations (Oncorhynchus spp.) to experimental habitat alterations. Canadian Journal of Fisheries and Aquatic Sciences 62: 2716-2726.
Boyer, J. K. 2016. Spawning and early life history of Mountain Whitefish in the Madison River, Montana. Master's thesis. Montana State University, Bozeman.
Boyer, J.K., C.S. Guy, M.A. Webb, T.B. Horton, and T.E. McMahon. 2017. Reproductive ecology, spawning behavior, and juvenile distribution of mountain whitefish in the Madison River, Montana. Transactions of the American Fisheries Society 146: 939-954.
Carpenter, B., A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software 76 (1).
Cox, S. 2000. Angling quality, effort response, and exploitation in recreational fisheries: field and modelling studies on British Columbia Rainbow Trout (Oncorhynchus mykiss) lakes. Doctoral dissertation. University of British Columbia, Vancouver.
Columbia River Integrated Environmental Monitoring Program (CRIEMP). 2005. 2005 Environmental Status Report - Public update on the environmental health of the Columbia River from Hugh Keenleyside Dam to the border. 15 pp .
Dolan, C.R., and L.E. Miranda. 2003. Immobilization thresholds of electrofishing relative to fish size. Transactions of the American Fisheries Society 132: 969-976.
Environment Canada. 2012. Metal mining technical guidance for environmental effects monitoring. Environment Canada, Ottawa, Ontario. 550 pp.
Fabens, A.J. 1965. Properties and fitting of the von Bertalanffy growth curve. Growth. 1965 Sep; 29:265289.

Fetherman, E.R., D.L. Winkelman, M.R. Baerwald, and G.J. Schisler. 2014. Survival and reproduction of Myxobolus cerebralis-resistant Rainbow Trout introduced to the Colorado River and increased resistance of age-0 progeny. PloS one 9: e96954.
Ford, B.S., P.S. Higgins, A.F. Lewis, K.L. Cooper, T.A. Watson, C.M. Gee, G.L. Ennis, and R.L. Sweeting. 1995. Literature reviews of the life history, habitat requirements and mitigation/compensation strategies for thirteen sport fish species in the Peace, Liard, and Columbia River drainages of British Columbia. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2321: xxiv + 342 pp.
Ford, D. And J.L. Thorley. 2011. CLBMON-45 Lower Columbia River Fish Population Indexing Surveys - 2010 Investigations. Report prepared for BC Hydro Generations, Water Licence Requirements, Castlegar, BC. Golder Report No. 10-1492-0102F: 54 pp. +5 app.
Forney, J.L. 1977. Evidence of Inter- and Intraspecific Competition as Factors Regulating Walleye (Stizostedion vitreum vitreum) Biomass in Oneida Lake, New York. Journal of the Fisheries Research Board of Canada 34: 1812-1820.
Gale, M. K., S.G. Hinch and M.R. Donaldson. 2013. The role of temperature in the capture and release of fish. Fish and Fisheries 14: 1-33.
Gallucci, V.F., and T.J. Quinn. 1979. Reparameterizing, fitting, and testing a simple growth model. Transactions of the American Fisheries Society 108: 14-25.
Godfrey, H. 1955. On the ecology of the Skeena River whitefishes Coregonus and Prosopium. Journal of the Fisheries Research Board of Canada 12: 488-527.
Golder Associates Ltd. 2002. Lower Columbia River Fish Community Indexing Program. 2001 Phase 1 investigations. Report prepared for BC Hydro, Burnaby, B.C. Golder Report No. 012-8007F: $52 \mathrm{pp} .+6 \mathrm{app}$.
Golder Associates Ltd. 2003. Large River Fish Indexing Program - Lower Columbia River 2002 Phase 2 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 022-8023F: $47 \mathrm{pp} .+5 \mathrm{app}$.
Golder Associates Ltd. 2004. Large River Fish Indexing Program - Lower Columbia River 2003 Phase 3 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 03-1480-021F: 54 pp. +6 app.
Golder Associates Ltd. 2005. Large River Fish Indexing Program - Lower Columbia River 2004 Phase 4 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 04-1480-047F: $57 \mathrm{pp} .+6 \mathrm{app}$.
Golder Associates Ltd. 2006. Large River Fish Indexing Program - Lower Columbia River 2005 Phase 5 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 05-1480-034F: 56 pp. +6 app.
Golder Associates Ltd. 2007. Large River Fish Indexing Program - Lower Columbia River 2006 Phase 6 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 06-1480-031F: $70 \mathrm{pp} .+6 \mathrm{app}$.
Golder Associates Ltd. 2009a. Large River Fish Indexing Program - Lower Columbia River 2008 Phase 8 Investigations. Report prepared for B.C. Hydro, Burnaby, B.C. Golder Report No. 08-1480046F: 58 pp. + 6 app.
Golder Associates Ltd. 2009b. Monitoring of juvenile white sturgeon habitat use and movements of sonictagged sturgeon: 2008 investigations. Report prepared for BC Hydro, Revelstoke, B.C. Golder Report No. 08-1480-0030F: 34 pp. +3 app.
Golder Associates Ltd. 2009c. Lower Columbia River whitefish life history and egg mat monitoring program: 2008-2009 investigations data report. Report prepared for BC Hydro, Castlegar, BC Golder Report No. 08-1480-0054F: 42 pp. + 6 app.

Golder Associates Ltd. 2010a. Lower Columbia River Whitefish Life History and Egg Mat Monitoring Program: 2009-2010 Investigations Data Report. Report prepared for BC Hydro, Castlegar, B.C. Golder Report No. 08-1480-054F: 59 pp. + 7 app.
Golder Associates Ltd. 2010b. Large River Fish Indexing Program - Lower Columbia River 2009 Phase 9 Investigations. Report prepared for B.C. Hydro, Castlegar, B.C. Golder Report No. 09-1480049F: 80 pp. +6 app.
Golder Associates Ltd. 2012. Lower Columbia River whitefish life history and egg mat monitoring program: Year 4 data report. Report prepared for BC Hydro, Castlegar, BC. Golder Report No. 11-1492-0111F: 48 pp. + 3 app.
Golder Associates Ltd. 2013a. Fish and Egg Stranding Monitoring for Waneta Expansion Project-Year Two Report prepared for Columbia Power Corporation, Castlegar, BC. Golder Report No. 11-1492-0130: 30 pp. +1 App.
Golder Associates Ltd. 2013b. Lower Columbia River whitefish spawning ground topography survey: Year 3 summary report. Report prepared for BC Hydro, Castlegar, BC Golder Report No. 10-1492-0142F: 68 pp. +3 app.
Golder Associates Ltd. and W.J. Gazey Research. 2019. Peace River Large Fish Indexing Survey - 2018 investigations. Report prepared for BC Hydro, Vancouver, British Columbia. Golder Report No. 1670320. $118 \mathrm{pp}+8 \mathrm{app}$.

Golder Associates Ltd., Poisson Consulting Ltd., and Okanagan Nation Alliance. 2017. CLBMON-16 Middle Columbia River Fish Population Indexing Survey 2016 Report. Report prepared for BC Hydro Generation, Water License Requirements, Castlegar, BC. 65 pp. +9 app.
Golder Associates Ltd., Okanagan Nation Alliance, and Poisson Consulting Ltd. 2018. CLBMON-45 Lower Columbia River Fish Population Indexing Survey 2017 Report. Report prepared for BC Hydro Generation, Water License Requirements, Castlegar, BC. 70 pages +8 app.
Golder Associates Ltd, Poisson Consulting Ltd., and Okanagan Nation Alliance. 2020a. CLBMON 45 Lower Columbia River Fish Population Indexing Surveys Final Summary Report - 2019. Report by for BC Hydro Generations, Water License Requirements, Burnaby, B.C. 27 pp.
Golder Associates Ltd., Poisson Consulting Ltd., and Okanagan Nation Alliance. 2020b. CLBMON-16 Middle Columbia River Fish Population Indexing Surveys 2019 Report. Report prepared for BC Hydro Generation, Water License Requirements, Revelstoke, BC. 71 pages +9 app.
Greenland, S. 2019. Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution With s-values." The American Statistician 73: 106-114.
Greenland, S., and C. Poole. 2013. Living with p values: Resurrecting a Bayesian perspective on frequentist statistics. Epidemiology 24: 62-68.
Hartman, K.J. and J.F., Margraf. 1992. Effects of Prey and Predator Abundances on Prey Consumption and Growth of Walleyes in Western Lake Erie. Transactions of the American Fisheries Society, 121:245-260.
He, J. X., J. R. Bence, J. E. Johnson, D. F. Clapp and M. P. Ebener. 2008. Modeling Variation in MassLength Relations and Condition Indices of Lake Trout and Chinook Salmon in Lake Huron: a Hierarchical Bayesian Approach. Transactions of the American Fisheries Society 137: 801-817.
Henderson, B.A., N. Collins, G.E. Morgan, and A. Vaillancourt. 2003. Sexual size dimorphism of Walleye (Stizostedion vitreum vitreum). Canadian Journal of Fisheries and Aquatic Sciences 60: 13451352.

Hutchinson, W. F. 2008. The dangers of ignoring stock complexity in fishery management: the case of the North Sea cod. Biology Letters 4: 693-695.

Irvine, R.L., J.T.A. Baxter and J.L. Thorley. 2015. WLR Monitoring Study No. CLBMON-46 (Year 7) Lower Columbia River Rainbow Trout Spawning Assessment. Columbia River Water Use Plan. BC Hydro, Castlegar. A Mountain Water Research and Poisson Consulting Ltd Final Report.
Kéry, M. 2010. Introduction to WinBUGS for Ecologists: A Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses. Elsevier, Boston.
Kéry, M. and M. Schaub. 2011. Bayesian population analysis using WinBUGS - a hierarchical perspective. Academic Press, Burlington.
Kincaid, T.M. and A.R. Olsen. 2016. spsurvey: Spatial Survey Design and Analysis. R package version 3.3.

Korman, J. 2009. Early life history dynamics of rainbow trout in a large regulated river. Doctoral dissertation. University of British Columbia, Vancouver.
Lester, N.P., B.J. Shuter, and P.A. Abrams. 2004. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proceedings of the Royal Society of London B: Biological Sciences 271: 1625-1631.
Lin, J. 1991. Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information Theory 37: 145-151.
Lorenzen, K. 2008. Fish population regulation beyond "stock and recruitment": the role of densitydependent growth in the recruited stock. Bulletin of Marine Science 83: 181-196.
MacDonald Environmental Services Ltd. 1997. Lower Columbia River from Birchbank to the International Border: Water Quality Assessment and Recommended Objectives. Technical Report prepared for Environment Canada and British Columbia Ministry of Environment, Lands and Parks. 115 pp. + apps.
Macdonald, P. 2012. Mixdist: Finite Mixture Distribution Models. R package version 0.5-5. https://CRAN.R-project.org/package=mixdist.
Macdonald, P.D.M. and T.J. Pitcher. 1979. Age-groups from size-frequency data: a versatile and efficient method of analysing distribution mixtures. Journal of the Fisheries Research Board of Canada 36: 987-1001.
Mackay, W.C., G.R. Ash and H.J. Norris. 1990. Fish ageing methods for Alberta. R.L. \& L. Environmental Services Ltd. in association with Alberta and Wildlife Division and University of Alberta, Edmonton. 133 pp.
McPhail, J.D. 2007. The Freshwater Fishes of British Columbia. University of Alberta Press, Edmonton, AB.
Meyer, K. A., F. S. Elle, and J. A. Lamansky Jr. 2009. Environmental factors related to the distribution, abundance, and life history characteristics of mountain whitefish in Idaho. North American Journal of Fisheries Management 29: 753-767.
Munkittrick, K.R., C.J. Arens, R.B. Lowell, and G.P. Kaminski. 2009. A review of potential methods of determining critical effect size for designing environmental monitoring programs. Environmental Toxicology and Chemistry 28: 1361-1371.
Myers, R.A. 1998. When do environment-recruitment correlations work? Reviews in Fish Biology and Fisheries 8: 285-305.
Myers, R.A. 2001. Stock and recruitment: generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches. ICES Journal of Marine Science 58 : 937-951.
Myers, R. A., and N.J. Barrowman. 1996. Is fish recruitment related to spawner abundance? Fishery Bulletin 94: 707-724.

Nener, J., D. Kieser, J.A.J. Thompson, W.L. Lockhart, D.A. Metner, and R. Roome. 1995. Monitoring of Mountain Whitefish Prosopium williamsoni from the Columbia River system near Castlegar, British Columbia: Health parameters and contaminants in 1992. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2036, 89 pp.
Ohnishi, S., T. Yamakawa, H. Okamura, and T. Akamine. 2012. A note on the von Bertalanffy growth function concerning the allocation of surplus energy to reproduction. Fishery Bulletin 110: 223229.

Okanagan Nation Alliance. 2019. Columbia Basin Invasive Northern Pike (Esox lucius) Suppression and Monitoring, British Columbia (2019 - 2020). Okanagan Nation Alliance Program: Year 1. Prepared for the Ministry of Forests Lands and Natural Resource Operations and Rural Development, Nelson BC. p. $37+10$ app
Okanagan Nation Alliance. 2021. Columbia Basin Invasive Northern Pike (Esox lucius) Suppression and Monitoring, British Columbia (2020 - 2021). Okanagan Nation Alliance Program: Year 2. Prepared for the Ministry of Forests Lands and Natural Resource Operations and Rural Development, Nelson BC. p. $60+7$ app.
Olson-Russello, M.A., J. Schleppe, H. Larratt, K. Hawes. 2015. Monitoring Study No. CLBMON-44 (Year 7) Lower Columbia River Physical Habitat and Ecological Productivity, Study Period: 2014. Report Prepared for BC Hydro, Castlegar, British Columbia. 103 p. Report Prepared by: Ecoscape Environmental Consultants Ltd.
Pettit, S.W., and R.L. Wallace. 1975. Age, growth, and movement of Mountain Whitefish, Prosopium williamsoni (Girard), in the North Fork Clearwater River, Idaho. Transactions of the American Fisheries Society 104: 68-76.
Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.
Plewes, R., H. Larratt, and M.A. Olson-Russello. 2017. Monitoring Study No. CLBMON-44 (Year 9) Lower Columbia River Physical Habitat and Ecological Productivity, Study Period: 2016. Report Prepared for BC Hydro, Castlegar, British Columbia. 62 pgs + Appendices. Report Prepared by: Ecoscape Environmental Consultants Ltd.
Poisson Consulting Ltd., Mountain Water Research, and Nupqu Limited Partnership. 2020. CLBMON-46 Lower Columbia River Rainbow Trout Spawning Assessment and Egg Mortality Study. CLBMON-46 Implementation Year 1 (2019). Report prepared for BC Hydro, Burnaby, BC. 33 pp +6 apps.
Plummer, M. 2015. \{JAGS\} version 4.0.1 user manual. http://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/
Porath, M.T., and E.J. Peters. 1997. Use of Walleye Relative Weights (Wr) to Assess Prey Availability. North American Journal of Fisheries Management 17: 628-637.
Quince, C., P.A. Abrams, B.J. Shuter, and N.P. Lester. 2008. Biphasic growth in fish I: theoretical foundations. Journal of Theoretical Biology 254: 197-206.
Rafi, Z., and S. Greenland. 2020. Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprise. BMC medical research methodology 20: 1-13.
Ratz H.J. and J. Lloret. 2003. Variation in fish condition between Atlantic cod (Gadus morhua) stocks, the effect on their productivity and management implications. Fisheries Research 60: 369-380.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

Rennie, M.D., C.F. Purchase, N. Lester, N.C. Collins, B.J. Shuter, and P.A. Abrams. 2008. Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids. Journal of Animal Ecology 77: 916-926.
R.L. \& L. Environmental Services Ltd. 1991. Lower Columbia Development. Lower Columbia River Fisheries Inventory - 1990 Studies. Volume I Main Report. Submitted to BC Hydro Environmental Resources. (Revised March 1992). 170pp. +7 app.
R.L. \& L. Environmental Services Ltd. 1995. Columbia Basin Developments - Lower Columbia River. Fisheries Inventory Program 1990 to 1994. Report Prepared for BC Hydro, Environmental Affairs, Vancouver, B.C., by R.L. \& L. Environmental Services Ltd., Castlegar, B.C. R.L. \& L. Report No. 381-95F: 147 pp. +7 app.
R.L. \& L. Environmental Services Ltd. 1997. Lower Columbia River mountain whitefish monitoring program. 1994-1996 investigations. Draft Report prepared for BC Hydro, Kootenay Power Supply/Power Facilities. R.L. \& L. Report No. 514D: 101 pp. + 8 app.
R.L. \& L. Environmental Services Ltd. 2000. 13 October 2000. Memo to Colin Spence, MOE, from Louise Porto, R.L.\&L. Environmental Services. Re: White Sturgeon Mortality.
Scott, W.B. and E.J. Crossman 1973. Freshwater Fishes of Canada. Bulletin 184. ISBN 0-660-10239-0. Fisheries Research Board of Canada, Ottawa.
Seals, J., J. McCormick, and R. French. 2014. Growth, condition, and age structure of Redband Trout in the lower Deschutes River, Oregon. Technical report prepared by the Oregon Department of Fish and Wildlife, The Dalles, OR. 20 pp.
https://www.dfw.state.or.us/fish/local_fisheries/deschutes/docs/Monitoring_Report_for_Deschut es_River_Rainbow_Trout_2014_Final_2.pdf
Shannon, C.E. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
Shuter, B.J., M.L. Jones, R.M. Korver, and N.P. Lester. 1998. A general, life history based model for regional management of fish stocks: the inland lake trout (Salvelinus namaycush) fisheries of Ontario. Canadian Journal of Fisheries and Aquatic Sciences 55: 2161-2177.
Stevens, D. L., Jr. and A. R. Olsen 2004. Spatially-balanced sampling of natural resources. Journal of American Statistical Association 99: 262-278.
Subbey, S., J. A. Devine, U. Schaarschmidt, and R.D.M. Nash. 2014. Modelling and Forecasting StockRecruitment: Current and Future Perspectives. ICES Journal of Marine Science 71: 2307-2322.
Thorley, J.L., J.T.A. Baxter, R.L. Irvine, M. Fjeld, and E.C. Amies-Galonski. 2020. Lower Columbia River Rainbow Trout Spawning Assessment and Egg Mortality Study: CLBMON-46 Implementation Year 2. A Poisson Consulting Ltd., Mountain Water Research and Nupqu Limited Partnership report prepared for BC Hydro, Burnaby, BC.
Thorley, J.L. and N. Hussein. 2021. Lower Columbia River Fish Population Indexing 2020. A Poisson Consulting Analysis Appendix. URL: https://www.poissonconsulting.ca/f/392669554.
Tornqvist, L., P. Vartia, and Y.O. Vartia. 1985. How Should Relative Changes Be Measured? The American Statistician 39: 43-46.
von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology 10: 181-213.
Walters, C. J., and D. Ludwig. 1981. Effects of measurement errors on the assessment of stockrecruitment relationships. Canadian Journal of Fisheries and Aquatic Sciences 38: 704-710.
Walters, C.J., and S.J.D. Martell. 2004. Fisheries Ecology and Management. Princeton University Press, Princeton, N.J.

