

Columbia River Project Water Use Plan

Kinbasket & Arrow Recreation Management Plan

Implementation Year 3

Reference: CLBWORKS-35 and CLBWORKS-36

Mid Columbia Erosion Protection and Long-Term Monitoring

Study Period: 2011

Kerr Wood Leidal Associates Limited Consulting Engineers

December 01 2012

Germalal velicitation TOG - Statistic Constant Homoson, M. - Vice State T Scief Fore State T Scief Fore State

2012 Progress Report

CLBWORKS #35 and #36 Mid-Columbia Erosion Protection and Long-Term Monitoring

Final Report December 2012 KWL Project No. 478.081-300

Prepared for:

Prepared by: Kerr Wood Leidal Associates Ltd.

all and a second a second of the second beauty

kwi.co/

Statement of Limitations

This document has been prepared by Kerr Wood Leidal Associates Ltd. (KWL) for the exclusive use and benefit of BC Hydro for CLBWORKS #35 and #36. No other party is entitled to rely on any of the conclusions, data, opinions, or any other information contained in this document.

This document represents KWL's best professional judgement based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by members of the engineering profession currently practising under similar conditions. No warranty, express or implied, is made.

Copyright Notice

These materials (text, tables, figures and drawings included herein) are copyright of Kerr Wood Leidal Associates Ltd. (KWL). BC Hydro is permitted to reproduce the materials for archiving and for distribution to third parties only as required to conduct business specifically relating to CLBWORKS #35 and #36. Any other use of these materials without the written permission of KWL is prohibited.

Revision History

Revision #	Date	Status	Revision	Author
1	December 28, 2011	Final	Final	SJL/DTM

KERR WOOD LEIDAL ASSOCIATES LTD.

1. Construction of the second s second se Second s Second seco

1.1	
11	1
	2222
	A
14	
117	
	and the second s

Contents

Execu	Itive Summary	i
1. 1.1 1.2 1.3	Introduction Project Overview Updated Project Schedule Project Team	1-1 1-1
2.1 2.2 2.3 2.4	CLBWORKS #35 Permits Construction Erosion Monitoring Statistical Analysis	2-1 2-1 2-3
3. 3.1 3.2 3.3 3.4 3.5 3.6 3.7	CLBWORKS #36. 2012 Measurements Wind Data Statistical Analysis Erosion pin evaluation Cross-Section Evaluation Interim Conclusions Channel Mapping	3-3 . 3-33 . 3-35 . 3-35 . 3-38 . 3-42
4. 4.1 4.2 4.3	Summary and Future Works CLBWORKS #35 CLBWORKS #36 Report Submission	4-1 4-1

KERR WOOD LEIDAL ASSOCIATES LTD.

TO A PARTY AND A REPORT OF A PARTY AND A

Figures

Figure 1-1: Location Plan	
Figure 2-1: Bioengineering Site Splitting Site A	2-8
Figure 2-2: Bioengineering Site Splitting Site B to C	
Figure 2-3: Bioengineering Site A1	
Figure 2-4: Bioengineering Site A2	
Figure 2-5: Bioengineering Site B	2-8
Figure 2-6: Bioengineering Site C	
Figure 3-1: Revelstoke Dam Flow Releases and Arrow Lake Water Level (April 2010 to June 2011)	
Figure 3-2: CLBWORKS #36 Bank Erosion Monitoring Sites	
Figure 3-3: Monitoring Site #1	
Figure 3-4: Monitoring Site #2	
Figure 3-5: Monitoring Site #3	
Figure 3-6: Monitoring Site #4	
Figure 3-7: Monitoring Site #5	
Figure 3-8: Monitoring Site #6	
Figure 3-9: Monitoring Site #7	
Figure 3-10: Monitoring Site #8	
Figure 3-11: Monitoring Site #9	
Figure 3-12: Monitoring Site #10	
Figure 3-13: Monitoring Site #11	
Figure 3-14: Monitoring Site #12	
Figure 3-15: Monitoring Site #13	
Figure 3-16: Monitoring Site #14	
Figure 3-17: Monitoring Site #15	
Figure 3-18: Nakusp Wind Rose (Station 1145297)	
Figure 3-19: Revelstoke Airport Road Wind Rose (Station 1176751)	
Figure 3-20: Revelstoke A Wind Rose (Station 1176749)	
Figure 3-21: Average change in pin length (cm) at monitoring sites	
Figure 3-22: Sites closest to the dam were more eroded and sites further downstream from the da	
greater deposition (Spearman's correlation = 0.55, p < 0.05)	
Figure 3-23: Average change at the 14 monitoring sites measured as change at the midpoint of the	
elevations (upper panel) and measured as the maximum observed difference (lower panel). Show	
changes in elevation for three time periods	3-41

Tables

Table 1-1: Current Schedule for CLBWORKS #35 and #36 Table 1-2: 2012 Work Program (CLBWORKS #35 and #36).	
Table 1-3: Key Project Personnel	. 1-3
Table 2-1: Summary of Planting and Distribution	. 2-2
Table 2-2: Site name, average change in pin length (mean; cm) and number of pins measured (N) for	
control sites; mean and N for treatment (bioengineered) sites; and difference of means between control	rol
and treatment paired locations at each site	. 2-5
Table 2-3: Statistical results for testing the subtracted difference in change of mean pin length for 7 paired sites	
r	

Table 2-4: Site name (DS = downstream; US = upstream; C = control), site code, average change in pin heights (m) for upper, middle and lower elevation bands summarized as the midpoint of each elevation Table 2-5: Site name, average change in elevation (mean; m) for control sites (C) and treatment Table 2-6: Statistical results for testing the difference in Midpoint (m) and Maxima (m) for 7 paired sites.2-7 Table 3-2: Site name, mean change in pin length, and the number of pins (N), that were measured for Table 3-3: Statistical results for testing change in mean pin length during three time periods at 15 sites.3-36 Table 3-4: Mean horizontal bank change based on measurements at the midpoints of the cross-section profiles (m); and the number of measurements (N) for each monitoring location. Shown are changes for Table 3-5: Mean horizontal bank change based on maximum differences in the cross-section profiles (m); and the number of measurements (N) for each monitoring location. Shown are average maximum Table 3-6: Statistical results for comparisons of cross-section changes at 14 locations during three time periods. Shown are results for the changes measured at the midpoint and measured as the maxima. 3-42 Table 3-7: Statistical results for comparison of change in cross-section elevations within lower, middle and upper bands along the bank. Shown are results for the changes measured at the midpoint and

Appendices

Appendix A: CLBWORKS #35 Drawings (Record Drawings) Appendix B: CLBWORKS#35 Survey and Cross-section Drawings Appendix C: CLBWORKS#36 Survey and Cross-section Drawing

Executive Summary

This report summarizes progress made by Kerr Wood Leidal Associates Ltd. (KWL) during 2012 on BC Hydro programs CLBWORKS #35 and #36. These two programs were initiated in 2009 after a multi-stakeholder review of the Columbia River Water Use Planning (WUP) process in response to the proposed installation of a fifth generating unit at Revelstoke Dam. CLBWORKS #35 and CLBWORKS #36 are part of a large suite of physical works and monitoring projects developed under the WUP for the Columbia River system.

CLBWORKS #35

The purpose of CLBWORKS#35 is to implement and test the performance of bioengineering treatments to reduce erosion in sections of the Columbia River downstream of Highway 1, with a total of 400 m of bioengineering works required under the Terms of Reference. Four bioengineering sites were selected, with three of the sites being further split to increase the total number of samples in the statistical analysis.

Construction of the bioengineering works is complete. The final lower elevation portion of Site A1 was installed in March 2012. Baseline erosion monitoring pins and cross-sections have been established at all CLBWORKS #35 sites, including the lower elevations of Site A1. Erosion monitoring pin measurement data and transect survey data was collected in April 2012. The initial data analysis is summarized in this report.

