
 1 

 
 
 
 
 

 Columbia River Project Water Use Plan 
  
 Arrow Reservoir Operations Management Plan 
  
 CLBMON-41: Arrow Reservoir Recreational Demand Study 

  
 Implementation Year 5 – Secondary Analysis of Overall Study 

Results 
  
 Reference: CLBMON-41 
  

 Secondary Analysis of CLBMON-41 Arrow Reservoir Recreational Demand 
Study.  

  

 Study Period: 2009 - 2013 

  

  

  

  

  

  

  

 Carl James Schwarz  
StatMathComp Consulting 

 
 
 
 
 
 
 
 Feb 23, 2017 



 2 

Supplemental analyses for  

CLBMON 41 Arrow Reservoir Recreational Demand Study 

Year 5 Report 

Study Period : 2009-2013. 

 

Carl James Schwarz 

Department of Statistics and Actuarial Science 

Simon Fraser University 

 

cschwarz@stat.sfu.ca 

 

2017-02-23 

 

1. Introduction: 
This reports on supplemental analyses to the final report by Lees and Associates (2015) 

(CLBMON 41 Arrow Reservoir Recreational Demand Study. Year 5 Final Report 

Study Period : 2009-2013) investigating, among other objectives, the impact of 

fluctuating water levels on usage and satisfaction of usage on the Arrow Lakes Reservoir, 

British Columbia. The supplemental analysis investigates three management questions 

about the relationship between the volume and type of usage to reservoir levels.  

 

In this report, I have used the convention that tables and figures prefixed with an “A” 

refer to the appropriate table or figures in the authors’ report, i.e., ATable A12 refers to 

Table 12 in the authors’ report, while Table 12 refers to the table in this report. 

 

The fully study protocol is present in the authors’ report. Briefly, a five year study 

collected traffic count and interviews (on-site and on-line surveys) at 13 pre-selected, 

stratified monitoring sites comprised of 11 publicly accessible boat launches and two 

near-shore parks on the Arrow Lakes Reservoir. Weather information was obtained from 

Environment Canada measured at Nakusp. 

 

The greatest challenge for this project is separating out the effects of confounding 

variables. For example, both the reservoir numbers and visitor numbers tend to be highest 

during the high season and lower during the shoulder and low seasons
1
 along with other 

variables such as temperature (Figures 1, 2 and 3). Consequently, trying to disentangle 

the impact of reservoir elevation after adjusting for these other covariates will be 

challenging. 

 

                                                 
1
The seasons are defined as: high season May 24 - Sept 30; shoulder season Apr 1 – May 

23 & Oct 1 – Oct 30; and low season Nov 1 - Mar 31. 

mailto:cschwarz@stat.sfu.ca
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Figure 1. Plot of reservoir level, visitor numbers, mean daily temperatures by season. 
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Figure 2. The relationship between maximum daily temperature and elevation vs. date. The color 

of the points indicates the season.  
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Figure 3. Pairwise plot showing the relationship between three important variables. The color of 

the points represents the season (red=low, green=shoulder, black=high). 

 

 

 

A standard method to adjust for confounding variables is multiple regression. In this 

method, the marginal contribution of each variable (i.e., after accounting for the impact 

of the other variables in the regression model), is estimated using least-squares.  

 

Regression methods are also available to deal with categorical data. For example, days 

can be classified as weekend or weekday and this classification (categorical predictor) 

can be included in models. Estimates of effects are now the difference in the mean 

response between a particular category and a baseline category. 
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If the response variable is categorical (e.g. will or will not return) a more advanced 

regression approach, logistic regression is used. In logistic regression, the probability 

that a respondent would return to the Arrow Lakes Reservoir can be modeled as a 

function of the actual elevation at the time of the survey using a more general method, 

maximum likelihood rather than least squares.  

 

However, regression methods can only disentangle the effects of individual variables if 

there is contrast. For example, to disentangle the effects of elevation and temperature, 

periods are needed with high elevation and low temperatures, high elevations and high 

temperatures, low elevations and low temperatures and (ideally) also low elevations and 

high temperatures. If there is perfect correlation between elevation and temperature, it 

will be mathematically impossible to separate out the impacts of the two variables. 

 

Predictors that have a high correlation are said to be nearly collinear. There are several 

impacts of colinearity: 

- masking. The contribution of each variable may be masked by the other variable 

and so in the output from the regression model, neither variable looks important. 

- bias in the estimates. Colinearity can lead to severe biases in the estimates. 

- inflated standard errors. Colinearity will inflate the standard errors of the 

estimates. This is measured by the variance inflation factor (VIF) commonly 

available in most statistical packages. 

 

Often there are several competing models for the same dataset. Rather than trying to 

select the single “best” model based on criteria such as R
2
, a better method uses 

information theoretic methods (e.g. AICc as explained in Burnham and Anderson 2002). 

Briefly, for each model, the AICc statistic is computed. The AICc is a statistic that 

combines a measure of fit (the likelihood) and model complexity (number of terms in the 

model). In general, the model with the smallest AICc indicate the best model (in the 

model set) in terms of the tradeoff between fit and complexity. Other models with similar 

values of AICc indicate model that have similar fit and complexity. From the AICc 

values, the difference in the AICc from the best fitting model can be determined and from 

these difference, the model weight can be determined. The model weight can be thought 

of as a measure of “importance” of this model relative to the other models. These model 

weights provide a natural way to “weight” the different models in the model set. There is 

no need to select the best fitting model to make predictions or to estimate the marginal 

contribution of a variable to explain the variation in the response. Rather, predictions 

from each model, or the coefficients for a variable from each model are averaged using 

the model weights to compute a weighted mean. This is known as model averaging. 