Wood Environment and Infrastructure Solutions (Wood). 2018. Columbia River Northern Pike Suppression 2018. Report Prepared for Columbia Basin Trust, Castlegar, BC and the BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Nelson, BC. Wood Report No: VE52702.2018. 32 pp + 3 App.
Wydoski, R.S. and D.H. Bennett. 1981. Forage species in lakes and reservoirs of the western United States. Transactions of the American Fisheries Society 110: 764-771.

Appendix A - Maps

Table A1 Locations and distances from Hugh L. Keenleyside Dam of boat electrofishing index sites in the lower Columbia River, 2020.

Site Designation ${ }^{\text {a }}$	Location (km) ${ }^{\text {b }}$	Bank ${ }^{\text {c }}$	UTM Coordinates		
			Zone	Easting	Northing
Columbia River Upstream					
C00.0-R U/S	0.0	RDB	11 U	443996	5465466
C00.0-R D/S	0.9	RDB	11 U	444649	5465448
C00.7-L U/S	0.7	LDB	11 U	444387	5465734
C00.7-L D/S	1.3	LDB	11 U	445015	5465719
C01.3-L U/S	1.3	LDB	11 U	445015	5465719
C01.3-L D/S	2.8	LDB	11 U	446504	5465652
C02.8-L U/S	2.8	LDB	11 U	446504	5465652
C02.8-L D/S	3.6	LDB	11 U	447294	5465482
C03.6-L U/S	3.6	LDB	11 U	447294	5465482
C03.6-L D/S	5.6	LDB	11 U	449206	5464833
C04.6-R U/S	4.6	RDB	11 U	448162	5464921
C04.6-R D/S	5.1	RDB	11 U	448614	5464820
C05.6-L U/S	5.6	LDB	11 U	449206	5464833
C05.6-L D/S	6.7	LDB	11 U	450212	5464594
C07.3-R U/S	7.3	RDB	11 U	450808	5464265
C07.3-R D/S	9.0	RDB	11 U	452366	5464096
C07.4-L U/S	7.4	LDB	11 U	450892	5464632
C07.4-L D/S	8.3	LDB	11 U	451742	5464481
Kootenay River					
K00.3-L U/S	0.3	LDB	11 U	453656	5462748
K00.3-L D/S	0.0	LDB	11 U	452578	5462650
K00.6-R U/S	0.6	RDB	11 U	453151	5462849
K00.6-R D/S	0.0	RDB	11 U	452627	5462822
K01.8-L U/S	1.8	LDB	11 U	454451	5462972
K01.8-L D/S	0.3	LDB	11 U	453656	5462748
K01.8-R U/S	1.8	RDB	11 U	454398	5463053
K01.8-R D/S	0.6	RDB	11 U	453151	5462849
Columbia River Downstream					
C25.3-R U/S	25.3	RDB	11 U	449606	5450670
C25.3-R D/S	27.6	RDB	11 U	448277	5450106
C27.6-R U/S	27.6	RDB	11 U	448277	5450106
C27.6-R D/S	28.1	RDB	11 U	447985	5448428
C28.2-R U/S	28.2	RDB	11 U	447985	5448428
C28.2-R D/S	29.2	RDB	11 U	447749	5447453
C34.9-L U/S	34.9	LDB	11 U	446321	5442589
C34.9-L D/S	36.6	LDB	11 U	447116	5440687
C36.6-L U/S	36.6	LDB	11 U	447116	5440687
C36.6-L D/S	38.8	LDB	11 U	448286	5438982
C47.8-L U/S	47.8	LDB	11 U	455317	5435244
C47.8-L D/S	49.0	LDB	11 U	455121	5434301
C48.2-R U/S	48.2	RDB	11 U	455021	5434885
C48.2-R D/S	49.0	RDB	11 U	455177	5434013
C49.0-L U/S	49.0	LDB	11 U	455121	5434301
C49.0-L D/S	49.8	LDB	11 U	455204	5433379
C49.0-R U/S	49.0	RDB	11 U	455177	5434013
C49.0-R D/S	49.8	RDB	11 U	454993	5433410
C49.8-L U/S	49.8	LDB	11U	455204	5433379
C49.8-L D/S	52.2	LDB	11U	455385	5431291
C49.8-R U/S	49.8	RDB	11U	454993	5433410
C49.8-R D/S	51.9	RDB	11U	454976	5431377
C52.2-L U/S	52.2	LDB	11U	455385	5431291
C52.2-L D/S	52.8	LDB	11U	455888	5430887
C52.2-R U/S	52.2	RDB	11 U	455350	5431088
C52.2-R D/S	56.0	RDB	11U	454287	5428238
C52.8-L U/S	52.8	LDB	11U	455888	5430887
C52.8-L D/S	53.6	LDB	11 U	455898	5429799

[^0]Table A2 Locations of selected sites and available sites included in the Generalized Random Tessellation Stratified (GRTS) survey, 2020.

Site Designation	Location$(\mathbf{k m})^{\mathbf{a}}$	Bank ${ }^{\text {b }}$	Upstream UTM Coordinates			Downstream UTM Coordinates			Sites Selected in 2020
			Zone	Easting	Northing	Zone	Easting	Northing	
Columbia River Upstream									
C01.0-R	1.0	RDB	11 U	444717	5465448	11 U	447236	5465125	
C03.6-R	3.6	RDB	11 U	447236	5465125	11 U	448125	5464914	
C05.1-R	5.1	RDB	11 U	448612	5464808	11U	449518	5464513	
C06.0-R	6.0	RDB	11 U	449518	5464513	11 U	450804	5464243	
C06.7-L	6.7	LDB	11 U	450223	5464603	11 U	450876	5464645	
C08.4-L	8.4	LDB	11 U	451833	5464445	11 U	452304	5464244	
C08.6-L	8.6	LDB	11 U	452132	5464468	11 U	452720	5464206	
C08.9-R	8.9	RDB	11 U	452375	5464074	11 U	452797	5463486	X
C09.0-L	9.0	LDB	11 U	452286	5462718	11 U	452286	5462718	
C09.2-L	9.2	LDB	11 U	452720	5464206	11 U	452987	5463481	
C09.8-L	9.8	LDB	11 U	452926	5463604	11U	452620	5462860	
C09.8-R	9.8	RDB	11 U	452761	5463608	11 U	452416	5462880	
Columbia River Downstream									
C10.7-R	10.7	LDB	11 U	452416	5462880	11 U	452217	5462050	
C10.8-R	10.8	RDB	11 U	452154	5462718	11 U	452154	5462718	
C10.9-L	10.9	LDB	11 U	452584	5462607	11 U	453290	5460373	X
C11.5-R	11.5	RDB	11 U	452217	5462050	11 U	453103	5460426	X
C13.4-L	13.4	LDB	11 U	453290	5460373	11 U	453321	5459007	
C13.4-R	13.4	RDB	11 U	453103	5460426	11 U	453221	5458057	X
C14.8-L	14.8	LDB	11 U	453321	5459007	11 U	453210	5456890	X
C15.8-R	15.8	RDB	11 U	453221	5458057	11 U	453234	5457317	
C16.6-R	16.6	RDB	11 U	453234	5457317	11U	452358	5456216	
C17.0-L	17.0	LDB	11 U	453210	5456890	11U	452622	5455322	X
C18.0-R	18.0	RDB	11 U	452358	5456216	11U	452351	5455401	
C18.8-R	18.8	RDB	11 U	452351	5455401	11 U	452122	5454012	
C19.0-L	19.0	LDB	11 U	452622	5455322	11 U	452444	5454183	
C20.1-L	20.1	LDB	11 U	452444	5454182	11 U	451645	5453285	
C20.4-R	20.4	RDB	11 U	452122	5454012	11 U	451093	5453191	X
C21.3-L	21.3	LDB	11 U	451645	5453285	11 U	450603	5451637	X
C21.8-R	21.8	RDB	11 U	451093	5453191	11U	450495	5452148	
C22.9-R	22.9	RDB	11 U	450495	5452148	11 U	450188	5451058	
C23.4-L	23.4	LDB	11 U	450603	5451637	11 U	450368	5450764	
C24.0-R	24.0	RDB	11 U	450188	5451058	11U	449356	5450418	X
C24.3-L	24.3	LDB	11 U	450368	5450764	11 U	449178	5449989	
C25.3-L	25.3	MID	11 U	448978	5450229	11 U	448978	5450229	
C26.2-L	26.2	MID	11 U	448938	5449626	11 U	448938	5449626	
C27.5-L	27.5	LDB	11 U	448193	5449036	11 U	448064	5447758	
C28.8-L	28.8	LDB	11 U	448064	5447758	11 U	447820	5446998	
C29.2-R	29.2	RDB	11 U	447715	5447420	11 U	447397	5446252	X
C29.6-L	29.6	LDB	11 U	447820	5446998	11 U	447491	5446079	
C30.5-R	30.5	RDB	11 U	447397	5446252	11 U	446817	5444824	
C30.6-L	30.6	LDB	11 U	447491	5446079	11U	446746	5444432	X
C32.0-R	32.0	RDB	11 U	446817	5444824	11 U	446256	5443655	X
C32.4-L	32.4	LDB	11 U	446746	5444432	11U	446353	5442572	
C33.3-R	33.3	RDB	11 U	446256	5443655	11U	446260	5442116	
C34.9-R	34.9	RDB	11 U	446260	5442116	11 U	446294	5441253	X
C35.7-R	35.7	RDB	11 U	446294	5441253	11 U	447152	5440472	
C36.9-R	36.9	RDB	11 U	447152	5440472	11 U	448305	5438607	
C38.8-L	38.8	LDB	11 U	448340	5439017	11 U	449001	5438233	X
C39.2-R	39.2	RDB	11 U	448305	5438607	11 U	448995	5438083	
C40.0-L	40.0	LDB	11 U	449001	5438233	11 U	450090	5438405	X
C40.0-R	40.0	RDB	11 U	448995	5438083	11 U	450459	5438222	X
C41.1-L	41.1	LDB	11 U	450090	5438405	11 U	452466	5438365	X
C41.5-R	41.5	RDB	11 U	450459	5438222	11 U	452579	5438015	X
C43.5-L	43.5	LDB	11 U	452466	5438365	11 U	453245	5437597	
C43.7-R	43.7	RDB	11 U	452579	5438015	11 U	453275	5437384	
C44.6-L	44.6	LDB	11 U	453245	5437597	11U	454179	5437228	
C44.7-R	44.7	RDB	11 U	453275	5437384	11 U	454560	5436673	
C45.6-L	45.6	LDB	11 U	454179	5437228	11 U	454855	5436623	X
C46.2-R	46.2	RDB	11 U	454560	5436673	11 U	455141	5435856	
C46.4-L	46.4	LDB	11 U	454855	5436623	11 U	455319	5435321	
C47.2-R	47.2	RDB	11 U	455141	5435856	11 U	455017	5434942	X
C56.0-L	56.0	LDB	11 U	454774	5428024	11 U	453949	5427733	

[^1]

Appendix B - Habitat Summary Information

Table B1 Descriptions of categories used in the Lower Columbia River Bank Habitat Types Classification System.

Category	Code	Description
Armoured/Stable	A1	Banks generally stable and at repose with cobble/small boulder/gravel substrates predominating; uniform shoreline configuration with few/minor bank irregularities; velocities adjacent to bank generally lowmoderate, instream cover limited to substrate roughness (i.e., cobble/small boulder interstices).
	A2	Banks generally stable and at repose with cobble/small boulder and large boulder substrates predominating; irregular shoreline configuration generally consisting of a series of armoured cobble/boulder outcrops that produce Backwater habitats; velocities adjacent to bank generally moderate with low velocities provided in BW habitats: instream cover provided by BW areas and substrate roughness; overhead cover provided by depth and woody debris; occasionally associated with C2, E4, and E5 banks.
	A3	Similar to A2 in terms of bank configuration and composition although generally with higher composition of large boulders/bedrock fractures; very irregular shoreline produced by large boulders and bed rock outcrops; velocities adjacent to bank generally moderate to high; instream cover provided by numerous small BW areas, eddy pools behind submerged boulders, and substrate interstices; overhead cover provided by depth; exhibits greater depths offshore than found in A1 or A2 banks; often associated with C1 banks.
	A4	Gently sloping banks with predominantly small and large boulders (boulder garden) often embedded in finer materials; shallow depths offshore, generally exhibits moderate to high velocities; instream cover provided by "pocket eddies" behind boulders; overhead cover provided by surface turbulence.
	A5	Bedrock banks, generally steep in profile resulting in deep water immediately offshore; often with large bedrock fractures in channel that provide instream cover; usually associated with moderate to high current velocities; overhead cover provided by depth.
	A6	Man-made banks usually armoured with large boulder or concrete rip-rap; depths offshore generally deep and usually found in areas with moderate to high velocities; instream cover provided by rip-rap interstices; overhead cover provided by depth and turbulence.
Depositional	D1	Low relief, gently sloping bank type with shallow water depths offshore; substrate consists predominantly of fines (i.e., sand/silt); low current velocities offshore; instream cover generally absent or, if present, consisting of shallow depressions produced by dune formation (i.e., in sand substrates) or embedded cobble/boulders and vegetative debris; this bank type was generally associated with bar formations or large backwater areas.
	D2	Low relief, gently sloping bank type with shallow water depths offshore; substrate consists of coarse materials (i.e., gravels/cobbles); low-moderate current velocities offshore; areas with higher velocities usually producing riffle areas; overhead cover provided by surface turbulence in riffle areas; instream cover provided by substrate roughness; often associated with bar formations and shoal habitat.
	D3	Similar to D2 but with coarser substrates (i.e., large cobble/small boulder) more dominant; boulders often embedded in cobble/gravel matrix; generally found in areas with higher average flow velocities than D1 or D2 banks; instream cover abundantly available in form of substrate roughness; overhead cover provided by surface turbulence; often associated with fast riffle transitional bank type that exhibits characteristics of both Armoured and Depositional bank types.

SPECIAL HABITAT FEATURES

BACKWATER POOLS

These areas represent discrete areas along the channel margin where backwater irregularities produce localized areas of counter-current flows or areas with reduced flow velocities relative to the mainstem; can be quite variable in size and are often an integral component of Armoured and erosional bank types. The availability and suitability of Backwater pools are determined by flow level. To warrant separate identification as a discrete unit, must be a minimum of 10 m in length; widths highly variable depending on bank irregularity that produces the pool. Three classes are identified:

BW-P1 Highest quality pool habitat type for adult and subadult cohorts for feeding/holding functions. Maximum depth exceeding 2.5 m , average depth 2.0 m or greater; high availability of instream cover types (e.g., submerged boulders, bedrock fractures, depth, woody debris); usually with Moderate to High countercurrent flows that provide overhead cover in the form of surface turbulence.

BW-P2 Moderate quality pool type for adult and subadult cohorts for feeding/holding; also provides moderate quality habitat for smaller juveniles for rearing. Maximum depths between 2.0 to 2.5 m , average depths generally in order of 1.5 m . Moderate availability of instream cover types; usually with Low to Moderate countercurrent flow velocities that provide limited overhead cover.

Table B1 Concluded.
\(\left.$$
\begin{array}{ll}\text { BW-P3 } & \begin{array}{l}\text { Low quality pool type for adult/subadult classes; moderate-high quality habitat for y-o-y and small juveniles } \\
\text { for rearing. Maximum depth }<1.0 \mathrm{~m} . \text { Low availability of instream cover types; usually with Low-Nil current } \\
\text { velocities. }\end{array} \\
\text { EDDY POOL } & \text { EDDY }\end{array}
$$ \begin{array}{l}Represent large (<30 \mathrm{~m} in diameter) areas of counter current flows with depths generally>5 \mathrm{~m} ; produced by

major bank irregularities and are available at all flow stages although current velocities within eddy are

dependent on flow levels. High quality areas for adult and subadult life stages. High availability of instream

cover.\end{array}\right]\)| A side channel area that is separated from the mainstem at the upstream end but retains a connection at the |
| :--- |
| lower end. SN habitats generally present only at lower flow stages since area is a flowing side channel at |
| higher flows: characterized by low-nil velocity, variable depths (generally <3 m) and predominantly |
| depositional substrates (i.e., sand/silt/gravel); often supports growths of aquatic vegetation; very important |
| areas for rearing and feeding. |

Velocity Classifications:

Low: $<0.5 \mathrm{~m} / \mathrm{s}$
Moderate: 0.5 to $1.0 \mathrm{~m} / \mathrm{s}$
High: >1.0 m/s

Table B2 Length of bank habitat types at boat electrosfishing index sites within the lower Columbia River.

Section	Site ${ }^{\text {a }}$	Length (m) of Bank Habitat Type ${ }^{\text {b }}$														Total Length (m)
		A1	A2	A3	A4	A5	A6	A1+A2	A2+A3	D1	D2	D3	D1+D2	BW	Eddy	
Upstream	C00.0-R		543											394		937
Columbia	C00.7-L		290							303						593
	C01.3-L	200								1401						1601
	C02.8-L									882						882
	C03.6-L	1276			121					691						2087
	C04.6-R									517						517
	C05.6-L	654								447						1101
	C07.3-R				1705											1705
	C07.4-L												998			998
Upstream Columbia Total		2130	833		1826					4241			998	394		10422
Kootenay	K00.3-L								230					207		436
River	K00.6-R												364		232	596
	K01.8-L		304			387					1179					1871
	K01.8-R					326			971							1296
Kootenay River Total			304			713			1200		1179		364	207	232	4199
Downstream Columbia	C25.3-R	1380				317			1029							2727
	C27.6-R					122			185		306					613
	C28.2-R		1131													1131
	C34.9-L		1740	396												2136
	C36.6-L					880			1031			483				2395
	C47.8-L								826	613						1439
	C48.2-R												495	514		1009
	C49.0-L		379								550					930
	C49.0-R							101					618			720
	C49.8-L		2447													2447
	C49.8-R		1511								489			391		2391
	C52.2-L										458				431	889
	C52.2-R		3272												518	3790
	C52.8-L		428		464											893
	C53.6-L						1518									1518
Downstream Columbia Total		1380	10909	396	464	1320	1518	101	3072	613	1802	483	1113	905	949	25026
Grand Total		3510	12047	396	2290	2033	1518	101	4272	4854	2982	483	2475	1506	1181	39648

${ }^{a}$ See Appendix A, Figures A1 to A3 for sample site locations.
${ }^{\text {b }}$ See Appendix B, Table B1 for bank habitat type descriptions.

Summary of habitat variables recorded at boat electroshocking index sites in the Lower Columbia River, 05 October to 31 October 2020.