The first round of erosion monitoring measurements (Year 2) provides a partial year of data. This allows understanding of the change over a winter season of lower of the Arrow Lakes water levels and does not include a flood cycle.

Initial measurements of the erosion monitoring pins indicate that there is no statistically significant change in erosion or deposition from 2011 to 2012 for the bioengineered versus control sites. Control sites do show slightly more erosion based on average exposed pin length; however, it is not statistically significant. The transect profiles indicate that the control sites show slightly more deposition, again, these results are not statistically significant.

The length of time for this comparison is relatively short (four months) and changes likely will take longer to develop. Year 3 monitoring for this project is scheduled for spring 2013.

CLBWORKS #36

The purpose of CLBWORKS #36 is to monitor long term erosion rates along the Columbia River from Revelstoke Dam to Shelter Bay.

There are a total of 15 long term erosion monitoring sites that have been established for CLBWORKS #36. One site (MON 14) was excluded from data collection and analysis in 2012 because of conflicts with the upland landowner. Year 3 (2012) erosion monitoring measurements have been completed at the CLBWORKS #36 sites, and the data analysis is summarized in this report. Erosion pin measurements and transect surveys were conducted between May 31 and June 2, and between June 13 and 14, 2012.

Each of the 14 remaining monitoring sites was evaluated for change in erosion or deposition by comparing the average change in exposed erosion pin length for three time periods: 2010 to 2011, 2011 to 2012 and 2010 to 2012.

At each of the 14 monitoring sites, elevation was measured along five cross-sections (transects) from the top of the bank to the river's edge in 2010, 2011 and 2012. The average elevation of the transects at each site were compared for the same three time periods and the average elevation of the transects at each site separated into upper, middle and lower elevation bands were compared for the same three time periods.

In general, measurements made of the pins and transects agreed and most measurements indicated erosion. For the pins, a statistically significant change (erosion) was observed from 2010 to 2011; however, the trend was not statistically significant for 2011 to 2012 or from 2010 to 2012.

For the transects, approximately 75% of the measurements indicated erosion. A statistically significant amount of erosion was observed from 2010 to 2011 and over the overall period from 2010 to 2012. When erosion was evaluated within elevation bands, the upper and middle elevations showed some statistically significant erosion, while the lower elevations showed deposition that was not statistically significant.

It could also be seen this year that erosion patterns followed a gradient from upstream to downstream sites. The most eroded sites were located nearest to the Revelstoke Dam and sites with the greatest deposition were furthest downstream. While preliminary, this trend is physically consistent with what would be expected for a river mouth/lake environment.

Year 4 monitoring is scheduled for the spring of 2014 for this project.

KERR WOOD LEIDAL ASSOCIATES LTD.

Section 1

Introduction

manus assured a Changes of Assurement Street

kwl.ca

- 1 Mar	
1.00	

1. Introduction

This report summarizes progress made by Kerr Wood Leidal Associates Ltd. (KWL) during 2012 on BC Hydro programs CLBWORKS #35 and #36. The proposed installation of a fifth generating unit at Revelstoke Dam resulted in a multi-stakeholder review of the Columbia River Water Use Planning (WUP) process. According to pubic BC Hydro reports, the fifth generating unit was expected to be complete by late, 2011.

As a result of the WUP review, it was recommended that two programs be undertaken:

- **CLBWORKS #35**: Develop and implement a bank erosion monitoring and mitigation program to identify and address current and future shoreline erosion concerns attributable to the Revelstoke Unit 5 project downstream of Revelstoke Dam (mid-Columbia River between the TransCanada Highway Bridge and Begbie Creek, see Figure 1-1).
- **CLBWORKS #36**: Monitor long-term erosion rates along the mid-Columbia River from Revelstoke Dam downstream to Shelter Bay (Figure 1-1).

Given the complementary nature of the work, these two physical works programs were combined into one project, which was awarded to KWL in summer 2009.

1.1 Project Overview

The purpose of CLBWORKS #35 and #36 is to provide information regarding bank erosion along the mid-Columbia River downstream of the Revelstoke Dam. Management questions of interest include:

- Does the installation of bioengineering bank protection works result in a significant decrease in bank erosion?
- Does the addition of Revelstoke Unit 5 result in a significant increase in bank erosion at unprotected sites?

The project schedule (Section 1.2) did not permit adequate baseline data (i.e. a period of time equivalent or greater than the post installation monitoring) to be collected before the fifth generating unit was installed at Revelstoke Dam; therefore, the second management question cannot be entirely addressed. Rather, the long-term erosion monitoring program will document rates of erosion at various sites over time, and will attempt to determine which mechanisms are responsible.

1.2 Updated Project Schedule

The original intent of the erosion monitoring work was to have repeat baseline measurements for the each of the sites prior to commissioning of Revelstoke Unit 5, and to assess erosion through several years of operation.

However, due to unusually high water levels in the system in 2010, no data could be collected in that year. In addition, the higher than average water levels made installation of the bioengineering works for CLBWORKS #35 impractical in the same year.

The schedule of both projects has been shifted to accommodate this change. The general schedule for CLBWORKS #35 and #36 is summarized in the following table.

Year	CLBWORKS#35	CLBWORKS#35
2009	Y1 – Design	Y1 – Site Selection
2010	Y1 – Permitting	Y1 – Baseline Monitoring
2011	Y1 – Bioengineering Construction	Y2 – Monitoring
2012	Y2 – Monitoring	Y3 – Monitoring
2013	Y3 – Monitoring	
2014		Y4 – Monitoring
2015	Y4 – Monitoring	
2016		Y5 – Monitoring

Table 1-1: Current Schedule for CLBWORKS #35 and #36.

The long-term erosion monitoring sites (CLBWORKS #36) were installed in late April 2010, and repeat measurements were conducted in late May / early June 2011 and in April 2012.

The bulk of the bioengineering works for CLBWORKS #35 were installed in October and November 2011, with large woody debris (LWD) installed in the lower elevation of Site A1 during April 2012. The erosion monitoring pins were installed for the bioengineering and control sites in November 2011 and measurements were taken in April 2012. Lower elevation erosion monitoring pins at Site A1 were installed after the completion of construction in April 2012.