 

The key advantage of model averaging is that it automatically gives the appropriate 

weight to each model and so the final predicted curve is also a weighted average of the 

individual prediction curves. If the best fitting model is a simple linear (straight line) 

model with only small model weight to a quadratic fit, then the final model average 

predictions will essentially be linear. Conversely, if the linear and quadratic model both 

have substantial weights, then the final curve is a weighted average of the linear and 

quadratic fits.   
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The sum of the model weights for models that contain each variable is then a measure of 

the relative importance of each variable in explaining variation in the response.  

 

The R software was used for all analyses in this report. Code is available on request. I 

have often just included directly raw output rather than reformatting the output. 

 

2. Supplemental analyses 
In this section, we report on supplemental analyses of the data that extend the analyses in 

more meaningful ways. It is arranged around consideration of each management 

question. 

 

2.1 Management question 
H0A:  Frequency of public use of Arrow Lake is not influenced by fluctuating reservoir 

water levels  

 

This management question is examined using (a) satisfaction as a proxy for the likelihood 

of visitors returning (b) and self-reported “will you return” under different future 

reservoir levels (lower, same, or higher compared to the reservoir level at the time of the 

survey). Note that the survey data is cross sectional with no linkage between multiple 

responses from the same subject, and there is no linkage between the responses to “will 

you return” to actual behavior of the subjects. As with all self-reported data, caution 

needs to be used in extrapolating from intentions (respondent indicates that she/he will 

return) to actions (respondent actually returns).  

 

Question 5 of the survey asked respondent to rate their satisfaction with the water levels, 

as a whole, on the Arrow Lakes Reservoir. AFigure A10 shows the mean satisfaction 

level vs. the reservoir elevation.
2
 Based on this plot, the authors’ concluded that there was 

no substantial difference in satisfaction across different elevations, but the authors did not 

perform a regression fit. 

 

A revised plot, along with a fitted regression line is found in Figure 4 and Table 1. There 

is evidence of a positive association between mean satisfaction and reservoir elevation 

with a slope of 0.06 (SE .007). This implies that a 1 m change in reservoir elevation 

increases mean satisfaction by .06. On a mean satisfaction of around 3, this is a 2% 

increase in satisfaction per meter change in elevation. Again, deciding if this is a 

substantial effect is not a statistical question, but it should be noted that over a 8 m 

change in elevation, this implies a change in the mean satisfaction by almost 0.5 which is 

a 16% change from the value of 3. 

                                                 
2
 It should be noted that in AFigure A10, the X-axis is treated as a category and NOT as a 

continuous variable so that the graph has not been properly scaled along the X-axis. 
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Figure 4. Mean satisfaction vs. the reservoir elevation at the time the survey as administered. The 

regression line from a regression of the individual satisfaction and reservoir elevation is also 

shown. The jagged line joins the mean daily responses, rather than the individual data points, 

because of the coarseness of the individual responses (0 to 5 on a Likert scale). 

 

 

 
Table 1. Results from a regression analysis of mean satisfaction with the water levels on the 

whole by reservoir elevation. The estimated slope is in bold. 

 
Analysis of Variance Table 

 

                     Df  Sum Sq Mean Sq F value    Pr(>F)     

Nakusp_Daily_Avg_m    1   80.31  80.311  77.403 < 2.2e-16 *** 

Residuals          2172 2253.58   1.038                       

 

 

Coefficients: 

                     Estimate Std. Error t value Pr(>|t|)     

(Intercept)        -24.182629   3.137578  -7.707 1.94e-14 *** 

Nakusp_Daily_Avg_m   0.063297   0.007195   8.798  < 2e-16 *** 

 --- 

 

Residual standard error: 1.019 on 2172 degrees of freedom 

  (405 observations deleted due to missingness) 

Multiple R-squared:  0.03441, Adjusted R-squared:  0.03397  

F-statistic:  77.4 on 1 and 2172 DF,  p-value: < 2.2e-16 
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A multiple regression analysis was done using the reservoir elevation, temperature, day 

type, and precipitation for that day (Table 2) to disentangle the impact of reservoir 

elevation and other confounding covariates such as temperature. There was still evidence 

that satisfaction increases with reservoir elevation even after adjusting for temperature 

with an estimated slope of .056 (SE .010). This estimated slope is very similar to the 

previous estimate that was unadjusted for temperature and other covariates.  

 

 

 
Table 2. Results from a multiple regression of mean visitor satisfaction with water levels on the 

whole as a function of reservoir elevation, maximum temperature, day type, and precipitation. 

The estimated slope for impacts of changes in reservoir elevation is in bold. 