Section	Site ${ }^{\text {a }}$	Session	Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Conductivity ($\mu \mathrm{S}$)	Cloud Cover ${ }^{\text {b }}$	Water Surface Visibility	Instream Velocity ${ }^{\text {c }}$	$\begin{aligned} & \text { Water } \\ & \text { Clarity } \end{aligned}$	Cover Types (\%)						
										Substrate Interstices	Woody Debris	Turbulence	Aquatic Vegetation	Terrestrial Vegetation	Shallow Water	Deep Water
Kootenay		1	9.0	16.5	170	Clear	High	Medium	High	25	0	0	0	0	25	50
Kootenay		2	3.0	14.6	150	Overcast	High	High	High	25	0	0	0	0	50	25
Kootenay		3	8.0	12.8	140	Overcast	High	High	High	25	0	0	0	0	25	50
Kootenay		4	-1.0	10.2	160	Overcast	High	High	High	25	0	0	0	0	25	50
Kootenay		1	9.0	16.1	170	Clear	High	High	High	30	0	0	5	0	65	0
Kootenay		2	4.0	14.1	150	Overcast	High	High	High	0	0	0	2	0	88	10
Kootenay		3	8.0	12.6	140	Overcast	High	High	High	20	0	0	5	0	70	5
Kootenay		4	3.0	9.8	160	Overcast	High	High	High	20	0	0	5	0	75	0
Kootenay		1	9.0	16.4	170	Clear	High	High	High	20	0	0	0	0	70	10
Kootenay		4	1.0	10.2	160	Overcast	High	High	High	10	0	0	0	0	80	10
Kootenay		1	12.0	16.5	170	Clear	High	High	High	10	0	0	0	0	70	20
Kootenay		4	1.0	10.2	160	Overcast	High	High	High	20	0	0	0	0	60	20
Lower		1	16.0	15.0	130	Overcast	High	High	High	0	0	0	5	0	80	15
Lower		2	6.0	12.4	140	Partly cloudy	High	High	High	10	0	0	5	0	80	5
Lower		3	-6.0	9.8	140	Clear	High	High	High	0	0	0	5	0	85	10
Lower		4	1.0	9.2	140	Clear	High	High	High	25	0	0	2	0	65	8
Lower		1	14.0	15.2	130	Clear	High	High	High	0	0	0	0	0	80	20
Lower		2	8.0	12.4	140	Overcast	High	High	High	0	0	0	2	0	90	8
Lower		3	-1.0	10.3	130	Clear	High	High	High	0	0	0	0	0	90	10
Lower		4	9.0	9.4	140	Clear	High	High	High	0	0	0	0	0	90	10
Lower		1	14.0	15.1	130	Overcast	High	High	High	0	0	0	0	0	90	10
Lower		2	5.0	12.5	140	Partly cloudy	High	High	High	0	0	0	0	0	90	10
Lower		3	2.0	9.8	140	Overcast	High	High	High	0	0	0	0	0	95	5
Lower		4	4.0	9.6	130	Partly cloudy	High	High	High	0	0	0	0	0	95	5
Lower		1	14.0	15.2	130	Clear	High	High	High	20	0	0	0	0	70	10
Lower		2	6.0	12.4	140	Overcast	High	High	High	10	0	0	0	0	80	10
Lower		3	-2.0	10.3	140	Clear	High	High	High	0	0	0	0	0	85	15
Lower		4	8.0	9.4	140	Clear	High	High	High	10	0	0	0	0	70	20
Lower		1	12.0	15.0	130	Overcast	High	High	High	15	0	0	0	0	70	15
Lower		2	6.0	12.4	140	Partly cloudy	High	High	High	0	0	0	0	0	70	30
Lower		3	0.0	10.2	140	Overcast	High	High	High	0	0	0	0	0	85	15
Lower		4	3.0	9.6	130	Partly cloudy	High	High	High	0	0	0	0	0	85	15
Lower		1	14.0	15.3	130	Clear	High	High	High	0	0	0	0	0	85	15
Lower		2	6.0	12.4	140	Overcast	High	High	High	10	0	0	0	0	80	10
Lower		3	-2.0	9.8	140	Clear	High	High	High	0	0	0	0	0	85	15
Lower		4	4.0	9.5	140	Clear	High	High	High	5	0	0	1	0	85	9
Lower		1	12.0	15.0	130	Overcast	High	High	High	25	0	0	0	0	35	40
Lower		2	6.0	12.5	140	Partly cloudy	High	High	High	30	0	0	0	0	20	50
Lower		3	1.0	9.8	140	Overcast	High	High	High	20	0	0	0	0	20	60
Lower		4	9.0	9.7	130	Partly cloudy	High	High	High	15	0	0	0	0	40	45

${ }^{\text {a }}$ See Appendix A, Figures A1 to A3 for sample site locations.
Continued...
${ }^{\mathrm{b}}$ Clear $=<10 \% ;$ Partly Cloudy $=10-50 \% ;$ Mostly Cloudy $=50-90 \% ;$ Overcast $=>90 \%$.
${ }^{\mathrm{c}}$ High $=>1.0 \mathrm{~m} / \mathrm{s} ;$ Medium $=0.5-1.0 \mathrm{~m} / \mathrm{s}$; Low $=<0.5 \mathrm{~m} / \mathrm{s}$.
${ }^{\mathrm{d}}$ High $=>3.0 \mathrm{~m}$; Medium $=1.0-3.0 \mathrm{~m}$; Low $=<1.0 \mathrm{~m}$.

Section	Site ${ }^{\text {a }}$	Session	Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Conductivity ($\mu \mathrm{S}$)	Cloud Cover ${ }^{\text {b }}$	Water Surface Visibility	Instream Velocity ${ }^{\text {c }}$	Water Clarity ${ }^{\text {d }}$	Cover Types (\%)						
										Substrate Interstices	Woody Debris	Turbulence	Aquatic Vegetation	Terrestrial Vegetation	Shallow Water	Deep Water
Kootenay		1	9.0	16.5	170	Clear	High	Medium	High	25	0	0	0	0	25	50
Kootenay		2	3.0	14.6	150	Overcast	High	High	High	25	0	0	0	0	50	25
Kootenay		3	8.0	12.8	140	Overcast	High	High	High	25	0	0	0	0	25	50
Kootenay		4	-1.0	10.2	160	Overcast	High	High	High	25	0	0	0	0	25	50
Kootenay		1	9.0	16.1	170	Clear	High	High	High	30	0	0	5	0	65	0
Kootenay		2	4.0	14.1	150	Overcast	High	High	High	0	0	0	2	0	88	10
Kootenay		3	8.0	12.6	140	Overcast	High	High	High	20	0	0	5	0	70	5
Kootenay		4	3.0	9.8	160	Overcast	High	High	High	20	0	0	5	0	75	0
Kootenay		1	9.0	16.4	170	Clear	High	High	High	20	0	0	0	0	70	10
Kootenay		4	1.0	10.2	160	Overcast	High	High	High	10	0	0	0	0	80	10
Kootenay		1	12.0	16.5	170	Clear	High	High	High	10	0	0	0	0	70	20
Kootenay		4	1.0	10.2	160	Overcast	High	High	High	20	0	0	0	0	60	20
Lower		1	16.0	15.0	130	Overcast	High	High	High	0	0	0	5	0	80	15
Lower		2	6.0	12.4	140	Partly cloudy	High	High	High	10	0	0	5	0	80	5
Lower		3	-6.0	9.8	140	Clear	High	High	High	0	0	0	5	0	85	10
Lower		4	1.0	9.2	140	Clear	High	High	High	25	0	0	2	0	65	8
Lower		1	14.0	15.2	130	Clear	High	High	High	0	0	0	0	0	80	20
Lower		2	8.0	12.4	140	Overcast	High	High	High	0	0	0	2	0	90	8
Lower		3	-1.0	10.3	130	Clear	High	High	High	0	0	0	0	0	90	10
Lower		4	9.0	9.4	140	Clear	High	High	High	0	0	0	0	0	90	10
Lower		1	14.0	15.1	130	Overcast	High	High	High	0	0	0	0	0	90	10
Lower		2	5.0	12.5	140	Partly cloudy	High	High	High	0	0	0	0	0	90	10
Lower		3	2.0	9.8	140	Overcast	High	High	High	0	0	0	0	0	95	5
Lower		4	4.0	9.6	130	Partly cloudy	High	High	High	0	0	0	0	0	95	5
Lower		1	14.0	15.2	130	Clear	High	High	High	20	0	0	0	0	70	10
Lower		2	6.0	12.4	140	Overcast	High	High	High	10	0	0	0	0	80	10
Lower		3	-2.0	10.3	140	Clear	High	High	High	0	0	0	0	0	85	15
Lower		4	8.0	9.4	140	Clear	High	High	High	10	0	0	0	0	70	20
Lower		1	12.0	15.0	130	Overcast	High	High	High	15	0	0	0	0	70	15
Lower		2	6.0	12.4	140	Partly cloudy	High	High	High	0	0	0	0	0	70	30
Lower		3	0.0	10.2	140	Overcast	High	High	High	0	0	0	0	0	85	15
Lower		4	3.0	9.6	130	Partly cloudy	High	High	High	0	0	0	0	0	85	15
Lower		1	14.0	15.3	130	Clear	High	High	High	0	0	0	0	0	85	15
Lower		2	6.0	12.4	140	Overcast	High	High	High	10	0	0	0	0	80	10
Lower		3	-2.0	9.8	140	Clear	High	High	High	0	0	0	0	0	85	15
Lower		4	4.0	9.5	140	Clear	High	High	High	5	0	0	1	0	85	9
Lower		1	12.0	15.0	130	Overcast	High	High	High	25	0	0	0	0	35	40
Lower		2	6.0	12.5	140	Partly cloudy	High	High	High	30	0	0	0	0	20	50
Lower		3	1.0	9.8	140	Overcast	High	High	High	20	0	0	0	0	20	60
Lower		4	9.0	9.7	130	Partly cloudy	High	High	High	15	0	0	0	0	40	45

${ }^{\text {a }}$ See Appendix A, Figures A1 to A3 for sample site locations.
Continued...
${ }^{\mathrm{b}}$ Clear $=<10 \%$; Partly Cloudy $=10-50 \%$; Mostly Cloudy $=50-90 \%$; Overcast $=>90 \%$.
${ }^{\mathrm{c}}$ High $=>1.0 \mathrm{~m} / \mathrm{s} ;$ Medium $=0.5-1.0 \mathrm{~m} / \mathrm{s} ;$ Low $=<0.5 \mathrm{~m} / \mathrm{s}$.
${ }^{\mathrm{d}}$ High $=>3.0 \mathrm{~m} ;$ Medium $=1.0-3.0 \mathrm{~m}$; Low $=<1.0 \mathrm{~m}$.

Continued.

Section	Site ${ }^{\text {a }}$	Session	Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Conductivity ($\mu \mathrm{S}$)	Cloud Cover ${ }^{\text {b }}$	Water Surface Visibility	Instream Velocity ${ }^{\text {c }}$	Water Clarity ${ }^{\text {d }}$	Cover Types (\%)						
										Substrate Interstices	Woody Debris	Turbulence	Aquatic Vegetation	Terrestrial Vegetation	Shallow Water	Deep Water
Upper		1	11.0	14.5	110	Clear	High	Low	High	0	0	0	15	0	75	10
Upper		2	7.0	11.7	120	Clear	High	Low	High	0	0	0	60	0	40	0
Upper		3	5.0	11.5	120	Partly cloudy	High	Low	High	0	0	0	60	0	30	10
Upper		4	1.0	9.8	120	Partly cloudy	High	Low	High	0	0	0	5	0	85	10
Upper		1	10.0	14.6	110	Clear	High	Low	High	0	0	0	70	0	25	5
Upper		2	8.0	11.6	120	Clear	High	Low	High	0	0	0	80	0	20	0
Upper		3	6.0	11.7	120	Mostly cloudy	High	Low	High	0	0	0	85	0	15	0
Upper		4	2.0	9.7	120	Partly cloudy	High	Low	High	0	0	0	75	0	25	0
Upper		1	9.0	14.6	110	Clear	High	Low	High	0	0	0	65	0	30	5
Upper		2	5.0	11.7	120	Partly cloudy	High	Low	High	0	0	0	75	0	20	5
Upper		3	4.0	11.7	120	Partly cloudy	High	Low	High	5	0	0	65	0	20	10
Upper		4	1.0	9.7	120	Partly cloudy	High	Low	High	0	0	0	20	0	70	10
Upper		1	8.0	14.7	110	Clear	High	Low	High	0	0	0	100	0	0	0
Upper		2	3.0	12.2	130	Partly cloudy	High	Low	High	0	0	0	95	0	5	0
Upper		3	4.0	11.9	120	Partly cloudy	High	Low	High	0	0	0	100	0	0	0
Upper		4	4.0	10.2	120	Partly cloudy	High	Low	High	0	0	0	60	0	40	0
Upper		1	9.0	14.6	110	Clear	High	Low	High	10	0	0	50	0	30	10
Upper		2	3.0	12.0	130	Partly cloudy	High	Low	High	10	0	0	60	0	20	10
Upper		3	6.0	11.7	120	Partly cloudy	High	Low	High	0	0	0	20	0	30	50
Upper		4	6.0	10.1	120	Partly cloudy	High	Low	High	20	0	0	20	0	40	20
Upper		1	15.0	14.6	110	Clear	High	High	High	50	0	0	0	0	30	20
Upper		2	3.0	12.2	130	Overcast	High	High	High	50	0	0	0	0	30	20
Upper		3	5.0	11.6	120	Partly cloudy	High	High	High	40	0	0	0	0	15	45
Upper		4	-1.0	9.9	120	Overcast	High	High	High	30	0	0	0	0	30	40
Upper		1	16.0	14.6	110	Clear	High	Medium	High	0	0	0	5	0	85	10
Upper		2	3.0	12.2	120	Overcast	High	Medium	High	0	0	0	5	0	85	10
Upper		3	6.0	11.6	120	Overcast	Medium	Medium	High	0	0	0	15	0	70	15
Upper		4	-1.0	9.5	120	Overcast	High	Medium	High	0	0	0	0	0	85	15

[^2]

See Appendix A, Figures A1 to A3 for sample site locations.
${ }^{\mathrm{b}}$ See Appendix B, Table B1 for bank habitat type descriptions.

Section	Site ${ }^{\text {a }}$	Species	Bank Habitat Type ${ }^{\text {a }}$														Total
			A1	A1+A2	A2	A2+A3	A3	A4	A5	A6	BW	D1	D1+D2	D2	D3	Eddy	
Kootenay	K00.3-L	Lake Whitefish				6											6
	K00.3-L	Mountain Whitefish				5					2		1				8
	K00.3-L	Northern Pikeminnow				1					1						2
	K00.3-L	Rainbow Trout		1		8					4		1				14
	K00.3-L	Sculpin spp.									23						23
	K00.3-L	Sucker spp.		2		9					5						16
	K00.3-L	Walleye				6					7						19
	Site K00.3-L Total		0	9	0	35	0	0	0	0	42	0	2	0	0	0	88
	K00.6-R	Mountain Whitefish											43			,	47
	K00.6-R	Northern Pikeminnow											5			,	7
	K00.6-R	Rainbow Trout											6			9	15
	K00.6-R	Sculpin spp.														4	4
	K00.6-R	Sucker spp.											61			10	71
	K00.6-R	Walleye											11			3	14
	K00.6-R	White Sturgeon											6				,
	Site K00.6-R Total		0	0	0	0	0	0	0	0	0	0	132	0	0	32	164
	K01.8-L	Lake Whitefish			2									7			9
	K01.8-L	Mountain Whitefish			16				4					32			52
	K01.8-L	Northern Pikeminnow			5									5			10
	K01.8-L	Rainbow Trout			30				2					41			73
	K01.8-L	Redside Shiner			1				3								4
	K01.8-L	Sculpin spp.			15									68			83
	K01.8-L	Sucker spp.			2									38			40
	K01.8-L	Walleye			17				3					30			50
	K01.8-L	White Sturgeon			1									5			6
	Site K01.8-L Total		0	0	89	0	0	0	12	0	0	0	0	226	0	0	327
	K01.8-R	Brown Trout				1											1
	K01.8-R	Mountain Whitefish				31			2								33
	K01.8-R	Peamouth							1								1
	K01.8-R	Rainbow Trout				33			19								52
	K01.8-R	Redside Shiner							2								2
	K01.8-R	Sculpin spp.				74											74
	K01.8-R	Sucker spp.				2											2
	K01.8-R	Walleye				34			4								38
	K01.8-R	White Sturgeon				2											2
	Site K01.8-R Total		0	0	0	177	0	0	28	0	0	0	0	0	0	0	205
Kootenay Total			0	9	89	212	0	0	40	0	42	0	134	226	0	32	784
Downstream	C25.3-R	Bull Trout	1														1
Columbia	C25.3-R	Lake Whitefish	7			20			1								28
River	C25.3-R	Mountain Whitefish	10			96			1								107
	C25.3-R	Northern Pikeminnow	1			1											2
	C25.3-R	Rainbow Trout	73			70											148
	C25.3-R	Redside Shiner	30						1								31
	C25.3-R	Sculpin spp.	189			32											221
	C25.3-R	Sucker spp.	17			15											34
	C25.3-R	Walleye	13			24			9								46
	C25.3-R	White Sturgeon	2			1											3
	Site C25.3-R Total		343	0	0	259	0	0	19	0	0	0	0	0	0	0	621
	C27.6-R	Mountain Whitefish				2			2					42			46
	C27.6-R	Northern Pike							1								1
	C27.6-R	Rainbow Trout				25			22					29			76
	C27.6-R	Sculpin spp.												14			17
	C27.6-R	Tench				,											1
	C27.6-R	Walleye				3			8					5			16
	C27.6-R	White Sturgeon												1			1
	Site C27.6-R Total		0	0	0	31	0	0	36	0	0	0	0	91	0	0	158
	C28.2-R	Mountain Whitefish			31												31
	C28.2-R	Northern Pikeminnow			2												2
	C28.2-R	Rainbow Trout			119												119
	C28.2-R	Sculpin spp.			83												83
	C28.2-R	Sucker spp.			7												7
	C28.2-R	Walleye			22												22
	C28.2-R	White Sturgeon			1												1
	Site C28.2-R Total		0	0	265	0	0	0	0	0	0	0	0	0	0	0	265
	C34.9-L	Lake Whitefish			1												1
	C34.9-L	Mountain Whitefish			11												11
	C34.9-L	Northern Pikeminnow			1												1
	C34.9-L	Rainbow Trout			237		65										302
	C34.9-L	Redside Shiner			3												3
	C34.9-L	Sculpin spp.			140		15										155
	C34.9-L	Sucker spp.			2		4										6
	C34.9-L	Walleye			44		14										58
	C34.9-L	White Sturgeon			3												3
	Site C34.9-L Total		0	0	442	0	98	0	0	0	0	0	0	0	0	0	540
	C36.6-L	Lake Whitefish							2						2		4
	C36.6-L	Mountain Whitefish				18			11						18		47
	C36.6-L	Rainbow Trout				142			146						21		309
	C36.6-L	Redside Shiner							1								1
	C36.6-L	Sculpin spp.				64			26						8		98
	C36.6-L	Sucker spp.				1			2								3
	C36.6-L	Walleye				20			15						8		43
	Site C36.6-L Total		0	0	0	245	0	0	203	0	0	0	0	0	57	0	505
	C47.8-L	Bull Trout		1													2
	C47.8-L	Burbot		1								1					2
	C47.8-L	Kokanee										1					1
	C47.8-L	Lake Whitefish		1								4					5
	C47.8-L	Mountain Whitefish		3								11					14
	C47.8-L	Northern Pikeminnow										1					1
	C47.8-L	Rainbow Trout		88								45					133
	C47.8-L	Redside Shiner										15					15
	C47.8-L	Sculpin spp.		134								55					189
	C47.8-L	Smallmouth Bass										2					2
	C47.8-L	Sucker spp.		11								46					57
	C47.8-L	Walleye		28								31					59
	Site C47.8-L Total		0	267	0	0	0	0	0	0	0	213	0	0	0	0	480