2012 Project Work

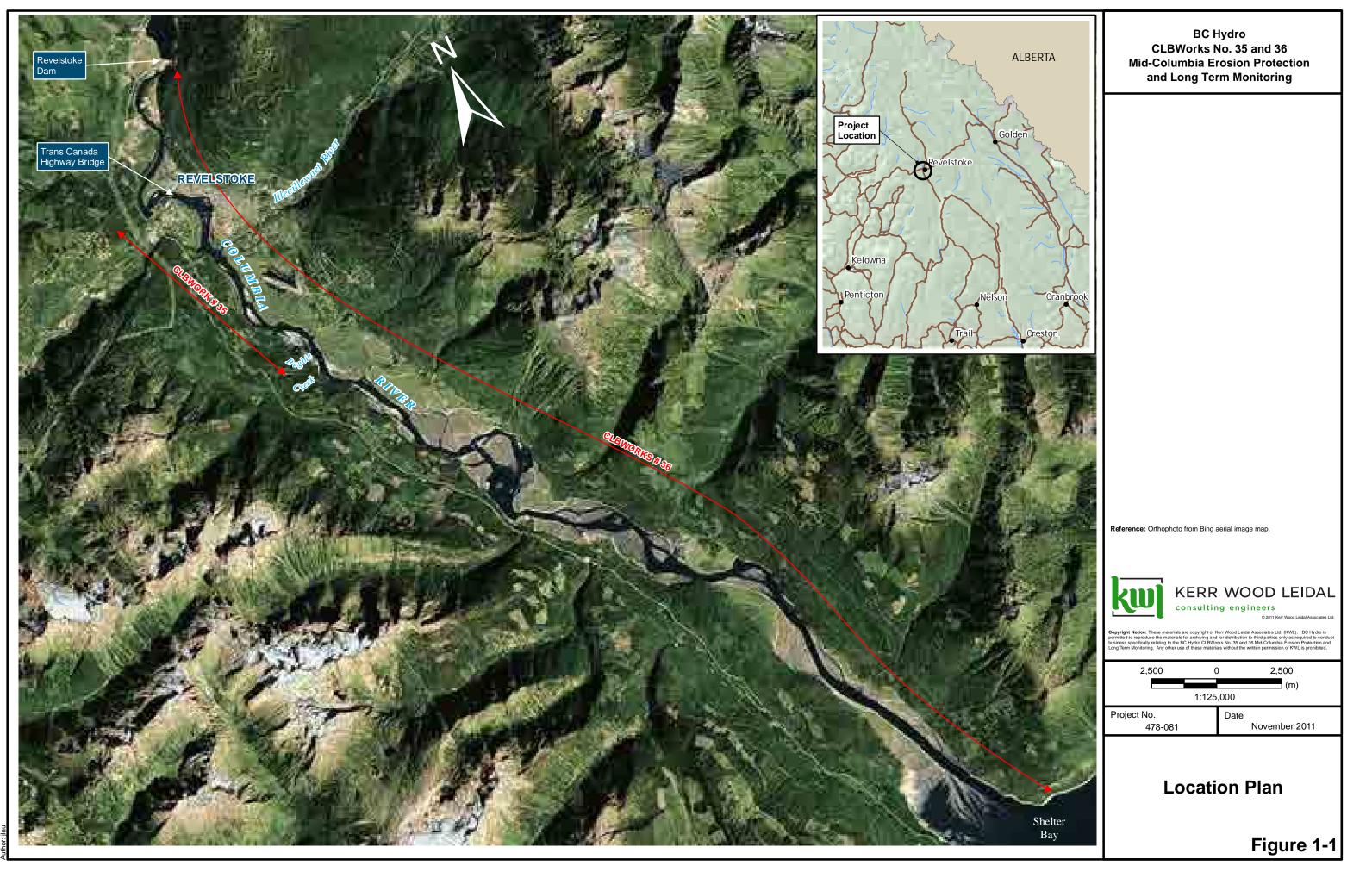
Project work completed during 2012 is summarized in the following table. Task numbers reference the original work program proposed by KWL in 2009.

Task No.	Task	Description
11.	Erosion Assessment	Safety Plan
	(CLBWORKS #36 Y3)	 Site Visit
		 Measure Erosion Pins
		 Re-survey Monitoring Cross-Sections
6.&10.	Bioengineering Works (CLBWORKS #35 Y2)	 Low water construction for bioengineering design
		 Installation of low water Baseline Monitoring Erosion Pins and Cross-section re-survey
		 Monitoring of any repeat Erosion Monitoring Pins
11.	2012 Data Entry and	 Populate GIS Database
	Analysis	 Data Analysis (CLBWORKS #36 Y3)
11.	2012 Progress Report	 Progress Report for CLBWORKS #35 Y2
		 Progress Report for CLBWORKS #36 Y3

Table 1-2: 2012 Work Program (CLBWORKS #35 and #36).

KERR WOOD LEIDAL ASSOCIATES LTD.

1.3 Project Team


Key Project Personnel for this project in the past year include the following KWL staff and subconsultants:

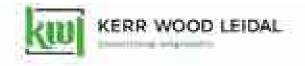

Name	Role, Organization
David Matsubara, M. Eng., P. Eng.	Project Manager Senior Water Resources Engineer Kerr Wood Leidal Associates Ltd.
Mike Currie, M.Eng., P.Eng.	Senior Technical Review Kerr Wood Leidal Associates Ltd.
Erica Ellis, M.Sc., P.Geo.	Fluvial Geomorphologist Kerr Wood Leidal Associates Ltd.
Sarah Lawrie, M.A.Sc., P.Eng.	Environmental Water Resource Engineer Kerr Wood Leidal Associates Ltd.
Jack Lau	GIS Specialist Kerr Wood Leidal Associates Ltd.
Peter Tapp, Civil Technologist	Survey Coordinator Kerr Wood Leidal Associates Ltd.
Bruce VanCalsteren	Survey Technologist Kerr Wood Leidal Associates Ltd.
Mike Moody	Technologist Kerr Wood Leidal Associates Ltd.
Nick Page, B.L.A., M.Sc., R.P.Bio.	Professional Biologist Raincoast Applied Ecology
Leska S. Fore, M.S., M.A.	Statistician Leska S. Fore, Statistical Design

Table 1-3: Key Project Personnel

As required, change orders were submitted to BC Hydro to add or substitute personnel to the team.

KERR WOOD LEIDAL ASSOCIATES LTD.

Section 2

CLBWORKS #35

manual bounded in Charges of Summer Street

kwl.ca

	a to be the first	
	K 8 2 8 8	
0	1101	
1.1		

2. CLBWORKS #35

The purpose of CLBWORKS#35 is to implement and test the performance of bioengineering treatments to sections of the Columbia River at Revelstoke between Highway 1 and Bebgie Creek. Four bioengineering sites were selected to fulfil the regulatory goal of a total of 400 m of constructed bioengineering works. Three of the sites were further split to increase the total number of samples in the statistical analysis, as outlined in Figures 2-1 and 2-2.

Final bioengineering record drawings for CLBWORKS #35 are included in Appendix A.

2.1 Permits

For the project the following regulatory agencies were contacted for project referral:

- Fisheries and Oceans Canada;
- Transport Canada Navigable Waters; and
- Ministry of Environment.

As follow-up for these referrals, permits were required by Transport Canada under the Navigable Waters Protection Act and by Ministry of Environment under Section 9 of the Water Act.

2.2 Construction

The construction of bioengineering works for CLBWORKS#35 was initiated in October 2011, following approval by BC Hydro. Due to water levels in the Fall of 2011, isolated low water work (comprising large wood, boulder installation, and aquatic bench creation) was delayed until April 2012, once snow had left the floodplain. This work was conducted by the selected contractor from 2011, Brinkman Reforestation. The April 2012 work also included planting of any potted plants on the floodplain to provide a higher chance of overall plant survival and growth. Some additional live cuttings were installed in April 2012.

A description of the bioengineering work from 2011 can be found in the CLBWORKS#35 and #36 2011 Progress Report. The following describes the installation of the low-water works at Site A1 and planting of potted plants.

Low-Water Works – Site A1

Site A1 is located on the west side (right bank) of the Columbia River a short distance from the Big Eddy Bridge. The site is readily accessible by public roads; however, access could be limited during very high water levels. This side of the Columbia River is frequented by the public for a variety of recreational activities.

The treatment for Site A1 differs from all of the other treatments in the level of complexity and bioengineering techniques. All of the bioengineering treatments have been selected to emulate features found near or at each site. In the case of Site A1, the treatment includes a higher reinforced soil slope, a bench for aquatic grasses, and large wood debris on the lower bank.

Photos of the large woody debris installation are shown in the following Photos 2-1 and 2-2.