 
Anova Table (Type III tests) 

 

                   Sum Sq   Df F value    Pr(>F)     

(Intercept)          24.40    1 23.1518 1.626e-06 *** 

Nakusp_Daily_Avg_m   31.33    1 29.7271 5.683e-08 *** 

TotalPrecipmm         0.03    1  0.0332  0.855468     

MaxTempC              7.84    1  7.4395  0.006445 **  

DayType               4.92    1  4.6672  0.030880 *   

Residuals          1842.04 1748 

 

 

                     Estimate Std. Error t value Pr(>|t|)     

(Intercept)        -21.239955   4.414296  -4.812 1.63e-06 *** 

Nakusp_Daily_Avg_m   0.055868   0.010247   5.452 5.68e-08 *** 

TotalPrecipmm       -0.001473   0.008088  -0.182  0.85547     

MaxTempC             0.012428   0.004557   2.728  0.00644 **  

DayType1            -0.053013   0.024539  -2.160  0.03088 

 

Residual standard error: 1.027 on 1748 degrees of freedom 

  (826 observations deleted due to missingness) 

Multiple R-squared:  0.04542, Adjusted R-squared:  0.04323  

F-statistic: 20.79 on 4 and 1748 DF,  p-value: < 2.2e-16 
 

 

 

These results are somewhat unsatisfactory as the regression indicates that mean 

satisfaction increases with increasing reservoir elevation without any falloff effect at 

higher elevations.  

 

There was evidence that the effect of elevation varied by temperature (Table 3) with 

largest impact of changes in reservoir elevation occurring at lower temperatures. 

Typically, lower temperatures are associated with the lowest reservoir elevation. Finally, 

weekday users were slightly less satisfied than weekend users (estimated difference in 

mean satisfaction is .10 (SE .05)). 
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Table 3. Results from a multiple regression of visitor satisfaction with water levels on the whole 

as a function of reservoir elevation, maximum temperature, day type, and precipitation. This 

model included an elevation-temperature interaction to investigate if the effect of elevation varied 

by temperature – there is evidence that it did and the table below shows how the slope declines 

with increasing temperature. 

 
Anova Table (Type III tests) 

 

                             Sum Sq   Df F value    Pr(>F)     

(Intercept)                   15.84    1 15.0758 0.0001071 *** 

Nakusp_Daily_Avg_m            17.76    1 16.8999 4.123e-05 *** 

TotalPrecipmm                  0.00    1  0.0002 0.9895073     

MaxTempC                       6.22    1  5.9187 0.0150810 *   

DayType                        4.95    1  4.7120 0.0300864 *   

Nakusp_Daily_Avg_m:MaxTempC    6.10    1  5.8090 0.0160476 *   

Residuals                   1835.93 1747 

 

Estimated effect of changes in elevation as a function of temperature. 

 
 MaxTempC Nakusp_Daily_Avg_m.trend    SE lower.CL upper.CL 

        0                    0.125 0.030    0.065    0.184 

        5                    0.110 0.025    0.061    0.158 

       10                    0.094 0.019    0.057    0.132 

       15                    0.079 0.014    0.052    0.107 

       20                    0.064 0.011    0.043    0.085 

       25                    0.049 0.011    0.028    0.070 

       30                    0.034 0.014    0.007    0.061 

 

 

 

The overall interpretation is that mean satisfaction with the water levels, on the 

whole, increases with reservoir elevation. However, there is evidence of an 

additional temperature effect so that the increase in satisfaction with increasing 

reservoir elevation actually declines with increasing temperature. Because higher 

temperatures are associated with higher elevations (see Figure 1), this can be 

interpreted as mean satisfaction with increases in reservoir elevation are smaller at 

higher reservoir elevations/higher temperatures than at lower reservoir 

elevations/lower temperatures, i.e., a leveling off in the effect.  

 

The effect of reservoir elevation can be examined more directly using Questions 5 and 6. 

In Question 6, respondents indicated if they would return to Arrow Lake in the future and 

in Question 5, respondents indicated if they would return depending if future reservoir 

elevations were lower, higher or equal to the elevation at the time of the survey.  

 

As noted in the authors’ report, well over 99% of respondents indicated that they would 

return in the future (Question 6). There were no obvious associations with the 

respondents who indicated they would not return. As notes in the authors’ report, there 

were so few respondents that indicated that they would not return, that no further analysis 

is possible on this item. 
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The responses to Question 6 did not consider the impact of current
3
 and future reservoir 

elevations. AFigure A6 and Figure 5 (both graphs are the same but with axes reversed) 

show the proportion of respondents who would return to the Arrow Lakes Reservoir if the 

reservoir levels were higher, the same, or lower than the elevation experienced during 

their visit, but conditioned by the actual water level at the time of the visit. Both graphs 

show that respondents tend to prefer intermediate reservoir elevations, i.e., at lower actual 

elevations, a higher proportion of respondents want higher elevations; at higher 

elevations, a higher proportion of respondents want lower elevations; and at intermediate 

elevations, there is no apparent difference in preferences. These responses were further 

broken out by the actual elevation at the time of the survey in AFigures A7-A9. But the 

authors did not do a formal analysis of the results. 

 

 

 

 
Figure 5. Proportion of respondents that would return to the Arrow Lakes Reservoir if the 

elevation were the same, lower, or higher as on the day of the survey. This plot is similar to 

Figure A6 except the axes have been reversed. 