[^3]| Section | Site ${ }^{\text {a }}$ | Species | Bank Habitat Type ${ }^{\text {a }}$ | | | | | | | | | | | | | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | A1 | A1+A2 | A2 | A2+A3 | A3 | A4 | A5 | A6 | BW | D1 | D1+D2 | D2 | D3 | Eddy | |
| | C48.2-R | Kokanee | | | | | | | | | | | 2 | | | | 2 |
| | C48.2-R | Lake Whitefish | | | | | | | | | | | 1 | | | | 1 |
| | C48.2-R | Mountain Whitefish | | | | | | | | | | | 16 | | | | 16 |
| | C48.2-R | Rainbow Trout | | | | | | | | | 29 | | 71 | | | | 100 |
| | C48.2-R | Sculpin spp. | | | | | | | | | 21 | | 20 | | | | 41 |
| | C48.2-R | Walleye | | | | | | | | | 14 | | 43 | | | | 57 |
| | C48.2-R | White Sturgeon | | | | | | | | | 1 | | | | | | 1 |
| | Site C48.2-R Total | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65 | 0 | 153 | 0 | 0 | 0 | 218 |
| | C49.0-L | Brook Trout | | | | | | | | | | | | 1 | | | 1 |
| | C49.0-L | Lake Whitefish | | | 2 | | | | | | | | | 8 | | | 10 |
| | C49.0-L | Mountain Whitefish | | | 80 | | | | | | | | | 1 | | | 81 |
| | C49.0-L | Rainbow Trout | | | 31 | | | | | | | | | 39 | | | 70 |
| | C49.0-L | Sculpin spp. | | | 4 | | | | | | | | | 23 | | | 27 |
| | C49.0-L | Sucker spp. | | | 8 | | | | | | | | | 3 | | | 11 |
| | C49.0-L | Walleye | | | 7 | | | | | | | | | 12 | | | 19 |
| | Site C49.0-L Total | | 0 | 0 | 132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87 | 0 | 0 | 219 |
| | C49.0-R | Lake Whitefish | | 1 | | | | | | | | | 3 | | | | 4 |
| | C49.0-R | Mountain Whitefish | | | | | | | | | | | 12 | | | | 12 |
| | C49.0-R | Rainbow Trout | | 28 | | | | | | | | | 45 | | | | 73 |
| | C49.0-R | Sculpin spp. | | 1 | | | | | | | | | 28 | | | | 29 |
| | C49.0-R | Sucker spp. | | | | | | | | | | | 13 | | | | 13 |
| | C49.0-R | Walleye | | | | | | | | | | | 15 | | | | 18 |
| | Site C49.0-R Total | | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 116 | 0 | 0 | 0 | 149 |
| | C49.8-L | Burbot | | | 6 | | | | | | | | | | | | 6 |
| | C49.8-L | Lake Whitefish | | | 17 | | | | | | | | | | | | 17 |
| | C49.8-L | Mountain Whitefish | | | 121 | | | | | | | | | | | | 121 |
| | C49.8-L | Northern Pikeminnow | | | 1 | | | | | | | | | | | | 1 |
| | C49.8-L | Rainbow Trout | | | 374 | | | | | | | | | | | | 374 |
| | C49.8-L | Sculpin spp. | | | 281 | | | | | | | | | | | | 281 |
| | C49.8-L | Sucker spp. | | | 21 | | | | | | | | | | | | 21 |
| | C49.8-L | Walleye | | | 61 | | | | | | | | | | | | 61 |
| | C49.8-L | White Sturgeon | | | 1 | | | | | | | | | | | | 1 |
| | Site C49.8-L Total | | 0 | 0 | 883 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 883 |
| | C49.8-R | Brown Trout | | | | | | | | | | | | 1 | | | 1 |
| | C49.8-R | Burbot | | | | | | | | | 1 | | | 5 | | | 6 |
| | C49.8-R | Lake Whitefish | | | 2 | | | | | | | | | 2 | | | 4 |
| | C49.8-R | Mountain Whitefish | | | 74 | | | | | | 3 | | | 24 | | | 101 |
| | C49.8-R | Northern Pikeminnow | | | 1 | | | | | | 2 | | | | | | 3 |
| | C49.8-R | Rainbow Trout | | | 47 | | | | | | 36 | | | 48 | | | 131 |
| | C49.8-R | Sculpin spp. | | | 55 | | | | | | 38 | | | 5 | | | 98 |
| | C49.8-R | Sucker spp. | | | 29 | | | | | | 13 | | | 18 | | | 60 |
| | C49.8-R | Walleye | | | 24 | | | | | | 15 | | | 17 | | | 56 |
| | C49.8-R | White Sturgeon | | | 4 | | | | | | | | | | | | 4 |
| | Site C49.8-R Total | | 0 | 0 | 236 | 0 | 0 | 0 | 0 | 0 | 108 | 0 | 0 | 120 | 0 | 0 | 464 |
| | C52.2-L | Brook Trout | | | | | | | | | | | | | | 1 | 1 |
| | C52.2-L | Brown Trout | | | | | | | | | | | | | | 1 | 1 |
| | C52.2-L | Lake Whitefish | | | | | | | | | | | | 3 | 1 | | 4 |
| | C52.2-L | Mountain Whitefish | | | | | | | | | | | | 7 | | 6 | 13 |
| | C52.2-L | Rainbow Trout | | | | | | | | | | 1 | | 23 | | 86 | 110 |
| | C52.2-L | Sculpin spp. | | | | | | | | | | | | | | 57 | 57 |
| | C52.2-L | Sucker spp. | | | | | | | | | | | | | | 4 | 4 |
| | C52.2-L | Walleye | | | | | | | | | | | | 1 | | 16 | 17 |
| | Site C52.2-L Total | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 34 | 1 | 171 | 207 |
| | C52.2-R | Brown Trout | | | 2 | | | | | | | | | | | | 2 |
| | C52.2-R | Burbot | | | 5 | | | | | | | | | | | | 5 |
| | C52.2-R | Lake Whitefish | | | 24 | | | | | | | | | | | 1 | 25 |
| | C52.2-R | Mountain Whitefish | | | 76 | | | | | | | | | | | 2 | 78 |
| | C52.2-R | Rainbow Trout | | | 203 | | | | | | | | | | | 95 | 298 |
| | C52.2-R | Redside Shiner | | | | | | | | | | | | | | 1 | 1 |
| | C52.2-R | Sculpin spp. | | | 48 | | | | | | | | | | | | 48 |
| | C52.2-R | Smallmouth Bass | | | | | | | | | | | | | | 1 | 1 |
| | C52.2-R | Sucker spp. | | | 8 | | | | | | | | | | | | 8 |
| | C52.2-R | Walleye | | | 91 | | | | | | | | | | | 29 | 120 |
| | C52.2-R | White Sturgeon | | | 1 | | | | | | | | | | | | 1 |
| | Site C52.2-R Total | | 0 | 0 | 458 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 129 | 587 |
| | C52.8-L | Brook Trout | | | 1 | | | | | | | | | | | | 1 |
| | C52.8-L | Lake Whitefish | | | | | | 3 | | | | | | | | | 3 |
| | C52.8-L | Mountain Whitefish | | | 1 | | | 16 | | | | | | | | | 17 |
| | C52.8-L | Rainbow Trout | | | 25 | | | 91 | | | | | | | | | 116 |
| | C52.8-L | Sculpin spp. | | | | | | 22 | | | | | | | | | 22 |
| | C52.8-L | Sucker spp. | | | | | | 4 | | | | | | | | | 4 |
| | C52.8-L | Walleye | | | 15 | | | 27 | | | | | | | | | 42 |
| | Site C52.8-L Total | | 0 | 0 | 42 | 0 | 0 | 163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 205 |
| | C53.6-L | Lake Whitefish | | | | | | | | 13 | | | | | | | 13 |
| | C53.6-L | Mountain Whitefish | | | | | | | | 10 | | | | | | | 10 |
| | C53.6-L | Rainbow Trout | | | | | | | | 108 | | | | | | | 108 |
| | C53.6-L | Sculpin spp. | | | | | | | | 54 | | | | | | | 54 |
| | C53.6-L | Smallmouth Bass | | | | | | | | 3 | | | | | | | 3 |
| | C53.6-L | Sucker spp. | | | | | | | | 3 | | | | | | | 3 |
| | C53.6-L | Walleye | | | | | | | | 31 | | | | | | | 31 |
| | Site C53.6-L Total | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 222 | 0 | 0 | 0 | 0 | 0 | 0 | 222 |
| Downstream Columbia River Total Grand Total | | | 343 | 300 | 2458 | 535 | 98 | 163 | 258 | 222 | 173 | 214 | 269 | 332 | 58 | 300 | 5723 |
| | | | 985 | 309 | 2912 | 747 | 98 | 830 | 298 | 222 | 371 | 2048 | 908 | 560 | 58 | 332 | 10678 |

[^4]
Appendix C - Modelling Methods and Parameter Estimates

Lower Columbia River Fish Population Indexing 2020

Methods

Data Preparation

The fish indexing data were provided by Okanagan Nation Alliance and Golder Associates in the form of an Access database. The discharge and temperature data were obtained from the Columbia Basin Hydrological Database maintained by Poisson Consulting. The Rainbow Trout egg dewatering estimates were provided by CLBMON-46 (Irvine, Baxter, and Thorley 2015) and the Mountain Whitefish egg stranding estimates by Golder Associates (2013).

Discharge

Missing hourly discharge values for Hugh-Keenleyside Dam (HLK), Brilliant Dam (BRD) and Birchbank (BIR) were estimated by first leading the BIR values by 2 hours to account for the lag. Values missing at just one of the dams were then estimated assuming $H L K+$ $B R D=B I R$. Negative values were set to be zero. Next, missing values spanning ≤ 28 days were estimated at HLK and BRD based on linear interpolation. Finally any remaining missing values at BIR were set to be $H L K+B R D$.

The data were prepared for analysis using R version 4.0.5 (R Core Team 2020).

Data Analysis

Model parameters were estimated using hierarchical Bayesian methods. The parameters were produced using JAGS (Plummer 2015) and STAN (Carpenter et al. 2017). For additional information on Bayesian estimation the reader is referred to McElreath (2016).

The one exception is the length-at-age estimates which were produced using the mixdist R package (P. Macdonald 2012) which implements Maximum Likelihood with Expectation Maximization.

Unless stated otherwise, the Bayesian analyses used weakly informative normal and halfnormal prior distributions (Gelman, Simpson, and Betancourt 2017). The posterior distributions were estimated from 1500 Markov Chain Monte Carlo (MCMC) samples thinned from the second halves of 3 chains (Kery and Schaub 2011, 38-40). Model convergence was confirmed by ensuring that the potential scale reduction factor $\hat{R} \leq 1.05$ (Kery and Schaub 2011, 40) and the effective sample size (Brooks et al. 2011) ESS ≥ 150 for each of the monitored parameters (Kery and Schaub 2011, 61).

The parameters are summarised in terms of the point estimate, lower and upper 95\% credible limits (CLs) and the surprisal s-value (Greenland 2019). The estimate is the median (50th percentile) of the MCMC samples while the 95\% CLs are the 2.5th and 97.5th percentiles. The s-value can be considered a test of directionality. More specifically it indicates how surprising (in bits) it would be to discover that the true value of the
parameter is in the opposite direction to the estimate. An s-value (Chow and Greenland 2019) is the Shannon transform (-log to base 2) of the corresponding p-value (Kery and Schaub 2011; Greenland and Poole 2013). A surprisal value of 4.3 bits, which is equivalent to a p-value of 0.05 indicates that the surprise would be equivalent to throwing 4.3 heads in a row. The condition that non-essential explanatory variables have s-values ≥ 4.3 bits provides a useful model selection heuristic (Kery and Schaub 2011).

Model adequacy was assessed via posterior predictive checks (Kery and Schaub 2011). More specifically, the number of zeros and the first four central moments (mean, variance, skewness and kurtosis) for the deviance residuals were compared to the expected values by simulating new residuals. In this context the s-value indicates how surprising each metric is given the estimated posterior probability distribution for the residual variation.

Where computationally practical, the sensitivity of the parameters to the choice of prior distributions was evaluated by increasing the standard deviations of all normal, halfnormal and log-normal priors by an order of magnitude and then using \hat{R} to test whether the samples where drawn from the same posterior distribution (Thorley and Andrusak 2017).

The results are displayed graphically by plotting the modeled relationships between particular variables and the response(s) with the remaining variables held constant. In general, continuous and discrete fixed variables are held constant at their mean and first level values, respectively, while random variables are held constant at their typical values (expected values of the underlying hyperdistributions) (Kery and Schaub 2011, 77-82). When informative the influence of particular variables is expressed in terms of the effect size (i.e., percent or n-fold change in the response variable) with 95% credible intervals (CIs, Bradford, Korman, and Higgins 2005).

The analyses were implemented using R version 4.0.5 (R Core Team 2020) and the mbr family of packages.

Model Templates

```
Condition
    data {
        int nYear;
    int nObs;
    vector[nObs] Length;
    vector[nObs] Weight;
    vector[nObs] Dayte;
    int Year[nObs];
parameters {
    real bWeight;
    real bWeightLength;
    real bWeightDayte;
    real bWeightLengthDayte;
    real<lower=0> sWeightYear;
    real<lower=0> sWeightLengthYear;
```

```
    vector[nYear] bWeightYear;
    vector[nYear] bWeightLengthYear;
    real<lower=0> sWeight;
model {
    vector[nObs] eWeight;
    bWeight ~ normal(5, 4);
    bWeightLength ~ normal(3, 1);
    bWeightDayte ~ normal(0, 1);
    bWeightLengthDayte ~ normal(0, 1);
    sWeightYear ~ normal(0, 1);
    sWeightLengthYear ~ normal(0, 1);
    for (i in 1:nYear) {
        bWeightYear[i] ~ normal(0, sWeightYear);
        bWeightLengthYear[i] ~ normal(0, sWeightLengthYear);
    }
    sWeight ~ normal(0, 5);
    for(i in 1:nObs) {
        eWeight[i] = bWeight + bWeightDayte * Dayte[i] + bWeightYear[Year[i]] + (bWeightL
ength + bWeightLengthDayte * Dayte[i] + bWeightLengthYear[Year[i]]) * Length[i];
        Weight[i] ~ lognormal(eWeight[i], sWeight);
}
```

Block 1.

```
Growth
.model {
    bK ~ dnorm (0, 5^-2)
    sKYear ~ dnorm(0, 2^-2) T(0,)
    for (i in 1:nYear) {
        bKYear[i] ~ dnorm(0, sKYear^-2)
        log(eK[i]) <- bK + bKYear[i]
    }
    bLinf ~ dunif(200, 1000)
    sGrowth ~ dnorm(0, 25^-2) T(0,)
    for (i in 1:length(Year)) {
        eGrowth[i] <- max(0, (bLinf - LengthAtRelease[i]) * (1 - exp(-sum(eK[Year[i]:(Yea
r[i] + dYears[i] - 1)]))))
        Growth[i] ~ dnorm(eGrowth[i], sGrowth^-2)
    }
```

Block 2.

```
Movement
.model {
    bFidelity ~ dnorm(0, 1^-2)
bLength ~ dnorm(0, 1^-2)
for (i in 1:length(Fidelity)) {
        logit(eFidelity[i]) <- bFidelity + bLength * Length[i]
        Fidelity[i] ~ dbern(eFidelity[i])
    }
```

Block 3.

```
Survival
.model{
    bEfficiency ~ dnorm(0, 4^-2)
    bEfficiencySampledLength ~ dnorm(0, 4^-2)
    bSurvival ~ dnorm(0, 4^-2)
    sSurvivalYear ~ dnorm(0, 4^-2) T(0,)
    for(i in 1:nYear) {
        bSurvivalYear[i] ~ dnorm(0, sSurvivalYear^-2)
    }
    for(i in 1:(nYear-1)) {
        logit(eEfficiency[i]) <- bEfficiency + bEfficiencySampledLength * SampledLength[i
]
        logit(eSurvival[i]) <- bSurvival + bSurvivalYear[i]
        eProbability[i,i] <- eSurvival[i] * eEfficiency[i]
        for(j in (i+1):(nYear-1)) {
            eProbability[i,j] <- prod(eSurvival[i:j]) * prod(1-eEfficiency[i:(j-1)]) * eEff
iciency[j]
    }
        for(j in 1:(i-1)) {
            eProbability[i,j] <- 0
        }
    }
    for(i in 1:(nYear-1)) {
        eProbability[i,nYear] <- 1 - sum(eProbability[i,1:(nYear-1)])
    }
    for(i in 1:(nYear - 1)) {
        Marray[i, 1:nYear] ~ dmulti(eProbability[i,], Released[i])
    }
```

Block 4.

```
Capture Efficiency
.model {
    bEfficiency ~ dnorm(-4, 2^-2)
    sEfficiencySessionAnnual ~ dnorm(0, 1^-2) T(0,)
```

```
    for (i in 1:nSession) {
        for (j in 1:nAnnual) {
            bEfficiencySessionAnnual[i, j] ~ dnorm(0, sEfficiencySessionAnnual^-2)
    }
}
    for (i in 1:length(Recaptures)) {
    logit(eEfficiency[i]) <- bEfficiency + bEfficiencySessionAnnual[Session[i], Annua
1[i]]
    eFidelity[i] ~ dnorm(Fidelity[i], FidelitySD[i]^-2) T(FidelityLower[i], FidelityU
pper[i])
    Recaptures[i] ~ dbin(eEfficiency[i] * eFidelity[i], Tagged[i])
    }
```

Block 5.

```
Abundance
.model {
    bDensity ~ dnorm(5, 4^-2)
    sDensityAnnual ~ dnorm(0, 1^-2) T(0,)
    for (i in 1:nAnnual) {
        bDensityAnnual[i] ~ dnorm(0, sDensityAnnual^-2)
    }
    sDensitySite ~ dnorm(0, 1^-2) T(0,)
    sDensitySiteAnnual ~ dnorm(0, 1^-2) T(0,)
    for (i in 1:nSite) {
        bDensitySite[i] ~ dnorm(0, sDensitySite^-2)
        for (j in 1:nAnnual) {
            bDensitySiteAnnual[i, j] ~ dnorm(0, sDensitySiteAnnual^-2)
        }
    }
    bEfficiencyVisitType[1] <- 0
    bEfficiencyVisitTypeDensity[1] ~ dnorm(0, 2^-2)
    for (i in 2:nVisitType) {
        bEfficiencyVisitType[i] ~ dnorm(0, 2^-2)
        bEfficiencyVisitTypeDensity[i] <- 0
    }
    sDispersion ~ dnorm(0, 1^-2)
    sDispersionVisitType[1] <- 0
    for(i in 2:nVisitType) {
        sDispersionVisitType[i] ~ dnorm(0, 2^-2)
    }
    for (i in 1:length(Fish)) {
        log(eDensity[i]) <- bDensity + bDensitySite[Site[i]] + bDensityAnnual[Annual[i]]
+ bDensitySiteAnnual[Site[i],Annual[i]]
        eAbundance[i] <- eDensity[i] * SiteLength[i]
```

```
    logit(eEfficiency[i]) <- logit(Efficiency[i]) + bEfficiencyVisitType[VisitType[i]
] + bEfficiencyVisitTypeDensity[VisitType[i]] * (eDensity[i] - exp(bDensity + sDensit
yAnnual^2/2 + sDensitySite^2/2 + sDensitySiteAnnual^2/2))
    log(esDispersion[i]) <- sDispersion + sDispersionVisitType[VisitType[i]]
    eDispersion[i] ~ dgamma(esDispersion[i]^-2 + 0.1, esDispersion[i]^-2 + 0.1)
    eFish[i] <- eAbundance[i] * ProportionSampled[i] * eEfficiency[i]
    Fish[i] ~ dpois(eFish[i] * eDispersion[i])
}
```

Block 6.

```
Fecundity
model {
    bFecundity ~ dnorm(0, 5^-2)
    bFecundityWeight ~ dnorm(1, 1^-2) T(0,)
    sFecundity ~ dnorm(0, 1^-2) T(0,)
    for(i in 1:length(Weight)) {
        eFecundity[i] = bFecundity + bFecundityWeight * log(Weight[i])
        Fecundity[i] ~ dlnorm(eFecundity[i], sFecundity^-2)
    }
```

Block 7.

```
Stock-Recruitment
.model {
    bAlpha ~ dnorm(0, 0.003^-2) T(0,)
    bBeta ~ dnorm(0, 0.007^-2) T(0, )
    bEggLoss ~ dnorm(0, 100^-2)
    sRecruits ~ dnorm(0, 1^-2) T(0,)
    for(i in 1:length(Recruits)){
        log(eRecruits[i]) <- log(bAlpha * Eggs[i] / (1 + bBeta * Eggs[i])) + bEggLoss * E
ggLoss[i]
            Recruits[i] ~ dlnorm(log(eRecruits[i]), sRecruits^-2)
    }
```

Block 8.

```
Age-Ratios
.model{
    bProbAge1 ~ dnorm(0, 1^-2)
    bProbAge1Loss ~ dnorm(0, 1^-2)
    sProbAge1 ~ dnorm(0, 1^-2) T(0,)
    for(i in 1:length(Age1Prop)){
        eAge1Prop[i] <- bProbAge1 + bProbAge1Loss * LossLogRatio[i]
        Age1Prop[i] ~ dnorm(eAge1Prop[i], sProbAge1^-2)
    }
```

Block 9.