Photo 2-1: Initial construction at Site A1

Photo 2-2: Installation of large woody debris at Site A1

Planting

Planting conducted in 2012 included a wide variety of potted and plug stock for the upland riparian areas and for the aquatic bench. Species and distribution of the species are summarized in the following table:

Common Name	Distribution	Sites Included
Bioengineering Slope Pl	anting	
Pacific willow	30% by bank treatment length	All
Shrub willow (various)	70% by bank treatment length	All
Black cottonwood	2 plants per 10 m of bank	Sites A and C
Mountain alder	5 plants per 10 m of bank	Sites A and C
Red-osier dogwood	5 plants per 10 m of bank	Sites A and C
Upland Riparian Planting)	
Shrub willow	30% by area	Sites A and C
Mountain alder	20% by area	Sites A and C
Paper birch	15% by area	Sites A and C

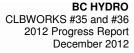
Table 2-1: Summary of Planting and Distribution

KERR WOOD LEIDAL ASSOCIATES LTD.

representation adjustments

Common Name	Distribution	Sites Included
Englemann spruce	5% by area	Sites A and C
Western red cedar	5% by area	Sites A and C
Red-osier dogwood	10% by area	Sites A and C
Thimbleberry	5% by area	Sites A and C
Saskatoonberry	5% by area	Sites A and C
Black twinberry	5% by area	Sites A and C
Marsh Bench Plantings		
Sedges	85% by area	Sites A and C
Common spike rush	5% by area	Sites A and C
Redtop	10% by area	Sites A and C

The shrub willow used in the bioengineering work includes: *Salix barclayi, Salix bebbiana,* and *Salix drummondiana.*


2.3 Erosion Monitoring

Baseline Data

Following construction of the bioengineering treatments, an erosion monitoring program was implemented similar to the program established for CLBWORKS#36. The approach involves placing a series of 0.5 m long erosion monitoring pins throughout the bioengineering treatment and in the control areas outlined on Figures 2-1 and 2-2.

The erosions pins were installed at the upper elevations of Site A1 as well as Sites A2, B and C in November of 2011. In April, 2012, the lower elevation erosion pins were installed at Site A1, and the previously installed pins were re-measured.

Cross-section data was also collected for the bioengineering sites and the control sites. The locations of the cross-sections are shown on the site figures, and the baseline cross-section plots are provided in Appendix B.

2012 Measurements

A total of seven sites, based on site splitting, were modified with bioengineering methods designed to reduce erosion. Each site was paired with a control site that was not treated. The seven site pairs were evaluated for change in erosion (or deposition) by two methods:

- measuring the length of exposed pins in 2011 and 2012; and
- surveying transects along the site.

The number of pins measured at each site, including control sites, varied from 9 to 20. The difference in exposed pin length between 2011 and 2012 was calculated for each pin. The average change in exposed pin length was calculated for each site, and the *difference* between the change observed at the control and treatment sites was calculated for each pair of sites. The subtracted difference between each site pair was used to evaluate the amount of change in erosion (or deposition) associated with bioengineering methods at the treatment sites.

Measurements of all of the bioengineering sites were conducted between April 17 and 25, 2012. All pins installed in 2011 were re-measured, and 15 additional pins were installed at Site A1. Only one pin installed in 2011 at Site A1 was lost due to supplementary construction activity.

2.4 Statistical Analysis

Erosion pin evaluation

The statistical model used to evaluate change in site condition was a before/after control/impact design (BACI; Stewart-Oaten et al., 1992; Stewart-Oaten and Bence, 2001). A BACI model tests for change at an impacted site relative to a control site. The expectation is that influences outside the experiment, e.g., a high water year, will influence both the control and treatment sites in similar ways and in this way the change in the treatment site can be benchmarked with the change observed at its paired control site. In this case, the impacted sites are those treated with bioengineering designs to prevent erosion. Control sites are not treated.

Both control and treatment sites are measured through time and each site is compared with itself through time. This approach controls for the potential influence of site location because each site is paired with itself. The subtracted difference for exposed pin lengths is calculated and averaged for each site. Each site is next compared with its control site by subtracting to get the difference in average pin length for the control and treatment sites. This approach controls for influences outside of the paired sites, e.g., climate. Thus, the 'difference of the differences' is the test statistic. The statistical test determines whether the test statistics are significantly greater than or less than 0. A statistically significant result could be due to more deposition, less deposition, more erosion or less erosion at the treatment sites.

Changes at both the control and treatment sites were small from 2011 to 2012 (Table 1). Three control locations had 1-3 cm of erosion on average across all pins; other control sites had < 1 cm change. For treatment locations, one had ~5 cm of erosion and two had ~1 cm of deposition, others had < 1 cm of change. The largest changes were seen at A2_DS. Overall, five control sites had values indicating erosion and four treatment sites had values indicating erosion. Very few pins were missing; missing values were not estimated or included in any calculations. The overall difference between control and treatment sites was not statistically significant (-0.33 cm, p = 0.4; Table 2).

Table 2-2: Site name, average change in pin length (mean; cm) and number of pins measured (N) for control sites; mean and N for treatment (bioengineered) sites; and difference of means between control and treatment paired locations at each site

Site name	Control		Treatment		Control – Treatment	
	Mean (cm)	N	Mean (cm)	N	Difference (cm)	
A1_US	-0.90	15	0.15	10	-1.05	
A1_DS	-0.06	18	0.83	9	-0.89	
A2_US	-2.04	12	-0.58	12	-1.46	
A2_DS	-3.32	14	-4.77	13	1.45	
В	0.03	20	-0.06	24	0.09	
C_US	0.03	20	-0.06	18	0.08	
C_DS	-0.11	19	0.45	19	-0.55	

In the above table negative values indicate erosion, positive values indicate deposition

Table 2-3: Statistical results for testing the subtracted difference in change of mean pin length for 7 paired sites

Change measured as	Period	Mean (cm)	SD	Ν	Std. Err.	t-value	df	р
Difference in mean pin length (cm)	2011 to 2012	-0.33	0.97	7	0.37	-0.91	6	0.40

The table above summarizes results for difference in change in mean pin length, time period of comparison, mean difference in change in pin length, the standard deviation of the difference, number of site pairs, standard error of the mean difference, test statistic, degrees of freedom and p-value for Student's t test.

Cross-section evaluation

Cross-sections were measured at 12 out of 14 of the sites. Two sites (A1_US and A1_DS) were only measured once because the installation was completed later than the other sites. Sites were paired for this analysis and a similar BACI statistical model was used to test for a difference in the amount of change in erosion (or deposition) for the paired sites.

Elevation was measured along cross-sections from the top of the bank to the river's edge in 2011 and 2012. Measurements taken along each cross-section were summarized at three points. The points were defined by dividing the total height of each cross-section into three equal heights from the highest elevation (at the top of the bank) to the lowest elevation (at the river edge). For example, if the elevation along a cross-section ranged from 400 to 415 m, the difference of 15 m was divided into three equal elevations (400–405, 406–410, and 411–415). The midpoint of each elevation band was intersected with the profile for each year. Thus, within each of the three "sub-sections" (lower, middle and upper), the elevation at the midpoint of the sub-section was calculated. A second statistic, the maximum change within each of the three sub-sections, was calculated in a similar manner.

Sites varied in the number of cross-sections measured (from two to four). Change in elevation was measured at three points along each cross-section. Changes in elevation were calculated by comparing measurements at each site to itself through time. Two types of measurements were made for each

elevation: as the midpoint of each elevation band and as the maximum observed difference in the elevation band.

Years were compared by calculating the change in elevation at the midpoints of each subsection. The measurements of mean change at the midpoints of the three elevation bands were averaged for each site. Average change was compared for each control and treatment site by calculating the difference in change in elevation. For the BACI design, the difference of the differences is compared. Differences were tested for a statistical significance based on their difference from 0. In 2012, several measurements were missing, particularly from the lowest elevations of the site C_US and C_DS for both control and treatment sites (Table 2-4).

For midpoint measurements, two control sites had negative changes in elevation indicating erosion, and five sites had positive changes (Table 2-5). For the five treatment sites, two indicated erosion and three deposition. The treatment and control site pairs did not tend to agree on erosion or deposition. The difference between control and treatment sites from 2011 to 2012 was not statistically significant for measurements of elevation calculated at the midpoint of each elevation band (0.04 m, p = 0.8; Table 5).

For measurements based on the maximum difference in elevation within each elevation band, values were generally larger than for midpoints (see Table 4). All but one control site had values indicating deposition. Two out of five treatment sites indicated erosion. Statistical testing found no significant difference in deposition or erosion for control and treatment sites (0.1 m, p = 0.6; see Table 5).