  

                                                 
3
 Current elevation was segmented into three categories: low, medium and high. Low 

elevation is defined as less than 434.0 m ASL; medium elevation is between 434.0 m  and 

437.5 m ASL and high elevation is defined as greater than 437.5 m ASL. 
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Logistic regression can be used to investigate the impact of elevation (and other 

covariates) on stated decisions to return. A logistic regression where the probability of 

returning if the water level was the same as the day of the survey as a quadratic function 

of reservoir elevation as fit (Table 4; Figure 6). The quadratic fit had a much larger model 

weight vs. a linear fit, which is consistent with the previous observation that intermediate 

water levels are preferred.  

 

 

 
Table 4. Results from a logistic regression where the probability of returning if the water level 

was the same as the day of the survey as a quadratic function of reservoir elevation. The analysis 

of deviance table is analogous to the ANOVA table in regular regression. There was evidence that 

the quadratic term was needed which indicates that the probability of returning is not constant 

over the current reservoir elevation, i.e., there is a quadratic trend. 

 
Analysis of Deviance Table 

 

 

                        Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     

NULL                                     2051     793.37               

Nakusp_Daily_Avg_m       1   12.873      2050     780.50 0.0003334 *** 

I(Nakusp_Daily_Avg_m^2)  1   14.896      2049     765.60 0.0001136 *** 
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Figure 6. Fitted logistic regression to the probability that a respondent would return to the Arrow 

Lakes Reservoir if the elevation were the same as on the day of the survey. The actual responses 

(0=No, 1=Yes) are also shown (with some slight vertical jittering to prevent overplotting) 

showing the density of the responses.  
 

 

 

Once again, elevation effects may be confounded with temperature effects. A multiple 

logistic regression can also be fit (not shown). There was no evidence of an effect of 

temperature on the probability of returning over and above the effect of the current 

reservoir elevation.  

 

Similarly, logistic regressions can be fit on the probability of returning if the water level 

was lower or higher than on the day of the survey (not shown). All three predicted 

responses are shown in Figure 7. All three curves are consistent with the respondents 

favoring elevations that are intermediate between the lower and higher levels. Again, a 

logistic regression analysis including temperature as an additional covariate showed 

similar results (not shown). 
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Figure 7. Predicted probability of returning to Arrow Lakes Reservoir as a function of actual 

elevation at the time of the survey and if the future elevation will be lower, same, or higher than 

actual elevation. Note that the line for “Same Elevation” (red) is the same as shown in Figure 6.  
 

 

 

The overall conclusion is that at lower reservoir elevations, visitors are more likely 

to return if future elevations were higher that at the time of the survey vs. future 

elevations are lower. Similarly, at higher reservoir elevations, respondents are less 

likely to return if future elevations are higher than at the time of the survey.  

 

 

2.2 Management question 
H0B: Volume of public use of Arrow Lake is not influenced by fluctuating reservoir 

water levels. 

 

This management question is investigated using the relationship between the traffic 

counts and elevation, controlling for weather. 

 

We start with a reproduction of ATable A12 using the unstandardized coefficients. The 

results are reported in Table 5.  I’ve ignored the effect of holidays because there are so 

few of them in the dataset. Now the coefficients have a direct interpretation. For example, 

the coefficient associated with Total Precipitation is -0.476 (SE .12) which implies that 

for every increase in precipitation of 1 mm, keeping all other variables fixed, the average 

number of boat counts declines by 0.47 boats. But according to this model, this is true 
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both in summer when the boat counts tend to be higher and in winter when boat counts 

tend to be close to 0. This is not conceptually correct. Diagnostic plots of this model 

show lack of fit and increase in variation with the mean response (Figure 8) due to 

analyzing the data on the anti-logarithmic scale. 

 

 

 

 
Figure 8. Diagnostic plots from the base model from Table A12. The residual plot (upper left) 

shows clear lack of fit; the normal probability plot (upper right) shows problematic fits at high 

values of boat counts; the scale-location plot (lower left) shows an increase in variation over time; 

the leverage plot (lower right) shows some potential leverage points. [Further investigation of the 

potential leverage points fails to show any problems so this plot is ok.] 
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As noted previously, an analysis on the log(count) scale will be more appropriate. The 

results from such a fit are shown in Table 6. Now the coefficients have a more sensible 

interpretation. Here every increase of 1 mm in total precipitation, keeping all other 

variables fixed, results in a 1.5% decline in the mean number of boat counts. This is true 

in both winter and summer, but a 1.5% decline in summer results in a much larger 

absolute decrease. The diagnostic plots (Figure 9) show a much improved fit. 

 

 

 
Table 6. Relationship between log(daily traffic counts) and several weather variables  
 

Anova Table (Type III tests) 

 

                    Sum Sq   Df  F value    Pr(>F)     

(Intercept)          2.413    1   8.6878 0.0032742 **  

Nakusp_Daily_Avg_m   3.680    1  13.2482 0.0002861 *** 

TotalPrecipmm        5.537    1  19.9332 8.885e-06 *** 

MaxTempC           126.204    1 454.3489 < 2.2e-16 *** 

DayType             93.718    1 337.3926 < 2.2e-16 *** 

Season               0.517    2   0.9315 0.3942781     

Residuals          292.214 1052                        

 

Coefficients: 

                    Estimate Std. Error t value Pr(>|t|)     