Results

Tables

Condition

Table 1. Parameter descriptions.

Parameter	Description
bWeight	Intercept of log(eWeight)
bWeightDayte	Effect of Dayte on bWeight
bWeightLength	Intercept of effect of Length on bWeight
bWeightLengthDayte	Effect of Dayte on bWeightLength
bWeightLengthYear[i]	Effect of $i^{\text {th }}$ Year on bWeightLength
bWeightYear[i]	Effect of $i^{\text {th }}$ Year on bWeight
Dayte[i]	Standardised day of year $i^{\text {th }}$ fish was captured
eWeight[i]	Expected Weight of $i^{\text {th }}$ fish
Length[i]	Log-transformed and centered fork length of $i^{\text {th }}$ fish
sWeight	Log standard deviation of residual variation in log (Weight)
sWeightLengthYear	Log standard deviation of bWeightLengthYear
sWeightYear	Log standard deviation of bWeightYear
Weight[i]	Recorded weight of $i^{\text {th }}$ fish
Year[i]	Year $i^{\text {th }}$ fish was captured

Mountain Whitefish

Table 2. Model coefficients.

term	estimate	lower	upper	svalue
bWeight	5.4729178	5.4544136	5.4920389	10.55171
bWeightDayte	-0.0197915	-0.0231447	-0.0163968	10.55171
bWeightLength	3.1611042	3.1208279	3.2017754	10.55171
bWeightLengthDayte	-0.0147155	-0.0237248	-0.0054150	8.22978
sWeight	0.1471742	0.1455375	0.1488543	10.55171
sWeightLengthYear	0.1015518	0.0722011	0.1491862	10.55171
sWeightYear	0.0463121	0.0347305	0.0657113	10.55171

Table 3. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
15354	7	3	500	2	254	1.022	TRUE

Rainbow Trout

Table 4. Model coefficients.

term	estimate	lower	upper	svalue
bWeight	6.0183556	6.0074755	6.0290114	10.551708
bWeightDayte	-0.0037957	-0.0061465	-0.0014348	8.966746

bWeightLength	2.9230074	2.8982078	2.9474953	10.551708
bWeightLengthDayte	0.0386003	0.0312429	0.0456394	10.551708
sWeight	0.1016007	0.1005167	0.1028162	10.551708
sWeightLengthYear	0.0525387	0.0376323	0.0767291	10.551708
sWeightYear	0.0255990	0.0193251	0.0358481	10.551708

Table 5. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
16316	7	3	500	2	366	1.009	TRUE

Walleye

Table 6. Model coefficients.

term	estimate	lower	upper	svalue
bWeight	6.2820584	6.2676127	6.2972647	10.551708
bWeightDayte	0.0157745	0.0130837	0.0183718	10.551708
bWeightLength	3.2310820	3.1958506	3.2664993	10.551708
bWeightLengthDayte	-0.0069059	-0.0224187	0.0092320	1.291965
sWeight	0.0924966	0.0911273	0.0937570	10.551708
sWeightLengthYear	0.0756821	0.0533414	0.1083093	10.551708
sWeightYear	0.0347314	0.0260692	0.0490480	10.551708

Table 7. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
9980	7	3	500	2	316	1.007	TRUE

Growth

Table 8. Parameter descriptions.

Parameter	Description
bK	Intercept of $\log (\mathrm{eK})$
bKYear[i]	Effect of $\mathrm{i}^{\text {th }}$ Year on $b K$
bLinf	Mean maximum length
dYears[i]	Years between release and recapture of $i^{\text {th }}$ recapture
eGrowth	Expected Growth between release and recapture
eK[i]	Expected von Bertalanffy growth coefficient from $i-1^{\text {th }}$ to $i^{\text {th }}$ year
Growth[i]	Observed growth between release and recapture of $i^{\text {th }}$ recapture
LengthAtRelease[i]	Length at previous release of $i^{\text {th }}$ recapture
sGrowth	Log standard deviation of residual variation in Growth
sKYear	Log standard deviation of bKYear
Year[i]	Release year of $i^{\text {th }}$ recapture

Mountain Whitefish

Table 9. Model coefficients.

term	estimate	lower	upper

bK	-0.9411320	-1.1641675	-0.7400515	10.55171
bLinf	395.2888775	389.0096367	400.9345856	10.55171
sGrowth	11.3642806	10.4453562	12.3896129	10.55171
sKYear	0.3613933	0.2284925	0.5799047	10.55171

Table 10. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
278	4	3	500	50	1020	1.006	TRUE

Rainbow Trout

Table 11. Model coefficients.

term	estimate	lower	upper	svalue
bK	-0.1565379	-0.3143349	0.0033852	4.247928
bLinf	482.8403628	477.8917278	488.1238806	10.551708
sGrowth	29.7348723	28.6493707	31.0052923	10.551708
sKYear	0.2989984	0.2164984	0.4510284	10.551708

Table 12. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
1343	4	3	500	50	753	1.006	TRUE

Walleye
Table 13. Model coefficients.

term	estimate	lower	upper	svalue
bK	-2.5355083	-3.0570148	-2.0651447	10.55171
bLinf	743.6815880	623.7372575	963.1322716	10.55171
sGrowth	17.8484294	16.4112282	19.5333356	10.55171
sKYear	0.3237749	0.2030559	0.5174272	10.55171

Table 14. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
272	4	3	500	50	211	1.011	TRUE

Movement

Table 15. Parameter descriptions.

Parameter	Description
bFidelity	Intercept of logit(eFidelity)
bLength	Effect of length on logit(eFidelity)
eFidelity[i]	Expected site fidelity of $i^{\text {th }}$ recapture
Fidelity[i]	Whether the $i^{\text {th }}$ recapture was encountered at the same site as the previous encounter
Length[i]	Length at previous encounter of $i^{\text {th }}$ recapture

Mountain Whitefish

Table 16. Model coefficients.

term	estimate	lower	upper	svalue
bFidelity	-0.1564636	-0.5196967	0.2188765	1.2686199
bLength	-0.1108706	-0.4588498	0.2432566	0.8917124

Table 17. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
119	2	3	500	1	852	1	TRUE

Rainbow Trout
Table 18. Model coefficients.

term	estimate	lower	upper	svalue
bFidelity	0.7548157	0.6053048	0.9113941	10.55171
bLength	-0.3263096	-0.4809025	-0.1778207	10.55171

Table 19. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
813	2	3	500	1	867	1.002	TRUE

Walleye
Table 20. Model coefficients.

term	estimate	lower	upper	svalue
bFidelity	0.6727876	0.4061552	0.9524477	10.5517083
bLength	-0.0735188	-0.3447724	0.1749418	0.8085569

Table 21. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
229	2	3	500	1	718	1.001	TRUE

Length-At-Age

Mountain Whitefish

Table 22. The estimated upper length cutoffs (mm) by age and year.

Year	Age0	Age1	Age2
1990	164	274	NA
1991	144	226	295
2001	141	258	344
2002	163	261	344
2003	159	263	354
2004	158	249	342
2005	168	263	363

2006	175	284	357
2007	171	280	337
2008	170	247	340
2009	169	265	355
2010	177	272	352
2011	163	269	348
2012	162	268	346
2013	185	282	349
2014	178	284	362
2015	167	278	366
2016	163	283	352
2017	158	270	355
2018	177	262	346
2019	188	282	363
2020	166	291	365

Rainbow Trout
Table 23. The estimated upper length cutoffs (mm) by age and year.

Year	Age0	Age1
1990	151	358
1991	123	349
2001	130	329
2002	151	355
2003	157	347
2004	139	337
2005	159	351
2006	166	369
2007	162	380
2008	142	344
2009	144	343
2010	139	342
2011	152	349
2012	148	349
2013	165	360
2014	151	342
2015	161	340
2016	151	343
2017	130	322
2018	136	315
2019	154	319
2020	150	352

Survival

Table 24. Parameter descriptions.

Parameter	Description
bEfficiency	Intercept for logit(eEfficiency)
bEfficiencySampledLength	Effect of SampledLength on bEfficiency
bSurvival	Intercept for logit(eSurvival)
bSurvivalYear[i]	Effect of Year on bSurvival
eEfficiency[i]	Expected recapture probability in $i^{\text {th }}$ year
eSurvival[i]	Expected survival probability from $i-1^{\text {th }}$ to $^{\text {th }}$ year
SampledLength	Total standardised length of river sampled
sSurvivalYear	Log SD of bSurvivalYear

Mountain Whitefish

Table 25. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-4.2364367	-4.4301453	-4.0419534	10.551708
bEfficiencySampledLength	0.4071795	0.1795626	0.6593311	8.966746
bSurvival	0.8386884	0.2258616	1.6408760	6.644818
sSurvivalYear	1.2633179	0.7263278	2.3547088	10.551708

Table 26. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
19	4	3	500	200	1095	1.004	TRUE

Rainbow Trout
Table 27. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-2.5098794	-2.6688861	-2.3419713	10.5517083
bEfficiencySampledLength	0.0098490	-0.1252251	0.1532519	0.1690842
bSurvival	-0.4360342	-0.6545618	-0.2238132	10.5517083
sSurvivalYear	0.3175797	0.1424071	0.5736815	10.5517083

Table 28. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
19	4	3	500	200	1202	1.002	TRUE

Walleye

Table 29. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-3.4688888	-3.6757601	-3.2728156	10.551708
bEfficiencySampledLength	0.1432182	-0.0272401	0.3166472	3.133856
bSurvival	0.1206251	-0.1640285	0.5086826	1.389317

sSurvivalYear	0.5066718	0.2042575	0.9619441	10.551708

Table 30. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
19	4	3	500	200	1362	1.002	TRUE

Capture Efficiency

Table 31. Parameter descriptions.

Parameter	Description
Annual[i]	Year of $i^{\text {th }}$ visit
bEfficiency	Intercept for logit(eEfficiency)
bEfficiencySessionAnnual	Effect of Session within Annual on logit(eEfficiency)
eEfficiency[i]	Expected efficiency on $i^{\text {th }}$ visit
eFidelity[i]	Expected site fidelity on $i^{\text {th }}$ visit
Fidelity[i]	Mean site fidelity on $i^{\text {th }}$ visit
FidelitySD[i]	SD of site fidelity on $i^{\text {th }}$ visit
Recaptures[i]	Number of marked fish recaught during $i^{\text {th }}$ visit
sEfficiencySessionAnnual	SD of bEfficiencySessionAnnual
Session[i]	Session of $i^{\text {th }}$ visit
Tagged[i]	Number of marked fish tagged prior to $i^{\text {th }}$ visit

Mountain Whitefish

Subadult
Table 32. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-4.3857446	-4.9067713	-4.033052	10.55171
sEfficiencySessionAnnual	0.5283095	0.0419463	1.179385	10.55171

Table 33. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
1481	2	3	500	100	340	1.013	TRUE

Adult

Table 34. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-4.5354724	-4.8696043	-4.2719318	10.55171
sEfficiencySessionAnnual	0.2361849	0.0184675	0.6532163	10.55171

Table 35. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
1677	2	3	500	100	350	1.008	TRUE

Rainbow Trout

Subadult

Table 36. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-3.0297720	-3.1625907	-2.9022676	10.55171
sEfficiencySessionAnnual	0.3934637	0.2782494	0.5219722	10.55171

Table 37. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
1699	2	3	500	100	1184	1.004	TRUE

Adult
Table 38. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-3.4889660	-3.6274116	-3.3601600	10.55171
sEfficiencySessionAnnual	0.1991832	0.0119785	0.3922198	10.55171

Table 39. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
1768	2	3	500	100	309	1.004	TRUE

Walleye
Table 40. Model coefficients.

term	estimate	lower	upper	svalue
bEfficiency	-3.936283	-4.1635307	-3.7185630	10.55171
sEfficiencySessionAnnual	0.575223	0.3629882	0.8253517	10.55171

Table 41. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
1820	2	3	500	100	1194	1.004	TRUE

Abundance

Table 42. Parameter descriptions.

Parameter	Description
Annual	Year
bDensity	Intercept for log(eDensity)
bDensityAnnual	Effect of Annual on bDensity
bDensitySite	Effect of Site on bDensity
bDensitySiteAnnual	Effect of Site within Annual on bDensity
bEfficiencyVisitType	Effect of VisitType on Efficiency
eDensity	Expected density

Efficiency	Capture efficiency
esDispersion	Overdispersion of Fish
Fish	Number of fish captured or counted
ProportionSampled	Proportion of site surveyed
sDensityAnnual	Log SD of effect of Annual on bDensity
sDensitySite	Log SD of effect of Site on bDensity
sDensitySiteAnnual	Log SD of effect of Site within Annual on bDensity
sDispersion	Intercept for log(esDispersion)
sDispersionVisitType	Effect of VisitType on sDispersion
Site	Site
SiteLength	Length of site
VisitType	Survey type (catch versus count)

Mountain Whitefish

Subadult

Table 43. Model coefficients.

term	estimate	lower	upper	svalue
bDensity	4.8699295	4.4850474	5.2430074	10.551708
bEfficiencyVisitType[2]	1.4107251	1.2688767	1.5589998	10.551708
bEfficiencyVisitTypeDensity[1]	0.0001576	-0.0000322	0.0005067	3.051862
sDensityAnnual	0.6556031	0.4820459	0.9464734	10.551708
sDensitySite	0.7425265	0.6058499	0.9296676	10.551708
sDensitySiteAnnual	0.4103597	0.3580692	0.4729435	10.551708
sDispersion	-0.7905145	-0.8794719	-0.7104486	10.551708
sDispersionVisitType[2]	0.6791281	0.5061456	0.8526245	10.551708

Table 44. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
2860	8	3	500	200	254	1.01	TRUE

Adult

Table 45. Model coefficients.

term	estimate	lower	upper	svalue
bDensity	5.6521159	5.3445776	5.9313063	10.551708
bEfficiencyVisitType[2]	1.6541586	1.4746628	1.8678659	10.551708
bEfficiencyVisitTypeDensity[1]	-0.0001352	-0.0002497	0.0001436	2.071928
sDensityAnnual	0.3760524	0.2684403	0.5639602	10.551708
sDensitySite	1.1977149	0.9886120	1.4903236	10.551708
sDensitySiteAnnual	0.4257768	0.3649067	0.4848144	10.551708
sDispersion	-0.6642520	-0.7345593	-0.5966096	10.551708
sDispersionVisitType[2]	0.5581351	0.4148899	0.6977487	10.551708

Table 46. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
2860	8	3	500	200	308	1.016	TRUE

Rainbow Trout

Subadult

Table 47. Model coefficients.

term	estimate	lower	upper	svalue
bDensity	4.4940601	4.2785725	4.6824838	10.551708
bEfficiencyVisitType[2]	1.5009585	1.3549999	1.6868116	10.551708
bEfficiencyVisitTypeDensity[1]	-0.0012122	-0.0015564	-0.0008012	8.966746
sDensityAnnual	0.3629938	0.2623834	0.5447119	10.551708
sDensitySite	0.7956122	0.6465564	0.9873278	10.551708
sDensitySiteAnnual	0.4683492	0.4189836	0.5179770	10.551708
sDispersion	-0.9733112	-1.0476401	-0.8975926	10.551708
sDispersionVisitType[2]	0.6506072	0.4994931	0.8123898	10.551708

Table 48. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
2860	8	3	500	200	549	1.008	TRUE

Adult

Table 49. Model coefficients.

term	estimate	lower	upper	svalue
bDensity	5.0267060	4.8129755	5.2229521	10.551708
bEfficiencyVisitType[2]	1.2050347	1.0741756	1.3333294	10.551708
bEfficiencyVisitTypeDensity[1]	-0.0007362	-0.0009602	-0.0003898	7.744353
sDensityAnnual	0.3778021	0.2773389	0.5442637	10.551708
sDensitySite	0.7699670	0.6282350	0.9576415	10.551708
sDensitySiteAnnual	0.3064273	0.2633484	0.3518342	10.551708
sDispersion	-1.0113124	-1.0952234	-0.9309456	10.551708
sDispersionVisitType[2]	0.5380917	0.3682378	0.7099547	10.551708

Table 50. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
2860	8	3	500	200	446	1.008	TRUE

Walleye

Table 51. Model coefficients.

term	estimate	lower	upper	svalue
bDensity	4.7800150	4.5709743	4.9930938	10.551708
bEfficiencyVisitType[2]	1.0292154	0.8863387	1.1679178	10.551708

bEfficiencyVisitTypeDensity[1]	-0.0006233	-0.0010528	0.0009983	1.978061
sDensityAnnual	0.4519104	0.3010521	0.6748485	10.551708
sDensitySite	0.3786744	0.2657597	0.5080788	10.551708
sDensitySiteAnnual	0.3022736	0.2280421	0.3648218	10.551708
sDispersion	-0.8229799	-0.9039130	-0.7562410	10.551708
sDispersionVisitType[2]	0.5414299	0.3767805	0.7017119	10.551708

Table 52. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
2860	8	3	500	200	578	1.012	TRUE

Fecundity

Table 53. Parameter descriptions.