Site name	Site	Midpoin	it (m)		Maximum (m)		
	code	Upper	Middle	Lower	Upper	Middle	Lower
A1_DS_C	104	-0.03	-0.02	0.20	1.83	0.38	0.01
A1_US_C	101	0.05	0.09	0.05	0.19	-0.13	0.02
A2_DS	107	0.69	-0.56	1.19	0.63	-0.64	0.63
A2_DS_C	108	0.75	-0.63	-0.28	0.48	-0.31	-0.40
A2_US	106	0.24	0.18	0.77	2.98	0.29	0.77
A2_US_C	105	0.12	0.11	0.97	1.84	0.48	1.07
В	110	0.04	0.17	-0.05	0.45	0.27	0.33
B_C	109	0.51	0.24	-0.09	1.78	0.41	-0.16
C_DS	113	-0.18			-0.05	-0.18	
C_DS_C	114	0.09	-0.28		0.16	-0.08	
C_US	112	-0.22	-0.13		-0.24	-0.20	-0.59
C_US_C	111	0.59	0.40	-1.51	0.77	0.67	-0.39

Table 2-4: Site name (DS = downstream; US = upstream; C = control), site code, average change in pin heights (m) for upper, middle and lower elevation bands summarized as the midpoint of each elevation band and as the maximum change observed in each elevation band.

KERR WOOD LEIDAL ASSOCIATES LTD.

Preventions adjustment in the Contract of the State of the State

Site		Midpoint (n	n)	Maximum (m)		
name	Mean (C)	Mean (T)	Difference	Mean (C)	Mean (T)	Difference
A1_US	0.07			0.03		
A1_DS	0.05			0.74		
A2_US	0.29	0.32	-0.03	1.13	1.46	-0.33
A2_DS	-0.05	0.44	-0.49	-0.08	0.21	-0.29
В	0.31	0.07	0.24	0.68	0.35	0.33
C_US	0.21	-0.18	0.39	0.35	-0.26	0.61
C_DS	-0.1	-0.18	0.09	0.06	-0.11	0.18

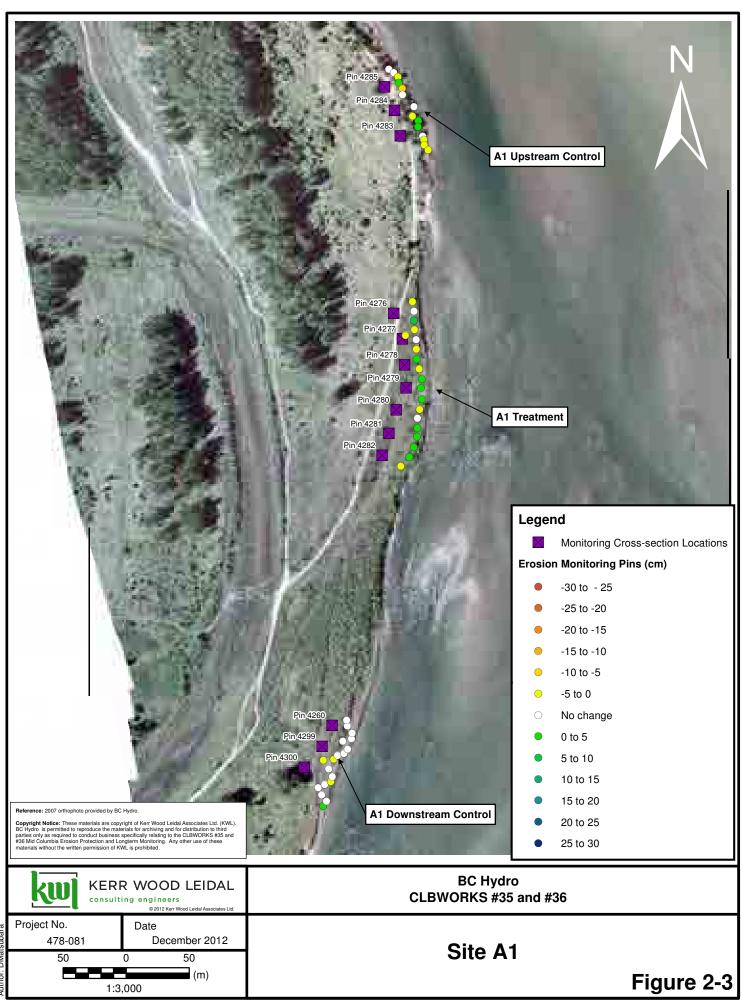
Table 2-5: Site name, average change in elevation (mean; m) for control sites (C) and treatment (bioengineered) sites (T), and the difference between control and treatment sites.

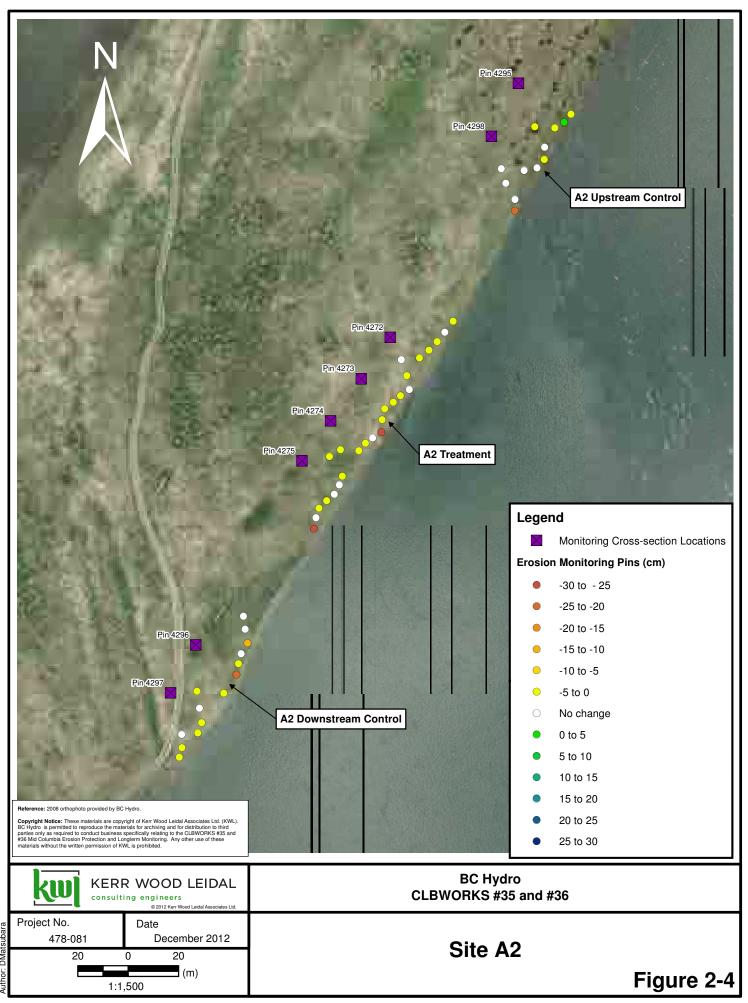
Statistics were calculated for change measured at the midpoint of the elevation bands and for the maximum change observed in each elevation band. Mean values include all measurements from each elevation band.