(Intercept)        -8.695212   2.950022  -2.948 0.003274 **  

Nakusp_Daily_Avg_m  0.024793   0.006812   3.640 0.000286 *** 

TotalPrecipmm      -0.015503   0.003472  -4.465 8.88e-06 *** 

MaxTempC            0.073014   0.003425  21.315  < 2e-16 *** 

DayType1           -0.330665   0.018002 -18.368  < 2e-16 *** 

Season1             0.049398   0.044458   1.111 0.266772     

Season2            -0.056949   0.041724  -1.365 0.172576     

 

Residual standard error: 0.527 on 1052 degrees of freedom 

  (464 observations deleted due to missingness) 

Multiple R-squared:  0.7333, Adjusted R-squared:  0.7317  

F-statistic:   482 on 6 and 1052 DF,  p-value: < 2.2e-16 

 

> vif(tab12.fit.log) # Variance inflation factors  

                       GVIF Df GVIF^(1/(2*Df)) 

Nakusp_Daily_Avg_m 1.987586  1        1.409818 

TotalPrecipmm      1.036312  1        1.017994 

MaxTempC           4.195348  1        2.048255 

DayType            1.001394  1        1.000697 

Season             5.340245  2        1.520163 
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Figure 9. Diagnostic plots from the base model from Table A12 but conducted on the log(count). 

The residual plot (upper left) shows a good fit – the “diagonal” lines in the plot are artifacts of the 

discrete nature of count. ; the normal probability plot (upper right) shows some problematic fits at 

low values of boat counts; the scale-location plot (lower left) that variation is now relatively 

constant; the leverage plot (lower right) shows some potential leverage points. [Further 

investigation of the potential leverage points fails to show any problems so this plot is ok.] 

 

 

 

From the results in Table 6, every increase in the elevation by 1 m, holding all other 

variable fixed, results in a 2.5% increase in the mean boat counts. At the same time, 

there is no evidence of a seasonal effect (p=.39).  

 

Teasing out the contribution of predictor variables to the traffic count data will be 

challenging due to the high degree of association among several of the predictor 

variables. For example, Figures 2 and 3 show the relationship between the log(count), 
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temperature, and elevation. There is strong relationship between the log(count) and the 

maximum daily temperature, but the maximum daily temperature and the elevation are 

also highly related. So an increase in reservoir elevation virtually always coincides with 

an increase in temperature. This explains why the regression analysis in Table 6 failed to 

detect an effect of season (p=0.39) – it has been subsumed by the effect of 

elevation/temperature. 

 

Separating the impact of elevation and temperature will depend on time periods where 

the pattern between the two time series shown in Figure 2 is “broken”. This would seem 

to indicate that the separation of the two effects occurs late 2010/early 2011 and late 2013 

in the shoulder season where the elevation rose again while temperatures declines. Basing 

conclusions about the impact of elevation on these two short series of data in the low 

season could be misleading. This is perhaps the most serious deficiency in this 

observational study – the inability to disentangle two highly correlated predictor 

variables. Consequently to say that other variables are stronger predictors of traffic 

counts compared to reservoir elevation (ATable A1, 3
rd

 row) overstates the conclusions 

possible from an analysis of these data. 

 

The occurrence of high “correlation” among predictor variables is known as colinearity. 

A common diagnostic plot to measure the effect of colinearity is the variance inflation 

factor (VIF) whose values are reported at the bottom of Table 6. A value of 1 for the VIF 

indicates no impact of collinearity. Larger values, e.g. values of 4 reported or MaxTemp 

and 5 reported for Season indicate potential problems, and values of VIF >10 usually are 

taken as the cutoff for severe effects and coefficients should not be trusted. Here the VIF 

are reported in Table 6 are all reasonable except for the higher VIFs for the effect of 

temperature and season, which, as expected, are likely to be highly correlated. 

 

We fit another model where we dropped the (redundant) effect of season (Table 7). 

Diagnostic plots (not shown) show no evidence of problems. The VIFs are all now all 

acceptable. Now it is estimated that a 1 m increase in elevation, holding all other 

variables fixed, results in a 2.7% increase in mean traffic counts. Note that in the high 

season, there can be as much as an 8 meter change in reservoir elevation implying that 

given all other variables remaining fixed, the mean traffic count is estimated to change by 

over 16% between these two elevation extremes. 
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Table 7. Relationship between log(daily traffic counts) and several weather variables after 

dropping the (redundant) effect of season. 

  
Anova Table (Type III tests) 

 

                   Sum Sq   Df  F value    Pr(>F)     

(Intercept)          3.89    1   13.994 0.0001933 *** 

Nakusp_Daily_Avg_m   5.60    1   20.148 7.955e-06 *** 

TotalPrecipmm        5.20    1   18.733 1.647e-05 *** 

MaxTempC           375.41    1 1351.675 < 2.2e-16 *** 

DayType             93.75    1  337.552 < 2.2e-16 *** 

Residuals          292.73 1054                        

 

Coefficients: 

                    Estimate Std. Error t value Pr(>|t|)     

(Intercept)        -9.634503   2.575471  -3.741 0.000193 *** 

Nakusp_Daily_Avg_m  0.026836   0.005979   4.489 7.96e-06 *** 

TotalPrecipmm      -0.014903   0.003443  -4.328 1.65e-05 *** 

MaxTempC            0.076648   0.002085  36.765  < 2e-16 *** 

DayType1           -0.330707   0.018000 -18.373  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.527 on 1054 degrees of freedom 