Parameter	Description
bFecundity	Intercept of eFecundity
bFecundityWeight	Effect of \log (Weight) on \log (bFecundity)
eFecundity[i]	Expected Fecundity of $i^{\text {th }}$ fish
Fecundity[i]	Fecundity of $i^{\text {th }}$ fish (eggs)
sFecundity	SD of residual variation in log(Fecundity)
Weight[i]	Weight of $i^{\text {th }}$ fish (g)

Mountain Whitefish

Table 54. Model coefficients.

term	estimate	lower	upper	svalue
bFecundity	2.8930765	2.1004332	3.6796042	10.55171
bFecundityWeight	1.0022720	0.8820105	1.1222403	10.55171
sFecundity	0.1312995	0.1019672	0.1802519	10.55171

Table 55. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
28	3	3	500	500	718	1.002	TRUE

Stock-Recruitment

Table 56. Parameter descriptions.

Parameter	Description
bAlpha	eRecruits per Stock at low Stock density
bBeta	Expected density-dependence
bEggLoss	Effect of EggLoss on log(eRecruits)
EggLoss	Proportional egg loss
Eggs	Total egg deposition
eRecruits	Expected Recruits
Recruits	Number of Age-1 recruits
sRecruits	SD of residual variation in log(Recruits)

Mountain Whitefish

Table 57. Model coefficients.

term	estimate	lower	upper	svalue
bAlpha	0.0040115	0.0011409	0.0085677	10.551708
bBeta	0.0000002	0.0000000	0.0000005	10.551708
bEggLoss	-0.3387653	-2.4641563	2.0274825	0.415999
sRecruits	0.5896843	0.4247662	0.8738232	10.551708

Table 58. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
18	4	3	500	50	1209	1	TRUE

Rainbow Trout
Table 59. Model coefficients.

term	estimate	lower	upper	svalue
bAlpha	0.0045433	0.0018499	0.0086446	10.551708
bBeta	0.0000003	0.0000001	0.0000006	10.551708
bEggLoss	36.4220986	-4.3164763	77.3399485	3.585924
sRecruits	0.3405703	0.2538213	0.5150367	10.551708

Table 60. Model summary.

n	K	nchains	niters	nthin	ess	rhat	converged
19	4	3	500	50	844	1	TRUE

Age-Ratios
Table 61. Parameter descriptions.

Parameter	Description
Age1[i]	The number of Age-1 fish in the $i^{\text {th }}$ year
Age1and2[i]	The number of Age-1 and Age-2 fish in the $i^{\text {th }}$ year
bProbAge1	Intercept for logit (eProbAge1)
bProbAge1Loss	Effect of LossLogRatio on bProbAge1
eProbAge1[i]	The expected proportion of Age-1 fish in the $i^{\text {th }}$ year
LossLogRatio[i]	The log of the ratio of the percent egg losses
sDispersion	SD of extra-binomial variation

Table 62. Model coefficients.

term	estimate	lower	upper	svalue
bProbAge1	0.2088109	-0.1508617	0.5656313	2.146567
bProbAge1Loss	-0.1602847	-0.6351033	0.3522999	1.098438
sProbAge1	0.7723838	0.5832588	1.1263461	10.551708

Table 63. Model summary.

n	K	nchains	niters	rhat_1	rhat_2	rhat_all	converged
20	3	3	500	1.005	1.001	1.006	TRUE

Appendix D - Discharge, Temperature, and Elevation Data

Figure D1. Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Columbia River at the Birchbank water gauging station (black line), 2001 to 2020. The shaded area represents minimum and maximum mean daily discharge recorded at Birchbank during other study years between 2001 and 2020. The white line represents average mean daily discharge over the same time period.

Figure D1. Continued.

Figure D1. Concluded.

Figure D2. Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Columbia River at Hugh L. Keenleyside Dam (HLK), 2001 to 2020 (black line). The shaded area represents minimum and maximum mean daily discharge recorded at HLK during other study years between 2001 and 2020. The white line represents average mean daily discharge over the same time period.

Figure D2. Continued.

Figure D2. Concluded.

Figure D3. Mean daily water temperatures (${ }^{\circ} \mathrm{C}$) for the Columbia River (black line), 2001 to 2020. Data from all years except 2012 and March-April 2017 were recorded at the Birchbank water gauging station. Data from 2012 were recorded near Fort Shepherd. Data from March to November 2017 were recorded at Kinnaird Eddy. The shaded area represents minimum and maximum mean daily water temperatures during other study years between 2001 and 2020. The white line represents average mean daily water temperature over the same time period.

Figure D3. Continued.

Figure D3. Concluded.

Figure D4. Mean daily discharge ($\mathrm{m}^{3} / \mathrm{s}$) for the Kootenay River at Brilliant Dam (BRD), 2001 to 2020 (black line). The shaded area represents minimum and maximum mean daily discharge recorded at BRD during other study years between 2001 and 2020. The white line represents average mean daily discharge over the same time period.

Figure D4. Continued.

Figure D4. Concluded.

Figure D5. Mean daily water temperatures (${ }^{\circ}$ C) for the Kootenay River at Brilliant Dam (BRD), 2001 to 2020 (black line). The shaded area represents minimum and maximum mean daily water temperatures recorded at BRD during other study years between 2001 and 2020. The white line represents average mean daily water temperature over the same time period.

Figure D5. Continued.

Figure D5. Concluded.

Appendix E - Catch and Effort

Table E1 Number of fish caught and observed during boat electroshocking surveys and their frequency of occurrence in sampled sections of the Lower Columbia River, 2001 to 2020. Data include index sites only; all data from GRTS sites were removed.

Species	2001		002		003		2004		2005		2006		2007		2008		2009		2010		2011		2012		2013		2014		2015		2016		2017		2018		2019		2020		All Years ${ }^{\text {a }}$		
	n^{a}	$\%{ }^{\text {b }}$	n^{a}	\% ${ }^{\text {b }}$	$n^{\text {a }}$	$\%{ }^{\text {b }}$	n^{a}	$\%{ }^{\text {b }}$	n^{a}	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	n^{a}	\% ${ }^{\text {b }}$	n^{a}	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	n^{a}	\% ${ }^{\text {b }}$	n^{a}	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	$\%^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	$\%^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	$n^{\text {a }}$	\% ${ }^{\text {b }}$	\% ${ }^{\text {c }}$
Sportish																																											
Brook Trout	5	<1	8	<1	7	<1	3	<1	3	<1	4	<1	15	<1	8	<1	3	<1	4	<1	14	<1	15	<1	31	<1	17	<1	9	<1	1	<1	8	<1	1	<1	1	<1	4	<1	161	<1	
Brown Trout	1	<1	2	<1			1	<1	1	<1	2	<1	7	<1	2	<1	3	<1	8	<1	4	<1	2	<1	3	<1	5	<1	1	<1	2	<1	2	<1	4	<1	2	<1	5	<1	57	<1	
Bull Trout	16	<1	3	<1	18	<1	8	<1	8	<1	11	<1	30	<1	6	<1	9	<1	8	<1	12	<1	13	<1	6	<1	4	<1	8	<1	3	<1	2	<1	2	<1	1	<1	6	<1	174	<1	
Burbot	3	<1	10	<1	59	<1	208	1	174	2	195	1	191	2	69	1	33	<1	70	1	247	2	39	<1	14	<1	20	<1	6	<1	11	<1	25	<1	13	<1	11	<1	21	<1	1419	1	
Cuthroat Trout	1	<1	4	<1	2	<1			1	<1	5	<1	8	<1	5	<1	3	<1	6	<1	4	<1	4	<1	2	<1															45	<1	
Kokanee	2562	9	171	1	5180	19	120	1	32	<1	898	7	506	4	148	1	1128	11	57	1	77	1	156	1	18	<1	7	<1	22	<1	24	<1	19	<1	7	<1	59	1	9	<1	11200	4	
Lake Trout			1	<1											1	<1											1	<1													3	<1	
Lake Whitefish	61	<1	140	1	230	1	160	1	262	2	290	2	163	1	159	1	192	2	239	3	220	2	61	1	71	1	70	1	71	1	205	2	86	1	90	1	69	1	146	2	2985	1	
Largemouth Bass																											1	<1													1	<1	
Mountain Whitefish	14916	52	12108	50	9685	35	6020	38	5024	43	5472	40	5595	45	5221	44	3800	36	2748	30	2933	27	4648	41	4880	49	4020	53	2997	45	4353	45	3925	36	3830	41	1885	26	1553	25	105613	41	
Northern Pike																			7	<1	9	<1	11	<1	125	1	25	<1	9	<1	4	<1	8	<1	3	<1	24	<1	4	<1	229	<1	
Pumpkinseed																																					1	<1			1	<1	
Rainbow Trout	9425	33	10221	42	8466	30	5763	37	3844	33	5338	39	4953	39	5124	43	4219	40	4420	48	5501	51	5401	48	4110	41	2937	39	3081	46	4046	42	5755	52	4202	45	3683	51	3300	53	103789	41	
Smallmouth Bass					4	<1		<1	4	<1	53	<1	16	<1	1	<1			1	<1	8	<1					9	<1	1	<1	2	<1	4	<1	3	<1			6	<1	115	<1	
Walleye	1467	5	1478	6	4165	15	3413	22	2230	19	1421	10	1076	9	1208	10	1127	11	1588	17	1814	17	881	8	752	8	484	6	480	7	1047	11	1175	11	1051	11	1319	18	1108	18	29284	11	
White Sturgeon	14	<1	6	<1	18	<1	5	<1	11	<1	14	<1	11	<1	9	<1	4	<1	11	<1	23	<1	9	<1	7	<1	13	<1	14	<1	35	<1	33	<1	49	1	98	1	93	1	477	<1	
Yellow Perch					1	<1	4	<1	1	<1	24	<1	1	<1					12	<1	2	<1			1	<1			2	<1	6	<1	1	<1	1	<1	4	<1			60	<1	
Sportfish subtotal	28471	100	24152	100	27835	100	15708	100	11595	100	13727	100	12572	100	11961	100	10521	100	9179	100	10868	100	11240	100	10020	100	7613	100	6701	100	9739	100	11043	100	9256	100	7157	98	6255	100	255613	100	
Non-sportfish																																											
Carp spp.	2	<1					1	<1	1	<1	3	<1	1	<1	2	<1			3	<1									1	<1					1	<1	1	<1			16	<1	
Dace spp.	2	<1					3	<1	15	<1	17	<1	1	<1	1	<1			13	<1	3	<1	1	<1																	56	<1	
Northern Pikeminnow	570	3	2371	10	969	3	1337	3	522	2	1450	2	845	1	1452	2	241		393	1	764	2	681		453	<1	64	<1	138	2	42	<1	88	<1	184	5	108	2	77	2	12749	2	
Peamouth	80	<1	205	1	45	<1	51	<1	33	<1	52	<1	93	<1	3	<1	4	<1	25	<1	192	<1	488	2	12	<1	25	<1	156	2	3	<1	107	1	9	<1	6	<1	5	<1	1594	<1	
Redside Shiner	8520	46	9026	40	5710	20	4605	12	1742	5	13121	17	3119	5	8156	12	1592	5	2269	7	4626	11	5280	21	40151	41	3437	26	1636	22	1094	10	6053	34	375	10	492	10	125	3	121129	19	
Sculpin spp. ${ }^{\text {e }}$	2724	15	7479	33	16674	59	26991	67	25734	79	51925	68	45508	76	49939	71	23209	73	21446	67	29392	72	16030	62	44367	45	7856	59	4169	57	6850	66	10736	60	2018	52	2828	57	3050	70	398925	63	
Sucker sp. ${ }^{\text {e }}$	6509	35	3553	16	4779	17	7033	18	4378	14	9235	12	10012	17	11028	16	6896	22	7625	24	5949	15	3194	12	12736	13	2029	15	1188	16	2441	23	1052	6	1303	33	1519	31	1101	25	103560	16	
Tench											1	<1	5	<1	1	<1			2	<1					2	<1	1	<1			1	<1	1	<1	3	<1			2	<1	19	<1	
Non-sportfish subtotal	18407	100	22634	100	28177	100	40021	100	32425	100	75804	100	5958	100	70582	100	31942	100	31776	100	40926	100	25674	100	97721	100	13412	100	7288	100	10431	100	18037	100	3893	100	4954	100	4360	100	638048	100	
All species	46878		46786		56012		55729		44020		89531		72156		82543		42463		40955		51794		36914		107741		21025		13989		20170		29080		13149		12111		10615		893661		

[^5]Table E2 Summary of boat electroshocking sportfish catch (includes fish captured and observed and identified to species) and catch-per-unit-effort (CPUE = no. fish/km/hour) in the Lower Columbia River, 05 October to 07 November 2020

Section	Session	Site	Date	Time Sampled (s)	Length Sampled (km)	Number Caught (CPUE = no. fish/km/hr)																									
						Brook Trout		Brown Trout		Bull Trout		Burbot		Kokanee		Lake Whitefish		Mountain Whitefish		Northern Pike		Rainbow Trout		Smallmouth Bass		Walleye		White Sturgeon		All Species	
						No.	CPUE																								
Columbia	1	C00.0-R	05-Oct-20	801	0.85													40	212.21			17	90.19			2	10.61	6	31.83	65	344.84
River		C00.7-L	05-Oct-20	558	0.59													8	86.99			23	250.11			8	86.99			39	424.1
U/S		C01.3-L	05-Oct-20	1482	1.60					1	1.52			2	3.03			28	42.48			53	80.4			29	43.99	2	3.03	115	174.46
		C02.8-L	05-Oct-20	764	0.88													12	64.1			13	69.44			6	32.05	3	16.03	34	181.62
		C03.6-L	06-Oct-20	1999	2.09							1	0.86	1	0.86			17	14.67	1	0.86	39	33.65			33	28.47	1	0.86	93	80.24
		C04.6-R	06-Oct-20	542	0.52													,	12.84			12	154.03			4	51.34	2	25.67	19	243.88
		C05.6-L	06-Oct-20	1130	1.10													3	8.68	1	2.89	27	78.14			9	26.05			40	115.76
		C07.3-R	06-Oct-20	924	1.60													6	14.57			24	58.26			23	55.84	1	2.43	54	131.1
		C07.4-L	06-Oct-20	837	1.00											2	8.62	81	349.02			9	38.78					5	21.54	97	417.97
	Session Summary			1004.1	10.00	0	0	0	0	1	0.36	1	0.36	3	1.08	2	0.72	196	70.27	2	0.72	217	77.8	0	0	114	40.87	20	7.17	556	199.34
2		C00.0-R	14-Oct-20	950	0.94													11	44.48			16	64.7				28.31	1	4.04	35	141.53
		C00.7-L	14-Oct-20	533	0.59									1	11.38			12	136.61			16	182.15			5	56.92	2	22.77	36	409.84
		C013-3-L	14-Oct-20	1656	1.60													28	38.01			48	65.17			20	27.15	2	2.72	98	133.05
		C02.8-L	14-Oct-20	840	0.88													7	34.01			9	43.73			3	14.58	1	4.86	20	97.17
		C03.6-L	14-Oct-20	2963	2.09											1	0.58	6	3.49			29	16.88			13	7.57	3	1.75	52	30.27
		C04.6-R	13-Oct-20	511	0.52													1	13.61			6	81.69			5	68.07	2	27.23	14	190.6
		C05.6-L	13-Oct-20	1008	1.10													3	9.73			15	48.66			4	12.98			22	71.37
		C07.3-R	13-Oct-20	970	1.70													23	50.07			18	39.18			19	41.36			60	130.61
		C07.4-L	13-Oct-20	914	1.00											1	3.95	78	307.78			3	11.84			3	11.84	4	15.78	89	351.19
Session Summary				1149.4	10.00	0	0	0	0	0	0	0	0	1	0.31	2	0.63	169	52.93	0	0	160	50.11	0	0	79	24.74	15	4.7	426	133.43
3		C00.0-R	20-Oct-20	1000	0.94													1	3.84			9	34.57			4	15.37			14	53.78
		C00.7-L	20-Oct-20	786	0.59					1	7.72							9	69.48			7	54.04							17	131.24
		C01.3-L	20-Oct-20	1800	1.60													18	22.48			25	31.23			13	16.24	,	1.25	57	71.19
		C02.8-L	20-Oct-20	900	0.88													2	9.07			10	45.34			6	27.21	2	9.07	20	90.69
		C03.6-L	21-Oct-20	3006	2.09	1	0.57											1	0.57			42	24.1			11	6.31	11	6.31	66	37.87
		C04.6-R	19-Oct-20	558	0.52															1	12.47	14	174.55			2	24.94			17	${ }^{211.95}$
		C05.6-L	19-Oct-20	1122	1.10													2	5.83			17	49.55			5	14.57	2	5.83	26	75.78
		C07.3-R	19-Oct-20	1189	1.70							1	1.78					17	30.19			61	108.33			29	51.5			108	191.8
		C07.4-L	19-Oct-20	918	1.00													87	341.8			11	43.22			2	7.86	3	11.79	103	${ }^{404.66}$
Session Summary				1253.2	10.00	1	0.29	0	0	1	0.29	1	0.29	0	0	0	0	137	39.36	1	0.29	196	56.3	0	0	72	20.68	19	5.46	428	122.95
4		C00.0-R	28-Oct-20	1237	0.94													27	83.85			6	18.63			3	9.32	,	3.11	37	114.9
		C00.7-L	28-Oct-20	683	0.59													12	106.61			12	106.61			7	62.19		8.88	32	284.29
		C01.3-L	28-Oct-20	1927	1.60									2	2.33			17	19.83			25	29.17			18	21			62	72.34
		C02.8-L	28-Oct-20	868	0.88													8	37.61			17	79.93			4	18.81			29	136.35
		C03.6-L	29-Oct-20	2711	2.09					1	0.64							9	5.73			24	15.27			15	9.54			49	31.17
		C04.6-R	28-Oct-20	609	0.52													13	148.51			19	217.05							32	365.55
		C05.6-L	28-Oct-20	1185	1.10													2	5.52			7	19.32			7	19.32			16	44.15
		C07.3-R	28-Oct-20	982	1.70											3	6.45	27	58.06			26	55.91			9	19.35			65	139.77
		C07.4-L	28-Oct-20	1147	1.00											5	15.72	95	298.71			19	59.74			4	12.58	8	25.15	131	411.91
Session Summary				1261	10.00	0	0	0	0	1	0.29	0	0	2	0.57	8	2.28	210	59.95	0	0	155	44.25	0	0	67	19.13	10	2.85	453	129.33
	5	C08.9-R	06-Nov-20	437	0.93											4	35.26	127	1119.64			16	141.06			4	35.26			151	1331.22
Session Summary				437	1.00	0	0	0	0	0	0	0	0	0	0	4	32.95	127	1046.22	0	0	16	131.81	0	0	4	32.95	0	0	151	1243.94
Section Total All Samples Section Average All Samples Section Standard Error of Mean				42447	42.43	1		0		3		2		6		16		839				744		0		336		64		2014	
				1147	1.15	,	0.07	0	0	0	0.22		0.15		0.44	1	1.18	23	62.06		0.22	20	55.03	0	0	9	24.85	2	4.73	54	148.96
						0.03	0.02	0	0	0.05	0.21	0.04	0.05	0.08	0.32	0.19	1.06	5.04	32.66	0.05	0.34	2.22	9.52	0	0	1.42	3.43	0.4	1.57	5.97	37.36