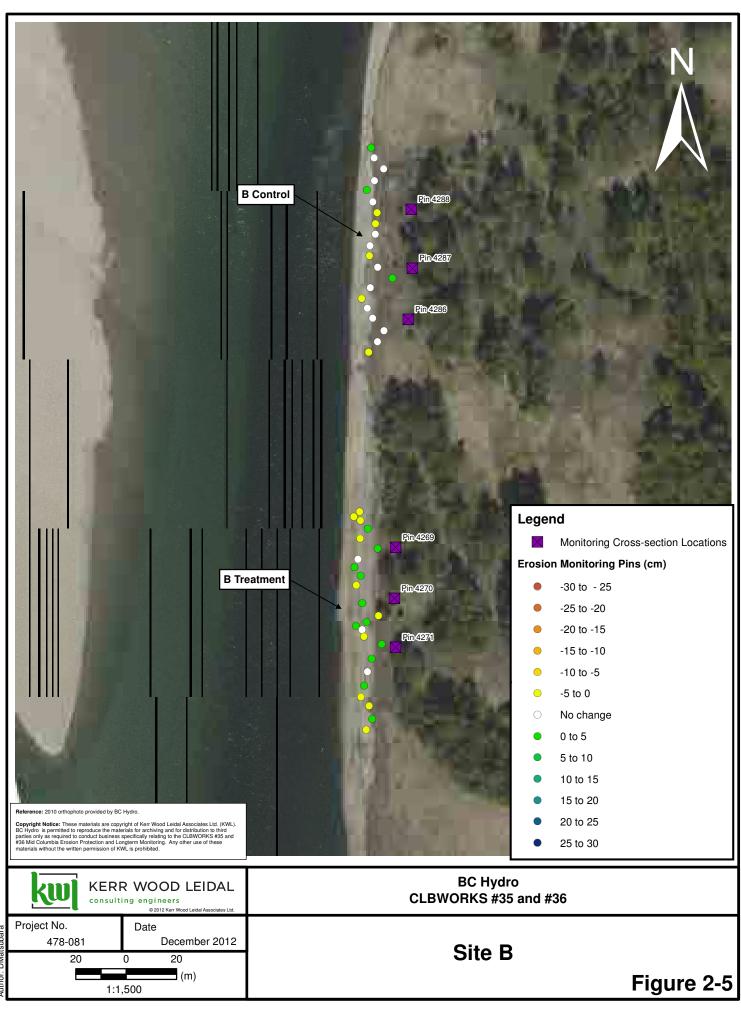
Table 2-6: Statistical results for testing the difference in Midpoint (m) and Maxima (m) for 7 paired sites.

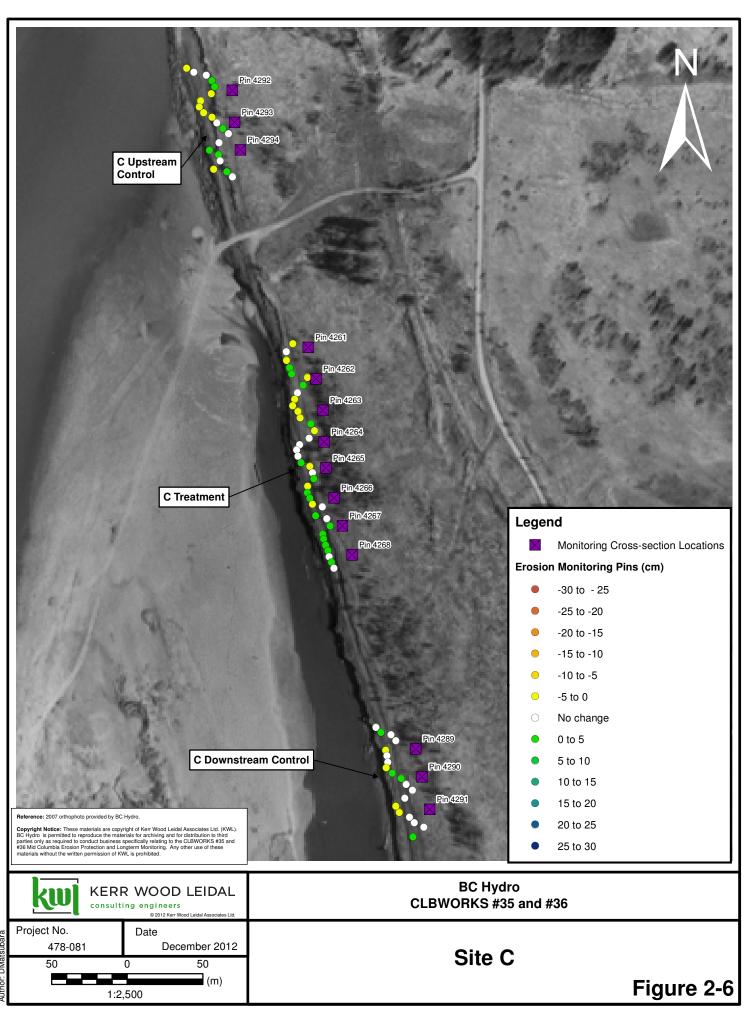
Change measured as	Period	Mean	SD	N	Std. Err.	t-value	df	р
Difference in Midpoints (m)	2011 to 2012	0.04	0.33	5	0.15	0.25	4	0.82
Difference in Maxima (m)	2011 to 2012	0.10	0.40	5	0.18	0.55	4	0.61

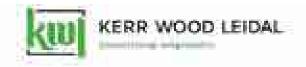

Shown are results for difference in change in the midpoint measures of elevation bands and for difference in change measured as the maximum change in elevation bands, time period of comparison, mean difference of change in elevation, the standard deviation of the difference, number of site pairs, standard error of the mean difference, test statistic, degrees of freedom and p-value for Student's t test.


Conclusions


None of the statistical tests indicated a significant change in erosion (or deposition) from 2011 to 2012 for bioengineered vs. control sites. For pin length, control sites showed slightly more erosion on average (0.33 cm) than the site with bioengineering construction. This is the predicted change such that treatment reduces erosion. The length of time for this comparison was relatively short (four months) and changes likely take longer to develop.


For profile measurements, control sites showed slightly more deposition, the opposite of expectation. Differences between treatment and control sites were small, 0.04 m for profile measurements made at the midpoint of each elevation band and were not statistically significant.





Path: 0:\0400-0499\478-081\430-GIS\MXD-Rp\2012\478081BioEngB_2012.mxd Date Saved: 10\3/2012 5:23:41 PM Author: DMatsubara

Section 3

CLBWORKS #36

maner secondered in Observation . Secondered taxant

kwl.ca

	and the second se
	And the State of t
	The state from the state of the
1. IN	
1.000	and the second
100	

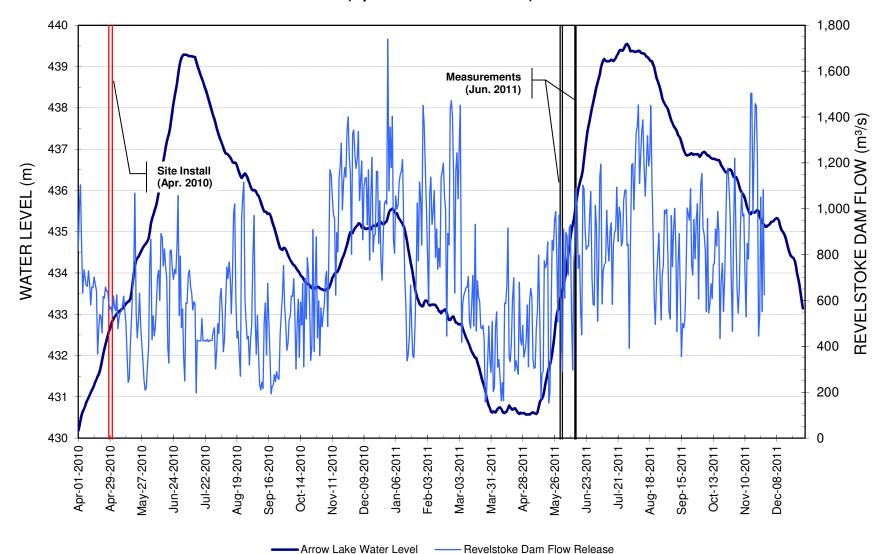
3. CLBWORKS #36

Fifteen long-term erosion monitoring sites have been established on the Columbia River between Revelstoke Dam and Shelter Bay (Figure 3-1). Sites were installed in 2010 and measured in 2011 and again in 2012. One site (Site 14), was omitted in 2011 and 2012 due to discussions with a neighbouring upland owner, and preference for no erosion pins in the reservoir area adjacent to the upland property. Monitoring Site 12 was subject to a complete topographic survey in and transect survey in 2010, so erosion trends could be tracked in the future based on survey data for the final two years of monitoring.