  (464 observations deleted due to missingness) 

Multiple R-squared:  0.7328, Adjusted R-squared:  0.7318  

F-statistic: 722.6 on 4 and 1054 DF,  p-value: < 2.2e-16 

 

> vif(tab12.fit.log.ns) 

Nakusp_Daily_Avg_m  TotalPrecipmm    MaxTempC     DayType  

          1.531357       1.019115    1.554312    1.001306 

 

 

 

Models were also fit to assess if the effects are constant over the other variable or if there 

is an interaction between the effects and other variables. For example, a model was fit 

where the effect of elevation was allowed to vary by temperature (an elevation-

temperature interaction). There was evidence that this interaction effect is needed (Table 

8, p<.0001), and the estimated effect differs depending on the maximum temperature. For 

example, at 10 ºC, a change in elevation of 1 m is predicted to change the average boat 

counts by only 1%, but this increases to 4.7% at 25 ºC (refer to bottom of Table 8). 
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Table 8. Relationship between log(daily traffic counts) and several weather variables after 

dropping the (redundant) effect of season but including an interaction between the effects of 

elevation and temperature. Note that in models with interaction terms, tests for main effects 

cannot be interpreted. 

 
Anova Table (Type III tests) 

 

Response: log.Arrow.count 

                             Sum Sq   Df  F value    Pr(>F)     

(Intercept)                   0.658    1   2.4030 0.1214020     

Nakusp_Daily_Avg_m            0.365    1   1.3344 0.2482843     

TotalPrecipmm                 5.030    1  18.3694 1.986e-05 *** 

MaxTempC                      3.757    1  13.7192 0.0002233 *** 

DayType                      92.827    1 338.9822 < 2.2e-16 *** 

Nakusp_Daily_Avg_m:MaxTempC   4.376    1  15.9805 6.846e-05 *** 

Residuals                   288.355 1053                        

 

Estimated effects of elevation changes at different temperatures 
 

 MaxTempC Nakusp_Daily_Avg_m.trend    SE lower.CL upper.CL 

        0                   -0.014 0.012   -0.037    0.009 

        5                   -0.002 0.009   -0.020    0.017 

       10                    0.010 0.007   -0.004    0.025 

       15                    0.023 0.006    0.011    0.034 

       20                    0.035 0.006    0.022    0.047 

       25                    0.047 0.008    0.031    0.062 

       30                    0.059 0.010    0.039    0.078 

 

 

 

There was no evidence (not shown) that the effect of an elevation change differs among 

day types (weekends vs. weekdays). 

 

There was no evidence (not shown) that an effect of wind gust/direction  using a simple 

coding of “None”, “sw”, or “ne” to categorize both the effects of gust speed and the 

direction of the gusts on the log(count). 

 

The data has been collected on a daily level and could suffer from autocorrelation. For 

example, a week of fine weather could cause all the traffic counts to be higher than 

predicted for all days in that weeks, while a week of poor weather could depress counts 

for all days in that week.  Fortunately, estimates of the regression coefficients are still 

unbiased under moderate autocorrelation, but the reported standard errors are typically 

too small, leading to reported p-values that are also too small (too many false positives), 

and confidence intervals that are too narrow. As a rough rule of thumb, the corrected 

standard error is found by multiplying the reported standard error by a factor of 

1+ r( ) / 1- r( )  where r  is the estimated temporal autocorrelation  (Bence, 1995). For 

example, if the estimated autocorrelation is 0.3, the reported standard errors should be 

inflated by a factor of 1.36, i.e., 36% larger. The corrected standard errors can then be 

used to compute corrected p-values. The Durbin-Watson test is commonly used to test for 

the presence of autocorrelation and to provide an estimate of autocorrelation. 
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When the Durbin-Watson test is applied to the model using reservoir elevation, total 

precipitation, maximum daily temperature, day type, and the interaction between 

reservoir elevation and temperature, the estimated temporal autocorrelation is 0.35 which 

implies that a correction factor of approximately 1.4 needs to be applied.  I fit a model 

that accounted for autocorrelation (Table 9).  The revised ANOVA table still shows 

evidence of an interaction between reservoir elevation and maximum temperature, but the 

revised p-values are larger compared to the previous model. Similarly, the estimated 

effects of changes in reservoir elevation are similar, but the revised estimates have larger 

(corrected) standard errors and wider (corrected) confidence intervals compared to the 

model without adjustments for autocorrelation. This approximate correction factor of 1.4 

for the standard should be kept in mind when interpreting the standard errors of all 

regression estimates, but the sample sizes are so large that this correction is somewhat 

moot – even after correcting for the autocorrelation, standard errors are still small relative 

to the estimates. 

 

 

 
Table 9. Relationship between log(daily traffic counts) and several weather variables but now 

accounting for autocorrelation. Note that in models with interaction terms, tests for main effects 

cannot be interpreted. 