Section	Session	Site	Date	$\begin{aligned} & \text { Time } \\ & \text { Sampled } \\ & \text { (s) } \end{aligned}$	LengthSampled (km)	Number Caught (CPUE = no. fish/km/hr)																									
						Brook Trout		Brown Trout		Bull Trout		Burbot		Kokanee		Lake Whitefish		Mountain Whitefish		Northern Pike		Rainbow Trout		Smallmouth Bass		Walleye		White Sturgeon		All Species	
						No.	CPUE																								
Kootenay	1	к00.3-L	07-Oct-20	242	0.44																	3	102.29			2	68.19			5	170.48
River		ко0.6-R	07-Oct-20	453	0.60													5	66.71			4	53.37			5	66.71	1	13.34	15	200.12
		K01.8-L	07-Oct-20	1333	1.87													14	20.21			24	34.64			19	27.43	6	8.66	63	90.94
		K01.8-R	06-Oct-20	1115	1.30													16	39.85			3	7.47			18	44.83	1	2.49	38	94.64
	Session	Summary		785.8	4.00	0	0	0	0	0	0	0	0	0	0	0	0	35	40.09	0	0	34	38.94	0	0	44	50.39	8	9.16	121	138.58
	2	K00.3-L	13-Oct-20	246	0.44													4	134.17			2	67.08			7	234.79			13	436.04
		к00.6-R	13-Oct-20	468	0.60													11	142.05			3	38.74			4	51.66	3	38.74	21	271.19
	Session	Summary		357	1.00	0	0	0	0	0	0	0	0	0	0	0	0	15	151.26	0	0	5	50.42	0	0	11	110.92	3	30.25	34	342.86
	3	K00.3-L	19-Oct-20	278	0.44																	4	118.72			9	267.13			13	385.85
		K00.6-R	19-Oct-20	517	0.55													6	76.57			2	25.52			3	38.28	1	12.76	12	153.13
	Session	Summary		397.5	1.00	0	0	0	0	0	0	0	0	0	0	0	0	6	54.34	0	0	6	54.34	0	0	12	108.68	1	9.06	25	226.42
	4	K00.3-L	27-Oct-20	247	0.44											6	200.43	4	133.62			5	167.03			1	33.41			16	534.49
		ко0.6-R	27-Oct-20	634	0.60													25	238.32			6	57.2			2	19.07	1	9.53	34	324.11
		K01.8-L	27-Oct-20	1676	1.87											9	10.33	38	43.63			49	56.25			31	35.59			127	145.8
		K01.8-R	27-Oct-20	1135	1.30				2.45									17	41.59			49	119.89			20	48.93	1	2.45	88	215.31
	Session	ummary		923	4.00	0	0	1	0.98	0	0	0	0	0	0	15	14.63	84	81.91	0	0	109	106.28	0	0	54	52.65	2	1.95	265	258.4
Section	Tatal All S	amples		8344	10.41	0		1		0		0		0		15		140		,		154				121		14		445	
Section A	Average A	1 Samples		695	0.87		0	0	0.5	0	0	0	0	0	0	1	7.46	12	69.64	0	0	13	76.61	0	0	10	60.19	1	6.96	37	221.37
Section S	tandard	rror of M				0	0	0.08	0.2	0	0	0	0	0	0	0.86	16.65	3.25	20.53	0	0	5.17	13.5	0	0	2.77	23.77	0.51	3.23	10.79	40.79

Section	Session	Site	Date	Time Sampled (s)	Length Sampled (km)	Number Caught (CPUE = no. fish/km/hr)																									
						Brook Trout		Brown Trout		Bull Trout		Burbot		Kokanee		Lake Whitefish		Mountain Whitefish		Northern Pike		Rainbow Trout		Smallmouth Bass		Walleye		White Sturgeon		All Species	
						No.	CPUE																								
Columbia	1	C25.3-R	07-Oct-20	1355	2.73											6	5.85	15	14.62			38	37.03			9	8.77			68	66.26
River		C27.6-R	07-Oct-20	350	0.61													13	218.21			13	218.21					1	16.79	27	453.2
D/S		C28.2-R	07-Oct-20	657	1.13													5	24.21			26	125.91			5	24.21			36	174.34
		C34.9-L	07-Oct-20	1714	2.14													4	3.93			94	92.44			14	13.77	3	2.95	115	113.09
		C36.6-L	08-Oct-20	1395	2.39											2	2.16	9	9.7			100	107.75			16	17.24			127	136.85
		C47.8-L	09-Oct-20	918	1.44									1	2.72	1	2.72	5	13.62			27	73.56			,	24.52			43	117.16
		C48.2-R	08-Oct-20	829	1.01									2	8.61			7	30.14			18	77.5			7	30.14	1	4.31	35	150.69
		C49.0-L	09-Oct-20	451	0.93											1	8.59	17	145.96			11	94.44			4	34.34			33	283.33
		C49.0-R	08-Oct-20	542	0.72													2	18.46			14	129.24			6	55.39			22	203.09
		C49.8-L	09-Oct-20	1486	2.45							,	0.99			3	2.97	35	34.66			72	71.29			19	18.81			130	128.73
		C49.8-R	08-Oct-20	1113	2.39			1	1.35			1	1.35					25	33.82			38	51.41			15	20.29	3	4.06	83	112.3
		C52.2-L	09-Oct-20	730	0.89													2	11.09			12	66.57			4	22.19			18	99.85
		C52.2-R	08-Oct-20	2070	3.79							1	0.46			5	2.29	10	4.59			84	38.54	1	0.46	42	19.27			143	65.62
		C52.8-L	09-Oct-20	643	0.89													3	18.81			30	188.14			14	87.8			47	294.75
		C53.6-L	09-Oct-20	982	1.52													6	14.49			22	53.14			8	19.32			36	86.95
	Session	Summary		1015.7	25.00	0	0	1	0.14	0	0	3	0.43	3	0.43	18	2.55	158	22.4	0	0	599	84.92	1	0.14	172	24.39	8	1.13	963	136.53
	2	C25.3-R	15-Oct-20	1350	2.73											1	0.98	40	39.12			28	27.38			8	7.82			77	75.3
		C27.6-R	15-Oct-20	339	0.61													8	138.64			15	259.95			7	121.31			30	519.9
		C28.2-R	15-Oct-20	544	1.13													6	35.09			37	216.4			6	35.09			49	286.58
		C34.9-L	15-Oct-20	1836	2.12																	81	75.06			14	12.97			95	88.04
		C36.6-L	16-Oct-20	1500	2.39													13	13.03			72	72.15			9	9.02			94	94.2
		C47.8-L	17-Oct-20	1106	1.44													2	4.52			33	74.63	1	2.26	19	42.97			55	124.38
		C48.2-R	16-Oct-20	812	1.01													2	8.79			28	123.08			23	101.1			53	232.97
		C49.0-L	17-Oct-20	469	0.93											6	49.54	17	140.36			15	123.84			3	24.77			41	338.51
		C49.0-R	16-OCt-20	515	0.72											1	9.72	4	38.86			15	145.73			9	87.44			29	281.74
		C49.8-L	17-Oct-20	1866	2.45							1	0.79			4	3.15	37	29.18			78	61.51			16	12.62	1	0.79	137	108.03
		C49.8-R	16-Oct-20	1292	2.39							3	3.5					18	20.98			43	50.12			20	23.31			84	97.91
		C52.2-L	17-Oct-20	757	0.89			1	5.35									1	5.35			22	117.69			3	16.05			27	144.44
		C52.2-R	16-Oct-20	2232	3.79													23	9.79			61	25.96			25	10.64			109	46.39
		C52.8-L	17-Oct-20	750	0.89													3	16.13			33	177.42			13	69.89			49	263.45
		C53.6-L	17-Oct-20	1111	1.52											6	12.81	1	2.13			26	55.51	2	4.27	9	19.21			44	93.93
	Session S	Summary		1098.6	25.00	0	0	1	0.13	0	0	4	0.52	0	0	18	2.36	175	22.94	0	0	587	76.94	3	0.39	184	24.12	1	0.13	973	127.54
	3	C25.3-R	21-Oct-20	1145	2.73											16	18.45	36	41.51			40	46.12			20	23.06	2	2.31	114	131.45
		C27.6-R	21-Oct-20	362	0.61													20	324.58	1	16.23	16	259.66			7	113.6			44	714.07
		C28.2-R	22-Oct-20	850	1.13													4	14.97			32	119.78			5	18.72	1	3.74	42	157.21
		C34.9-L	22-Oct-20	2112	2.14													3	2.39			77	61.45			18	14.37			98	78.21
		C36.6-L	22-Oct-20	1719	2.39											1	0.87	10	8.74			72	62.96			12	10.49			95	83.07
		C47.8-L	26-Oct-20	561	1.44					1	4.46	1	4.46			3	13.38	3	13.38			45	200.63	1	4.46	17	75.79			71	316.55
		C48.2-R	25-Oct-20	1005	1.01													4	14.21			30	106.55			20	71.03			54	191.78
		C49.0-L	26-Oct-20	526	0.93	1	7.36									3	22.08	30	220.85			27	198.76			10	${ }^{73.62}$			71	522.67
		C49.0-R	25-Oct-20	560	0.72											2	17.87	3	26.8			20	178.69			3	26.8			28	250.17
		C49.8-L	26-Oct-20	1349	2.45							3	3.27			7	7.64	31	33.81			135	147.25			17	18.54			193	210.52
		C49.8-R	25-Oct-20	1195	2.39							2	2.52			4	5.04	23	28.98			26	32.76			13	16.38	1	1.26	69	86.95
		C52.2-L	26-Oct-20	853	0.89											3	14.24	8	37.98			43	204.14			6	28.49			60	284.85
		C52.2-R	25-Oct-20	2319	3.79							4	1.64			10	4.1	22	9.01			73	29.9			31	12.7	1	0.41	141	57.75
		C52.8-L	26-Oct-20	704	0.89	1										2		1				34				11				49	
		C53.6-6	27-Oct-20	1116	1.52											7	14.88	1	2.13			34	72.26	1	2.13	8	17			51	108.39
	Session S	Summary		1091.7	25.00	2	0.26	0	0	1	0.13	10	1.32	0	0	58	7.65	199	26.25	1	0.13	704	92.86	2	0.26	198	26.12	5	0.66	1180	155.65

				Time	Length													umber C	ght (CPUE	no. fis	/km/hr)										
Section	Session	Site	Date	Sampled	Sampled	Brook	Trout	Brow	Trout	Bull	Trout		bot		anee	Lake	Whitefish	Mount	Whitefish	North	Pr Pike	Rainb	w Trout	Small	outh Bass		Ileye	Whit	Sturgeon		pecies
				(s)	(km)	No.	CPUE																								
Columbia	4	C25.3-R	31-Oct-20	1547	2.73					1	0.85					5	4.27	16	13.65			42	35.84			9	7.68	1	0.85	74	63.15
River		C27.6-R	31-Oct-20	476	0.61													5	61.71			32	394.95			2	24.68			39	481.34
D/S		C28.2-R	31-Oct-20	719	1.13													16	70.8			24	106.2			6	26.55			46	203.56
		C34.9-L	31-Oct-20	1772	2.14											1	0.95		3.8			50	47.56			12	11.41			67	63.73
		C36.6-L	31-Oct-20	1430	2.39											1	1.05	15	15.77			65	68.33			6	6.31			87	91.45
		C47.8-L	30-Oct-20	1247	1.44					1	2.01	1	2.01			1	2.01		8.02			28	56.16			14	28.08			49	98.28
		C48.2-R	29-Oct-20	916	1.01											1	3.9	3	11.69			24	93.52			7	27.28			35	136.38
		C49.0-L	30-Oct-20	501	0.93													17	131.39			17	131.39			2	15.46			36	278.24
		C49.0-R	29-Oct-20	522	0.72											1	9.58	3	28.75			24	230.04							28	268.38
		C49.8-L	30-Oct-20	1710	2.45							1	0.86			3	2.58	18	15.49			89	76.58			9	7.74			120	103.26
		C49.8-R	29-Oct-20	1206	2.39													35	43.7			24	29.97			8	9.99			67	83.66
		C52.2-L	30-Oct-20	820	0.89	1	4.94									1	4.94	2	9.88			33	162.97			4	19.75			41	202.48
		C52.2-R	29-Oct-20	2424	3.79			2	0.78							10	3.92	23	9.01			80	31.35			22	8.62			137	53.68
		C52.8-L	30-Oct-20	590	0.89											,	6.83	10	68.35			19	129.86			4	27.34			34	232.37
		C53.6-L	30-Oct-20	1087	1.52													,	4.36			26	56.73			6	13.09			34	74.19
	Session	Summary		1131.1	25.00	1	0.13	2	0.25	2	0.25	2	0.25	0	0	25	3.18	173	22.02	0	0	577	73.46	0	0	111	14.13	1	0.13	894	113.81
	5	C109-L	06-Nov-20	1534	2.18											5	5.38	228	245.45			62	66.74			6	6.46	3	3.23	304	327.26
		C11.5-R	06-Nov-20	1094	1.90											4	6.93	112	193.98			120	207.83			10	17.32	4	6.93	250	432.98
		C13.4-R	07-Nov-20	1855	2.52													78	60.07			168	129.38			5	3.85	1	0.77	252	194.07
		C14.8-L	07-Nov-20	1381	2.26													121	139.57			61	70.36			4	4.61	6	6.92	192	221.46
		C17.0-L	07-Nov-20	1186	1.91													59	93.96			87	138.55			4	6.37	3	4.78	153	243.66
		C20.4-R	07-Nov-20	1070	1.47											1	2.28	17	38.8			27	${ }^{61.63}$			4	9.13			49	111.85
		C21.3-L	05-Nov-20	651	2.04													44	119.33			39	105.77			4	10.85	1	2.71	88	238.66
		C24.0-R	05-Nov-20	717	1.33											6	22.63	84	316.77			43	162.15			10	37.71			143	539.26
		C29.2-R	04-Nov-20	1192	1.41													34	72.61			62	132.41			2	4.27			98	209.29
		C30.6-L	05-Nov-20	1545	1.84	1	1.27	1	1.27									24	30.39			120	151.96			16	20.26			162	205.15
		C32.0-R	05-Nov-20	1133	1.37													19	44.07			91	211.05			8	18.55	1	2.32	119	275.99
		C34.9-R	05-Nov-20	809	0.88											3	15.08	5	25.14			79	397.23			5	25.14			92	462.59
		C38.8-L	03-Nov-20	663	1.30											2	8.33	12	50			36	149.99				12.5			53	220.82
		C40.0-L	03-Nov-20	521	1.14											13	79.09	13	79.09			27	164.27			1	6.08			54	328.54
		C40.0-R	03-Nov-20	1063	1.47											7	16.17	26	60.06			101	233.32			9	20.79			143	330.35
		C41.1-L	03-Nov-20	1858	2.41											6	4.82	18	14.47			171	137.48			11	8.84			206	165.62
		C41.5-R	03-Nov-20	2086	2.16											7	5.59	28	22.35			185	147.67			17	13.57			237	189.18
		C45.6-L	04-Nov-20	695	0.90													31	178.22			72	413.93			15	86.24	1	5.75	119	${ }^{684.13}$
		C47.2-R	04-Nov-20	594	1.03											14	82.38	22	129.45			23	135.33			8	47.07	1	5.88	68	40.12
Session Summary				1139.3	32.00	1	0.1	1	0.1	0	0	0	0	0	0	68	6.71	975	96.28	0	0	1574	155.42	0	0	142	14.02	21	2.07	2782	274.71
Section Total All Samples				86704	131.61	4						19				187		1680		,		4041		6		807		36		6792	
Section Av	verage Al	1 Samples		1098	1.67	0	0.1	0	0.12	0	0.07	0	0.47	0	0.07	2	4.66	21	41.85	,	0.02	51	100.67	,	0.15	10	20.1	0	0.9	86	169.2
Section Standard Error of Mean						0.02	0.13	0.03	0.07	0.02	0.06	0.08	0.09	0.03	0.11	0.39	1.61	3.68	8.03	0.01	0.21	4.29	9.32	0.03	0.09	0.82	3.01	0.12	0.28	6.77	16.46
				137495	184.46	5	0	6	0	6	0	${ }^{21}$	0	9	0	218	0.03	2659	0.38	4	0	4939	0.7	6	0	1264	0.18	114	0.02	9251	${ }^{1.31}$
All Sections Total All Samples All Sections Average All Samples						0	0.09	0	0.11	0	0.11	0	0.38	0	0.16	2	3.96	21	48.31	0	0.07	39	89.74	0	0.11	10	22.97	1	2.07	72	168.08
All Sections Standard Error of Mean						0.02	0.08	0.02	0.05	0.02	0.07	0.05	0.06	0.03	0.12	0.27	1.86	2.71	10.91	0.02	0.16	3.1	6.84	0.02	0.05	0.7	3.27	0.15	0.62	4.88	15.22

Table E3 Summary of boat electroshocking non-sportfish catch (includes fish captured and observed and identified to species) and catch-per-unit-effort (CPUE $=$ no. fish/km/hour) in the Lower Columbia River, 05 October to 07 November 2020.