2012 field measurements were conducted between May 31 and June 2, and between June 13 and June 14. Figure 3-1 shows the Revelstoke Dam discharge and Arrow Lakes reservoir level for the period between monitoring site installation and the 2011 field measurements. Table 3-1 below summarizes the water level and average daily flow for the site installation compared with the first round of erosion measurements.

Task	Dates	Arrow Lake Water Level (m)	Daily Average Revelstoke Dam Flow Release (m³/s)	
Year 1 Site Installation	Apr. 28 to May 1, 2010	432.6 - 432.8	534 – 586	
Year 2 Erosion Measurements	May 31 to Jun. 2, 2011 Jun. 13 to Jun. 14, 2011	433.3 - 433.5 435.4 - 435.6	292 – 815 841 – 1087	
Year 3 Erosion Measurements	Apr. 11 to Apr. 25, 2012	Not available at time of reporting		
Notes:				

Table 3-1: Water Level and Discharge Conditions During CLBWORKS #36 Fieldwork

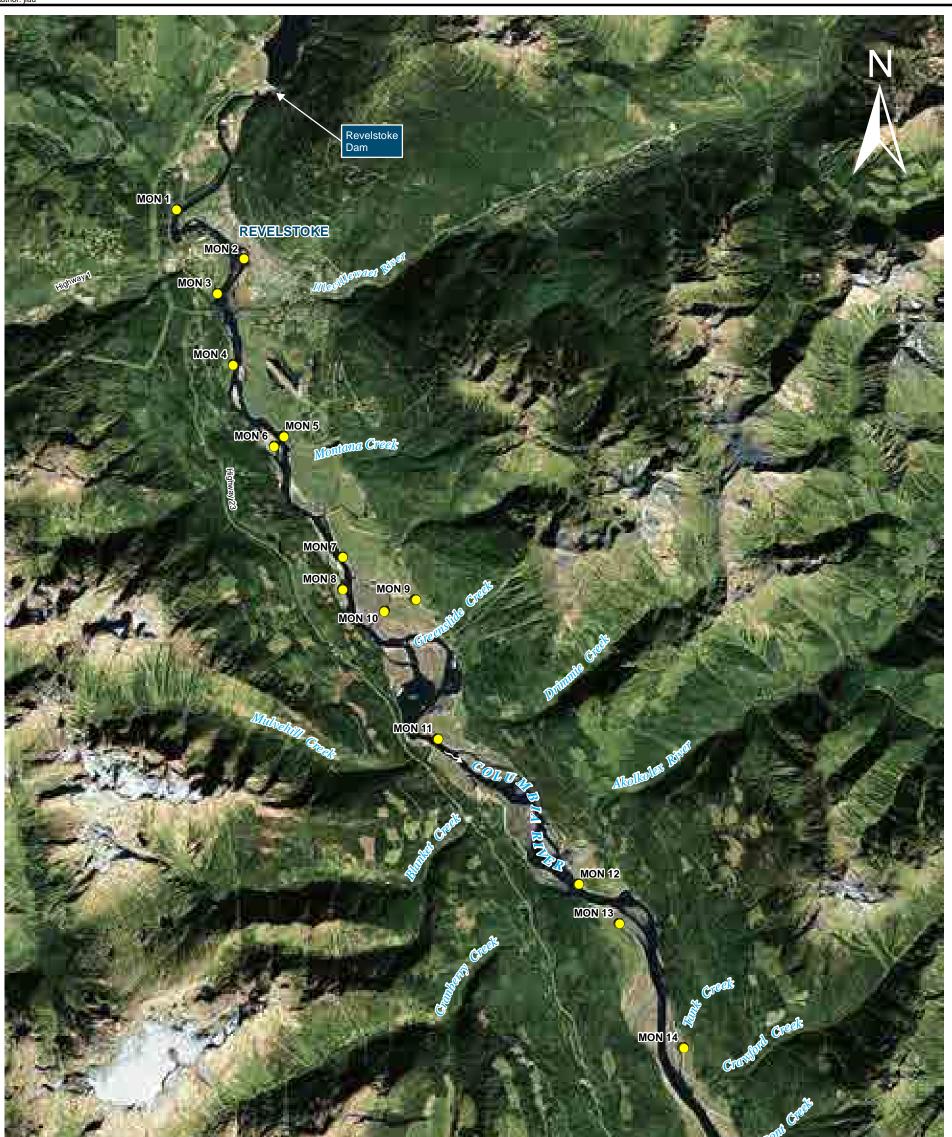

1. Arrow Lake Water Level: 2010 data obtained from Water Survey of Canada (Arrow Lake at Nakusp), 2011 data obtained from BC Hydro (Arrow Lake at Fauquier).

2. Revelstoke Dam Flow Release data obtained from BC Hydro.

Water levels in 2012 on the lower reaches of the Columbia River were substantially lower than in both 2010 and 2011, which allowed much longer transect surveys for many sections. In the upper reaches, water levels are much more dictated by discharge from Revelstoke Dam and therefore, monitoring is often conducted earlier in the morning to get best conditions for monitoring.

The following section provides a description of each monitoring site, and an overview of the 2012 measurements. The monitoring sites can be categorized by a number of characteristic parameters. A consistent approach to describing the sites will be used throughout this section to allow some interpretation of the erosion and qualitative observations.

For each of the monitoring sites, a negative number indicates erosion and a positive indicated deposition. All bank references (left bank or right bank) are looking downstream.



Revelstoke Dam Flow Releases and Arrow Lake Water Level (April 2010 to June 2011)

Kerr Wood Leidal Associates Ltd.

Consulting Engineers O:\0400-0499\478-081\442-Hydrology\RevFlow_ArrowLakeWL.xls \FIG 2010-2011 WL & Q Figure 3-1

Path: O:\0400-0499\478-081\430-GIS\MXD-Rp\2011\478081Fig3-2.mxd Date Saved: 11/29/2011 1:26:31 PM Author: jlau

For the product the writer permission of KVL is prohibited.	Image: Window Stream St Stream Stream Str
KERR WOOD LEIDAL consulting engineers 2011 Kerr Wood Leidal Associates Lt.	BC Hydro CLBWORKS #35 and #36
Project No. Date 478-081 November 2011 2,000 2,000	Bank Erosion Monitoring Sites (CLBWORKS #36)
1:125,000	Figure 3-2

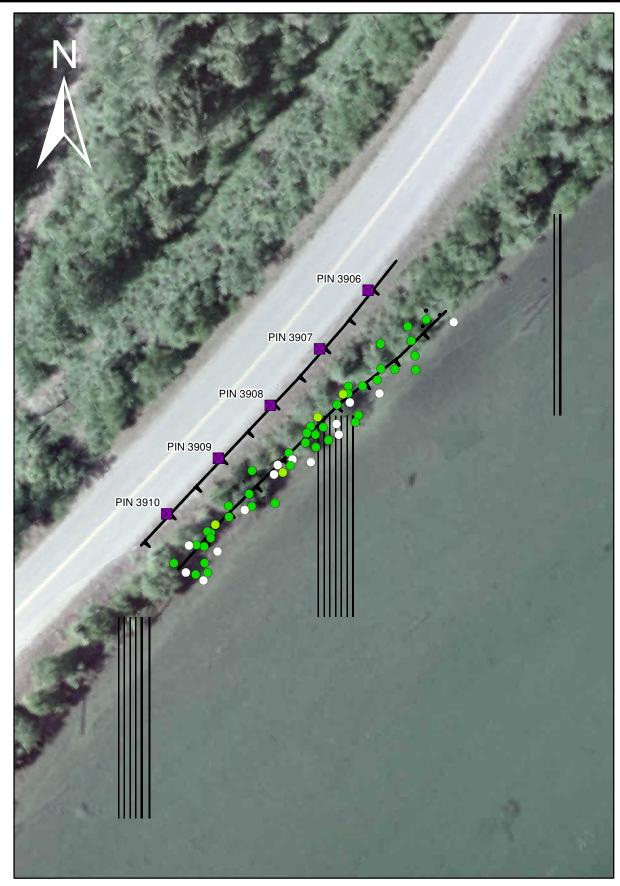
	and the second se	
	the state of the s	
	and the second	
1.00		
- 1 86		