 
Correlation Structure: AR(1) 

Parameter estimate(s): 

     Phi  

0.359417 

 

Analysis of Variation Table (corrected for autocorrelaton) 

 
                            numDF   F-value p-value 

(Intercept)                     1 16797.944  <.0001 

Nakusp_Daily_Avg_m              1   505.833  <.0001 

TotalPrecipmm                   1    56.502  <.0001 

MaxTempC                        1   725.638  <.0001 

DayType                         1   301.335  <.0001 

Nakusp_Daily_Avg_m:MaxTempC     1     5.786  0.0163 

 

Estimated effects of elevation changes at different temperatures 
 

 MaxTempC Nakusp_Daily_Avg_m.trend    SE lower.CL upper.CL 

        0                   -0.003 0.016   -0.035    0.028 

        5                    0.007 0.013   -0.019    0.032 

       10                    0.016 0.010   -0.004    0.036 

       15                    0.026 0.009    0.009    0.043 

       20                    0.036 0.009    0.018    0.053 

       25                    0.046 0.011    0.024    0.067 

       30                    0.055 0.014    0.029    0.082 
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Appendix A.I indicated that there could be substantial year effects over and above the 

other covariates, but no regression models were fit. I also fit models that included a year 

effect and a year-elevation interaction to see if the effect of elevation, after adjusting for 

other variables, differed across years (Table 10). A 1 m change in elevation in 2011 was 

estimated to cause a 10% change in the mean traffic count after adjusting for the 

other variables (refer to bottom of Table 10). The change in 2011 was found to be 

different from the change in all other years – in other years the confidence intervals 

for the individual year effect either included 0 or just excluded the value of 0. Note 

that in Appendix I (p. 205), the authors stated 

“There was no construction activity or high water that adversely affected boat 

launch use in 2011. Thus this is likely the most “normal year” for comparison 

than any other year” 

Hence, it is worrisome that in the most “normal year”, the effect of elevation changes is 

most pronounced. 

 

 

 
Table 10. Regression analysis of the impact of elevation and other covariates on log(counts). 

There was evidence that the effect of elevation changes varied across the years. 

 
Anova Table (Type III tests) 

 

                         Sum Sq   Df   F value    Pr(>F)     

(Intercept)               0.431    1    1.6033    0.2057     

Nakusp_Daily_Avg_m        0.371    1    1.3824    0.2400     

TotalPrecipmm             5.316    1   19.7866 9.585e-06 *** 

Year                      6.743    4    6.2740 5.460e-05 *** 

MaxTempC                292.457    1 1088.5106 < 2.2e-16 *** 

DayType                  93.632    1  348.4931 < 2.2e-16 *** 

Nakusp_Daily_Avg_m:Year   6.757    4    6.2873 5.330e-05 *** 

Residuals               281.036 1046                         

 

Estimates of the effect of elevation by year. The grouping variable (last column) shows 

that the effect of elevation appears to be quite different in 2011, but could not be 

distinguished among all other years. 

 
Year Nakusp_Daily_Avg_m.trend          SE   df      lower.CL   upper.CL .group 

 2009              -0.06464314 0.054980286 1046 -0.1725273605 0.04324107  1     

 2012               0.01406619 0.008560577 1046 -0.0027316655 0.03086405  1     

 2013               0.02307377 0.011215745 1046  0.0010658518 0.04508170  1     

 2010               0.02522457 0.013059644 1046 -0.0004015106 0.05085066  1     

 2011               0.10514839 0.018653529 1046  0.0685457871 0.14175098   2    
 

 

We used information theoretic methods (e.g. AIC, Burnham and Anderson, 2002) to fit 

all possible models to the log(count) using elevation, temperature, precipitation, year, 
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season, daytime, and wind speed and direction
4
 and to combine information over this 

model set that contains over 100 possible models. 

 

A plot of the importance of each variable is shown in Figure 10. Not unexpectedly, total 

precipitation, maximum temperature, day type, year and elevation are important 

predictors of boat counts, but the season and wind direction and speed are not important. 

 

 

 
Figure 10. Variable importance in the regression of log(counts) against reservoir elevation and 

weather variables as ranked using AICc. Generally speaking, variables with a total weight of 

more than 0.80 are declared to be important in explaining variation in the response variable. 

 

                                                 
4
 Wind speed and direction were combined into a single variable with three categories as 

outlined earlier in the report. 
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The model averaged effect of elevation (i.e., the weighted average of the estimated 

slope over all possible models, not shown) was .023 (SE .007) which indicates that 

for each 1 m change in elevation, traffic counts are expected to increase by 2.3%. 

 

The author concluded (Atable A2) that elevation changed do not significantly affect 

usage (as measured by boat counts). However, we did detect effects of elevation 

(around 2-3% increase for every increase by 1 m in reservoir elevation), but I am 

unable to say if the percentage changes noted above are of real interest. Note that the 

decision of which magnitude of effect represents a “substantial” effect is not a statistical 

question and CANNOT be determined by simply looking at the p-value, estimates or 

standard errors. This must be decided based on knowledge of the system and how 

observed changes affect behaviors. 

 

 

2.3 Management question 
H0C: The different types of public use are not affected by fluctuating water levels. 

 

Similar analyses can be done as for Management Question H0A except that now interest 

lies in how different classes of users rate satisfaction and future return as a function of 

water elevation. Note that if a user selects more than one type of activity in the survey, 

then they will be used multiple times. The same caveat about distinguishing between 

intentions and actions should be kept in mind.  

 

Differences in the mean satisfaction with water levels as a whole were detected among 

beach users, campers, residents, and swimmers (Table 11 and ATable A13). There was 

no evidence of a difference in the mean satisfaction for anglers, boaters, and walkers. 