Section	Session	Site	Date	Time Sampled (s)	Length Sampled (km)	Number Caught ($\mathrm{CPUE}=$ no. fish/km/hr)													
						Northern Pikeminnow		Peamouth		Redside Shiner		Sculpin spp.		Sucker spp.		Tench		All Species	
						No.	CPUE												
Columbia	1	C00.0-R	05-Oct-20	801	0.85					12	63.66	62	328.93	8	42.44			82	435.03
River U/S		C00.7-L	05-Oct-20	558	0.59	4	43.5	1	10.87			5	54.37	8	86.99			18	195.74
		C01.3-L	05-Oct-20	1482	1.60	1	1.52					5	7.59	31	47.03			37	56.13
		C02.8-L	05-Oct-20	764	0.88	1	5.34			3	16.03	25	133.54	50	267.08			79	421.99
		C03.6-L	06-Oct-20	1999	2.09	2	1.73			2	1.73	12	10.35	37	31.92			53	45.73
		C04.6-R	06-Oct-20	542	0.52					1	12.84	2	25.67	11	141.19			14	179.7
		C05.6-L	06-Oct-20	1130	1.10	5	14.47					3	8.68	22	63.67			30	86.82
		C07.3-R	06-Oct-20	924	1.60							20	48.55	3	7.28			23	55.84
		C07.4-L	06-Oct-20	837	1.00	1	4.31					2	8.62	48	206.83			51	219.76
Session Summary				1004.1	10.00	14	5.02	1	0.36	18	6.45	136	48.76	218	78.16	0	0	387	138.75
2		C00.0-R	14-Oct-20	950	0.94			2	8.09			30	121.31	9	36.39			41	165.79
		C00.7-L	14-Oct-20	533	0.59							25	284.61	15	170.77			40	455.37
		C01.3-L	14-Oct-20	1656	1.60			1	1.36	2	2.72	136	184.64	54	73.31	1	1.36	194	263.38
		C02.8-L	14-Oct-20	840	0.88							75	364.38	41	199.19			116	563.57
		C03.6-L	14-Oct-20	2963	2.09	7	4.07					45	26.19	54	31.43			106	61.7
		C04.6-R	13-Oct-20	511	0.52							50	680.72	5	68.07			55	748.79
		C05.6-L	13-Oct-20	1008	1.10	2	6.49					18	58.4	33	107.06			53	171.94
		C07.3-R	13-Oct-20	970	1.70							80	174.15	6	13.06			86	187.21
		C07.4-L	13-Oct-20	914	1.00									19	74.97			19	74.97
Session Summary				1149.4	10.00	9	2.82	3	0.94	2	0.63	459	143.76	236	73.92	1	0.31	710	222.38
3		C00.0-R	20-Oct-20	1000	0.94	2	7.68			7	26.89	105	403.35	6	23.05			120	460.97
		C00.7-L	20-Oct-20	786	0.59	1	7.72			3	23.16	142	1096.23	19	146.68			165	1273.79
		C01.3-L	20-Oct-20	1800	1.60	2	2.5			8	9.99	111	138.64	67	83.68			188	234.82
		C02.8-L	20-Oct-20	900	0.88	5	22.67			7	31.74	58	263	25	113.36			95	430.78
		C03.6-L	21-Oct-20	3006	2.09	5	2.87			6	3.44	93	53.36	78	44.75			182	104.42
		C04.6-R	19-Oct-20	558	0.52							18	224.42	8	99.74			26	324.16
		C05.6-L	19-Oct-20	1122	1.10	4	11.66			8	23.32	72	209.85	25	72.86			109	317.69
		C07.3-R	19-Oct-20	1189	1.70					7	12.43	150	266.39	16	28.42			173	307.24
		C07.4-L	19-Oct-20	918	1.00					2	7.86			3	11.79			5	19.64
Session Summary				1253.2	10.00	19	5.46	0	0	48	13.79	749	215.16	247	70.95	0	0	1063	305.36
4		C00.0-R	28-Oct-20	1237	0.94							2	6.21	1	3.11			3	9.32
		C00.7-L	28-Oct-20	683	0.59									1	8.88			1	8.88
		C01.3-L	28-Oct-20	1927	1.60							5	5.83	2	2.33			7	8.17
		C02.8-L	28-Oct-20	868	0.88							2	9.4	2	9.4			4	18.81
		C03.6-L	29-Oct-20	2711	2.09	6	3.82					45	28.63	12	7.63			63	40.08
		C04.6-R	28-Oct-20	609	0.52									1	11.42			1	11.42
		C05.6-L	28-Oct-20	1185	1.10							48	132.46	9	24.84			57	157.3
		C07.3-R	28-Oct-20	982	1.70									2	4.3			2	4.3
		C07.4-L	28-Oct-20	1147	1.00									10	31.44			10	31.44
Session Summary				1261	10.00	6	1.71	0	0	0	0	102	29.12	40	11.42	0	0	148	42.25
	5	C08.9-R	06-Nov-20	437	0.93									6	52.9			6	52.9
Session Summary				437	1.00	0	0	0	0	0	0	0	0	6	49.43	0	0	6	49.43
Section Total All Samples				42447	42.43	48		4		68		1446		747		1		2314	
Section Average All Samples				1147	1.15	1	3.55	0	0.3	2	5.03	39	106.95	20	55.25	0	0.07	63	171.15
Section Standard Error of Mean						0.34		0.06	0.36	0.52	2.14	7.42	36.31	3.36	10.68	0.03	0.04	9.7	42.07

Section	Session	Site	Date	Time Sampled (s)	Length Sampled (km)	Number Caught (CPUE $=$ no. fish/km/hr)													
						Northern Pikeminnow		Peamouth		Redside Shiner		Sculpin spp.		Sucker spp.		Tench		All Species	
						No.	CPUE												
Kootenay River	1	K00.3-L	07-Oct-20	242	0.44							6	204.58	4	136.38			10	340.96
		K00.6-R	07-Oct-20	453	0.60									18	240.15			18	240.15
		K01.8-L	07-Oct-20	1333	1.87	7	10.1			1	1.44	12	17.32	38	54.85			58	83.72
		K01.8-R	06-Oct-20	1115	1.30			1	2.49	1	2.49	20	49.81	2	4.98			24	59.77
Session Summary				785.8	4.00	7	8.02	1	1.15	2	2.29	38	43.52	62	71.01	0	0	110	125.99
2		K00.3-L	13-Oct-20	246	0.44							17	570.21	9	301.87			26	872.08
		K00.6-R	13-Oct-20	468	0.60									26	335.76			26	335.76
Session Summary				357	1.00	0	0	0	0	0	0	17	171.43	35	352.94	0	0	52	524.37
3		K00.3-L	19-Oct-20	278	0.44	1	29.68							3	89.04			4	118.72
		K00.6-R	19-Oct-20	517	0.55	6	76.57							22	280.75			28	357.31
Session Summary				397.5	1.00	7	63.4	0	0	0	0	0	0	25	226.42	0	0	32	289.81
4		K00.3-L	27-Oct-20	247	0.44	1	33.41											1	33.41
		K00.6-R	27-Oct-20	634	0.60	1	9.53					4	38.13	5	47.66			10	95.33
		K01.8-L	27-Oct-20	1676	1.87	3	3.44			3	3.44	71	81.51	2	2.3			79	90.69
		K01.8-R	27-Oct-20	1135	1.30					1	2.45	54	132.12					55	134.57
Session Summary				923	4.00	5	4.88	0	0	4	3.9	129	125.79	7	6.83	0	0	145	141.39
Section Total All Samples				8344	10.41	19		1		6		184		129		0		339	
Section Av	verage A	11 Samples		695	0.87	2	9.45	0	0.5	0	2.98	15	91.53	11	64.17	0	0	28	168.64
Section St	tandard	Error of M	ean			0.71	6.66	0.08	0.21	0.26	0.37	6.75	47.33	3.57	37.56	0	0	6.91	67.43

Section	Session	Site	Date	Time Sampled (s)	Length Sampled (km)	Number Caught (CPUE = no. fish/km/hr)													
						Northern Pikeminnow		Peamouth		Redside Shiner		Sculpin spp.		Sucker spp.		Tench		All Species	
						No.	CPUE												
Columbia River	a	C25.3-R	07-Oct-20	1355	2.73	1	0.97			8	7.79	30	29.23	4	3.9			43	41.9
		C28.2-R	07-Oct-20	657	1.13							15	72.64	5	24.21			20	96.85
D/S		C34.9-L	07-Oct-20	1714	2.14	1	0.98					4	3.93					5	4.92
		C36.6-L	08-Oct-20	1395	2.39									1	1.08			1	1.08
		C47.8-L	09-Oct-20	918	1.44					7	19.07	7	19.07	21	57.22			35	95.36
		C49.0-L	09-Oct-20	451	0.93							5	42.93	11	94.44			16	137.37
		C49.0-R	08-Oct-20	542	0.72									2	18.46			2	18.46
		C49.8-L	09-Oct-20	1486	2.45							45	44.56	10	9.9			55	54.46
		C49.8-R	08-Oct-20	1113	2.39	3	4.06					38	51.41	30	40.59			71	96.06
		C52.2-L	09-Oct-20	730	0.89							15	83.21	3	16.64			18	99.85
		C52.2-R	08-Oct-20	2070	3.79							25	11.47	4	1.84			29	13.31
		C52.8-L	09-Oct-20	643	0.89							22	137.97	4	25.08			26	163.05
Session Summary				1089.5	22.00	5	0.75	0	0	15	2.25	206	30.94	95	14.27	0	0	321	48.21
2		C25.3-R	15-Oct-20	1350	2.73	1	0.98					80	78.24	17	16.63			98	95.84
		C27.6-R	15-Oct-20	339	0.61							5	86.65					5	86.65
		C28.2-R	15-Oct-20	544	1.13	2	11.7					55	321.68		11.7			59	345.07
		C34.9-L	15-Oct-20	1836	2.12							44	40.78	4	3.71			48	44.48
		C36.6-L	16-Oct-20	1500	2.39							12	12.03					12	12.03
		C47.8-L	17-Oct-20	1106	1.44					8	18.09	113	255.55	31	70.11			152	343.74
		C48.2-R	16-Oct-20	812	1.01							22	96.71					22	96.71
		C49.0-R	16-Oct-20	515	0.72									10	97.15			10	97.15
		C49.8-L	17-Oct-20	1866	2.45	1	0.79					125	98.57	5	3.94			131	103.3
		C49.8-R	16-Oct-20	1292	2.39							50	58.28	27	31.47			77	89.75
		C52.2-L	17-Oct-20	757	0.89							5	26.75					5	26.75
		C52.2-R	16-Oct-20	2232	3.79					1	0.43	20	8.51		1.7			25	10.64
		C53.6-L	17-Oct-20	1111	1.52							34	72.58	3	6.4			37	78.99
Session Summary				1173.8	23.00	4	0.53	0	0	9	1.2	565	75.34	103	13.73	0	0	681	90.81
3		C25.3-R	21-Oct-20	1145	2.73					21	24.21	86	99.16	11	12.68			118	136.06
		C27.6-R	21-Oct-20	362	0.61							12	194.75					12	194.75
		C28.2-R	22-Oct-20	850	1.13							13	48.66					13	48.66
		C34.9-L	22-Oct-20	2112	2.14					3	2.39	82	65.44	1	0.8			86	68.63
		C36.6-L	22-Oct-20	1719	2.39					1	0.87	54	47.22	2	1.75			57	49.84
		C47.8-L	26-Oct-20	561	1.44	1	4.46					32	142.67	1	4.46			34	151.59
		C48.2-R	25-Oct-20	1005	1.01							8	28.41					8	28.41
		C49.0-L	26-Oct-20	526	0.93							16	117.79					16	117.79
		C49.0-R	25-Oct-20	560	0.72							14	125.08	1	8.93			15	134.02
		C49.8-L	26-Oct-20	1349	2.45							67	73.08	4	4.36			71	77.44
		C49.8-R	25-Oct-20	1195	2.39							8	10.08	2	2.52			10	12.6
		C52.2-L	26-Oct-20	853	0.89							22	104.45					22	104.45
		C53.6-L	27-Oct-20	1116	1.52							20	42.51					20	42.51
Session Summary				1027.2	20.00	1	0.18	0	0	25	4.38	434	76.05	22	3.86	0	0	482	84.46
4		C25.3-R	31-Oct-20	1547	2.73					2	1.71	25	21.34	2	1.71			29	24.75
		C27.6-R	31-Oct-20	476	0.61											1	12.34	1	12.34
		C34.9-L	31-Oct-20	1772	2.14							25	23.78	1	0.95			26	24.73
		C36.6-L	31-Oct-20	1430	2.39							32	33.64					32	33.64
		C47.8-L	30-Oct-20	1247	1.44							37	74.21	4	8.02			41	82.24
		C48.2-R	29-Oct-20	916	1.01							11	42.86					11	42.86
		C49.0-L	30-Oct-20	501	0.93							6	46.37					6	46.37
		C49.0-R	29-Oct-20	522	0.72							15	143.77					15	143.77
		C49.8-L	30-Oct-20	1710	2.45							44	37.86	2	1.72			46	39.58
		C49.8-R	29-Oct-20	1206	2.39							2	2.5	1	1.25			3	3.75
		C52.2-L	30-Oct-20	820	0.89							15	74.08	1	4.94			16	79.02
		C52.2-R	29-Oct-20	2424	3.79							3	1.18					3	1.18
Session Summary				1214.2	21.00	0	0	0	0	2	0.28	215	30.36	11	1.55	1	0.14	229	32.33
${ }^{5}$		C10.9-L	06-Nov-20	1534	2.18							5	5.38	6	6.46			11	11.84
		C11.5-R	06-Nov-20	1094	1.90									3	5.2			3	5.2
		C13.4-R	07-Nov-20	1855	2.52							21	16.17	1	0.77			22	16.94
		C14.8-L	07-Nov-20	1381	2.26	1	1.15					3	3.46	3	3.46			7	8.07
		C17.0-L	07-Nov-20	1186	1.91	1	1.59							1	1.59			2	3.19
		C20.4-R	07-Nov-20	1070	1.47	2	4.57							2	4.57			4	9.13
		C21.3-L	05-Nov-20	651	2.04							28	75.94	1	2.71			29	78.65
		C24.0-R	05-Nov-20	717	1.33							4	15.08	5	18.86			9	33.94
		C29.2-R	04-Nov-20	1192	1.41							60	128.14					60	128.14
		C30.6-L	05-Nov-20	1545	1.84					12	15.2	47	59.52	3	3.8			62	78.51
		C32.0-R	05-Nov-20	1133	1.37							21	48.7	1	2.32			22	51.02
		C34.9-R	05-Nov-20	809	0.88							12	60.34					12	60.34
		C38.8-L	03-Nov-20	663	1.30							11	45.83					11	45.83
		C41.1-L	03-Nov-20	1858	2.41							17	13.67					17	13.67
		C41.5-R	03-Nov-20	2086	2.16							15	11.97					15	11.97
		C45.6-L	04-Nov-20	695	0.90							29	166.72					29	166.72
Session Summary				1216.8	28.00	4	0.42	0	0	12	1.27	273	28.85	26	2.75	0	0	315	33.28
Section Total All Samples				75727	114.79	14		0		63		1693		257		1		2028	
Section Average All Samples				1147	1.74	0	0.38	0	0	1	1.72	26	46.29	4	7.03	0	0.03	31	55.45
Section Standard Error of Mean						0.07	0.21	0	0	0.41	0.58	3.3	7.6	0.85	2.48	0.02	0.19	3.94	8.46
All Sections Total All Samples				126518	167.64	81	0.01	5	0	137	0.02	3323	0.56	1133	0.19	2	0	4681	0.79
All Sections Average All Samples						1	1.58	0	0.1	1	2.67	29	64.86	10	22.12	0	0.04	41	91.37
All Sections Standard Error of Mean						0.15	0.89	0.02	0.12	0.29	0.79	3.18	13.74	1.41	6.39	0.01	0.11	4.13	17.3

Appendix F - Life History

Figure F1. Length-frequency distributions by site for Mountain Whitefish captured by boat electroshocking in sampled sections of the lower Columbia River, 5 October to 7 November 2020.

Figure F2. Length-frequency distributions by site for Rainbow Trout captured by boat electroshocking in sampled sections of the lower Columbia River, 5 October to 7 November 2020.

Figure F3. Length-frequency distributions by site for Walleye captured by boat electroshocking in sampled sections of the lower Columbia River, 5 October to 7 November 2020.

Figure F4. Length-frequency distributions by year for Mountain Whitefish captured by boat electroshocking in sampled sections of the lower Columbia River, 2001 to 2020.

Figure F4. Continued.

Figure F4. Concluded.

Figure F5. Length-frequency distributions by year for Rainbow Trout captured by boat electroshocking in sampled sections of the lower Columbia River, 2001 to 2020.

Figure F5. Continued.

Figure F5. Concluded.

Figure F6. Length-frequency distributions by year for Walleye captured by boat electroshocking in sampled sections of the lower Columbia River, 2001 to 2020.

Figure F6. Continued.

Figure F6. Concluded.

Figure F7. Length-weight regressions for Mountain Whitefish captured by boat electroshocking in the lower Columbia River, 2001 to 2020.

Figure F7. Continued.

Figure F7. Concluded.

Figure F8. Length-weight regressions for Rainbow Trout captured by boat electroshocking in the lower Columbia River, 2001 to 2020.

Figure F8. Continued.

Figure F8. Concluded.

Figure F9. Length-weight regressions for Walleye captured by boat electroshocking in the lower Columbia River, 2001 to 2020.

Figure F9. Continued.

Figure F9. Concluded.

Appendix G - Additional Results

Figure G1: Predicted length-density plot for Mountain Whitefish by life stage and year.

Figure G2: Predicted length-density plot for Rainbow Trout by life stage and year.

Figure G3: Capture efficiency (mean with 95\% credible intervals) of subadult Mountain Whitefish by year and sample session in the lower Columbia River, 2001-2020.

Session
Figure G4: Capture efficiency (mean with 95\% credible intervals) of adult Mountain Whitefish by year and sample session in the lower Columbia River, 2001-2020.

Figure G5: Capture efficiency (mean with 95\% credible intervals) of subadult Rainbow Trout by year and sample session in the lower Columbia River, 2001-2020.

Figure G6: Capture efficiency (mean with 95\% credible intervals) of adult Rainbow Trout by year and sample session in the lower Columbia River, 2001-2020.

Appendix G: Additional Figures

Figure G7: Capture efficiency (mean with 95\% credible intervals) of adult Walleye by year and sample session in the lower Columbia River, 2001-2020.

Figure G8: Predicted annual efficiency of capture for adult Mountain Whitefish by amount of bank length sampled (km).

Figure G9: Predicted annual efficiency of capture for adult Rainbow Trout by amount of bank length sampled (km).

Figure G10: Predicted annual efficiency of capture for Walleye by amount of bank length sampled (km).

Figure G11: Predicted relative efficiency of capture vs counting for each species by life stage.

Figure G12: Corrected fork length-density plots for measured and estimated fork lengths of fish caught or observed in the lower Columbia River, 2013-2020. The black line shows fish that were caught. Observed data are shown by coloured dashed lines.

Figure G13: Estimated density of subadult (left) and adult (right) Mountain Whitefish at non-index relative to index sites by year.

Figure G14: Estimated density of subadult (left) and adult (right) Rainbow Trout at non-index relative to index sites by year.

Appendix G: Additional Figures

Figure G15: Estimated density of Walleye at non-index relative to index sites by year.

Appendix H - Spatial Distribution Maps

[^0]: ${ }^{a}$ U/S = Upstream limit of site; D/S = Downstream limit of site.
 ${ }^{\mathrm{b}}$ River kilometres downstream from Hugh L. Keenleyside Dam.
 ${ }^{c}$ LDB $=$ Left bank as viewed facing downstream; RDB=Right bank as viewed facing downstream.

[^1]: ${ }^{a}$ River kilometres downstream from Hugh L. Keenleyside Dam.
 ${ }^{\mathrm{b}}$ LDB=Left bank as viewed facing downstream; RDB=Right bank as viewed facing downstream.

[^2]: ${ }^{\text {a }}$ See Appendix A, Figures A1 to A3 for sample site locations.
 ${ }^{\mathrm{b}}$ Clear $=<10 \%$; Partly Cloudy $=10-50 \%$; Mostly Cloudy $=50-90 \%$; Overcast $=>90 \%$.
 ${ }^{c}$ High $=>1.0 \mathrm{~m} / \mathrm{s} ;$ Medium $=0.5-1.0 \mathrm{~m} / \mathrm{s} ;$ Low $=<0.5 \mathrm{~m} / \mathrm{s}$.
 ${ }^{\mathrm{d}}$ High $=>3.0 \mathrm{~m} ;$ Medium $=1.0-3.0 \mathrm{~m}$; Low $=<1.0 \mathrm{~m}$.

[^3]: ${ }^{b}$ See Appendix B, Table B1 for bank habitat type descriptions.

[^4]: ${ }^{3}$ See Appendix A, Figures A1 to A3 for sample site locations.
 ${ }^{\mathrm{b}}$ See Appendix B, Table B1 for bank habitat type descriptions.

[^5]: Includes fish observed and identified to species; does not include recaptured fis
 Percent composition of sportfish or non-sportfish catch.
 ${ }^{2}$ Percent composition of sportfish or non-sp
 Species combined for table or not identified to species