Beach walkers, campers, and swimmers were more satisfied, on average; residents were 

less satisfied on average compared to their complement. These conclusions mirror those 

made by the authors in their report (ATable A13). Again note the strong relationship 

between temperature and elevation, and the activities with higher mean satisfaction also 

tend to occur at higher temperatures and elevations.  

 

 

Table 11. Overall mean satisfaction with the water levels on the Arrow Lakes Reservoir by 

different public uses. This is similar to Table A13. 

Public 

Uses 

Non-

users Users 

Non-user  

mean 

User 

mean 

Diff in 

means 

SE 

diff P-value 

Angling 1935 644 3.41 3.45 -0.04 0.061 0.5100 

Beach Activities 2106 473 3.36 3.67 -0.31 0.054 0.0000 

Boaters 2176 403 3.43 3.38 0.05 0.061 0.4165 

Campers 2174 405 3.39 3.61 -0.22 0.055 0.0001 

Residents 1728 849 3.52 3.24 0.28 0.047 0.0000 

Swimmers 1972 607 3.35 3.66 -0.31 0.051 0.0000 

Walkers 2001 578 3.42 3.41 0.01 0.060 0.8682 

Respondents were classified by their activity on the day of the survey. 
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A quadratic regression (not shown) was used to model the mean satisfaction score for 

each user group as a function of the elevation at the time of the survey and the results are 

shown in Figure 11. In all cases, the mean satisfaction score increases with the reservoir 

elevation at the time the respondent completed the survey. 

 

 

 

 
Figure 11. Mean satisfaction score with water levels on the whole by user group as a function of 

the Nakusp elevation at the time of the survey. A series of 4 models (separate quadratic, common 

quadratic, separate linear, common linear trends) were fit and ranked using AICc. The model 

averaged predictions are shown. In all cases, there was evidence of an increase in mean 

satisfaction score with the water levels as a whole with the elevation at the time of the survey. 

Note that there was no evidence of a difference in the curves for Walkers, Anglers and Boaters.  
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A logistic regression can also be used to investigate differences in satisfaction in more 

depth vs. the simple comparison shown in ATable A13, A14, A15, and A16. For 

example, the authors found that swimmers had a higher mean satisfaction rating that non-

swimmers, but did not explore if these differences were related to current or future 

reservoir elevations.  

 

A series of logistic regression models were fit that compared the probability that a user 

would return if future reservoir height was lower, the same, or higher than the height at 

the time of the survey and the (model averaged) results are plotting in Figure 12 (a), (b) 

and (c). The model set included quadratic and/or linear effect of elevation and if the 

curves were the same/different in the two classes of users within each category. 
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Figure 12 (a) Results of a logistic regression comparing the probability of return when future 

elevation is LOWER than the current elevation by user groups. Four different models were fit: Q-

G with a separate quadratic curve for each user group; Q with a common quadratic curve over the 

two user groups; L-G with a separate linear curve for each user group; and L with a common 

linear curve for the two user groups. The model weights for each curve are shown on each panel 

and the model-averaged curve is plotted.  
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Figure 12 (b) Results of a logistic regression comparing the probability of return when future 

elevation is the SAME as current elevation by user groups. Four different models were fit: Q-G 

with a separate quadratic curve for each user group; Q with a common quadratic curve over the 

two user groups; L-G with a separate linear curve for each user group; and L with a common 

linear curve for the two user groups. The model weights for each curve are shown on each panel 

and the model-averaged curve is plotted. 
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Figure 12(c) Results of a logistic regression comparing the probability of return when future 

elevation is HIGHER than the current elevation by user groups. Four different models were fit: 

Q-G with a separate quadratic curve for each user group; Q with a common quadratic curve over 

the two user groups; L-G with a separate linear curve for each user group; and L with a common 

linear curve for the two user groups. The model weights for each curve are shown on each panel 

and the model-averaged curve is plotted. 

 

 

Generally speaking, a common quadratic curve was the most highly supported model 

(i.e., no evidence of a difference in the response profile among the two user groups in 

each category of user) except for Beach users when asked if they would return if future 

water levels were lower, and for Residental status when asked if they would return if 

future water levels were higher. 

 

When the reservoir elevations are low, then users are typically less likely to return if the 

future elevations are even lower compared to if future elevations being higher.  Similarly, 
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user groups are more likely to return if the future elevation is similar to the elevation at 

the time of the survey and the current elevation is intermediate. Finally, user groups are 

less likely to return if the future elevations are higher and the current elevation is also 

higher. In other words, users tend to prefer the intermediate reservoir elevations – not 

surprisingly, the same conclusion as seen in Figure 8 which was pooled over all user 

groups. 

 

 

3 Summary 
In this supplemental analysis, there is clear evidence that an increase in reservoir 

elevation by 1 m results in a 2% to 3% increase in boat counts.  It is unclear if this is 

a “important” change as statistical analyses don’t answer that question. There is some 

evidence that this relationship may depend on the temperature or year of the survey, but 

these additional effects are difficult to disentangle because reservoir elevation and 

temperature are highly related.   

 

Our analyses showed clear preferences for intermediate elevation levels (i.e., 434.0 

m to 437.5 m ASL) even after adjusting for temperature and this was consistent 

over the different category of users. 
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