3.1 2012 Measurements

Monitoring Site 1

Monitoring Site 1 is located near Revelstoke, on the right bank of the river opposite the Golf Course (Figure 3-2). This is the only site located upstream of Highway 1, and characterizes the only reach of the river that is not influenced by backwater from the Arrow Lakes. Based on observations, during some periods of the year the daily fluctuations in water level may be in the range of 1 m to 2 m, when flows vary quickly. The bed and banks are very well armoured and have likely adjusted, for the most part, to these operational flows. Directly across from Site 1 is the Revelstoke Golf Course, which has had issues with bank erosion.

- bank sediment: gravel
- range of water levels: 1-2 m daily
- influence of from Arrow Lakes: very low
- erosion mechanism: fluvial erosion at toe of bank
- riparian vegetation: trees
- exposure to river current: high
- exposure to waves: low


Both the erosion pins (

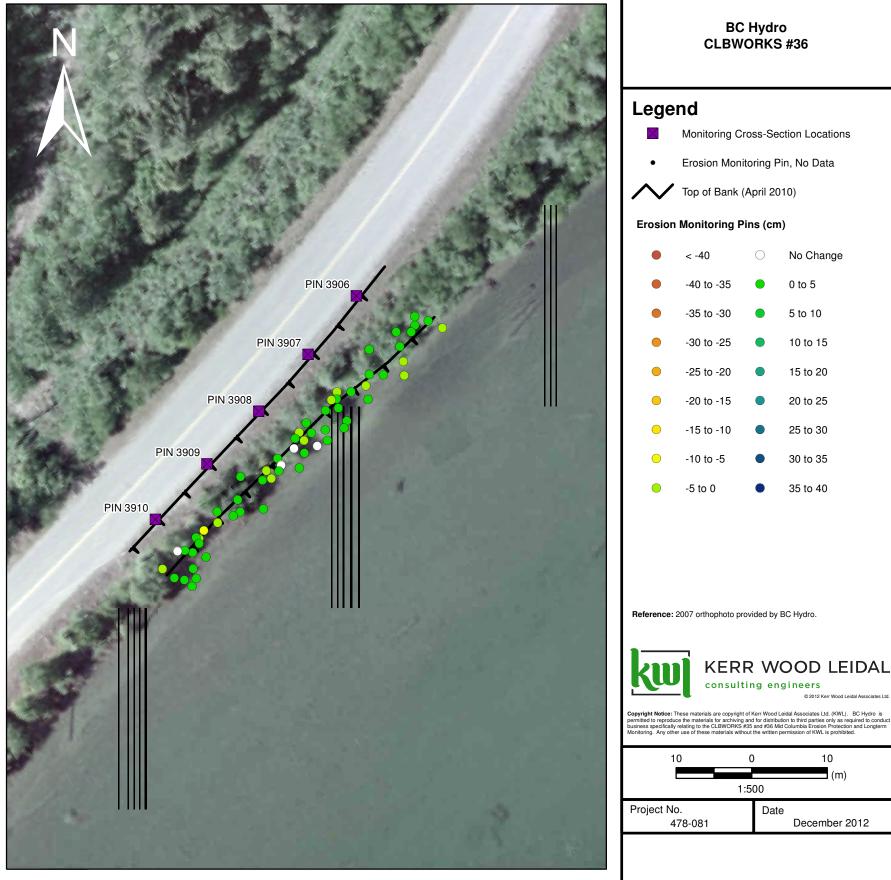

Figure 3-3) and the cross-section data Appendix C indicate that very little change occurred at this site between 2010 and 2012. The average change in pin exposure of +0.10 cm in 2011, increased to +0.6 cm in 2012, or a total two change of +0.7 cm. Currently this site is a net depositional environment. The total cross-sectional change in this location is 0.02 m or about 2 cm deposition.

Photo 3-1: Looking upstream along bank (MON 1, Apr 13, 2012).

Photo 3-2: Looking downstream along bank (MON 1, May 1, 2010).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

•	< -40	0	No Change
•	-40 to -35	٠	0 to 5
•	-35 to -30	٠	5 to 10
•	-30 to -25		10 to 15
•	-25 to -20		15 to 20
•	-20 to -15		20 to 25
•	-15 to -10		25 to 30
•	-10 to -5	•	30 to 35
•	-5 to 0		35 to 40

Monitoring Site # 1

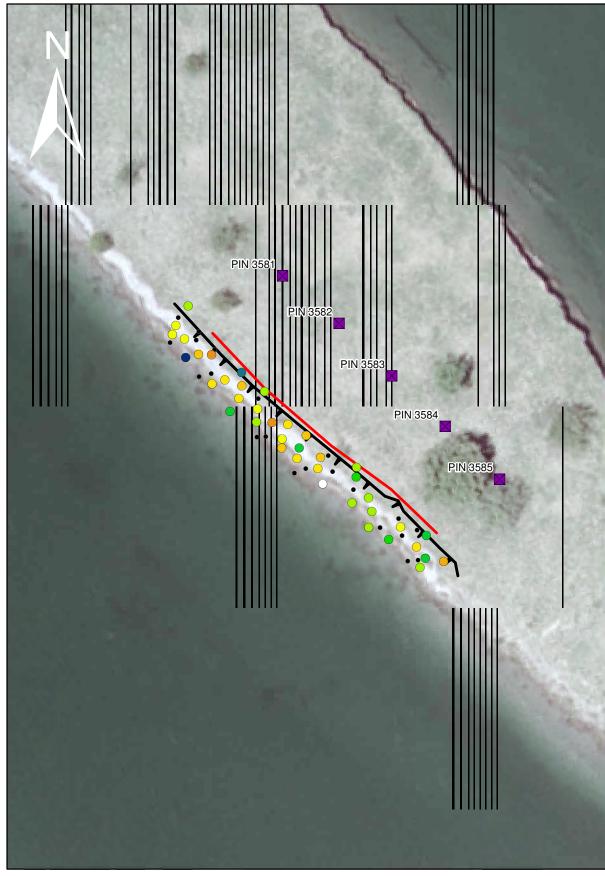
KW		······································
Mr. M.		a set a set
Mr. M.		CERE .
		100
And the second s	1164	And the second s

Monitoring Site 2 (MON 2)

Monitoring Site 2 is located about 1.5 km downstream of the Highway 1 bridge, at Revelstoke, on the left bank of a mid-channel island (Figure 3-2). This site is located on a small island adjacent to a City of Revelstoke park area near downtown. The island cannot be easily accessed, and is actively eroding. As can be seen in the photos below, the type of bank retreat at this site is generally due to toppling or erosion of loose sand and gravel sediment and toppling of the organic and vegetated surface mat.

- bank sediment: **sand**
- range of water levels: 1-3 m annually
- influence of from Arrow Lakes: moderate
- erosion mechanism: fluvial and moderate wave erosion of the lower to mid bank leading to toppling
- riparian vegetation: grass
- exposure to river current: high
- exposure to waves: moderate

Both the erosion pins (


Figure 3-4) and the cross-section data indicate that bank erosion occurred at this site between 2010 and 2012. The average interannual change in pin exposure increased from -10.2 cm to -6.1 cm for 2012, which can be seen in the two comparison photos below. The average pin changes are very similar to the average cross-sectional changes of -0.13 m for 2012.

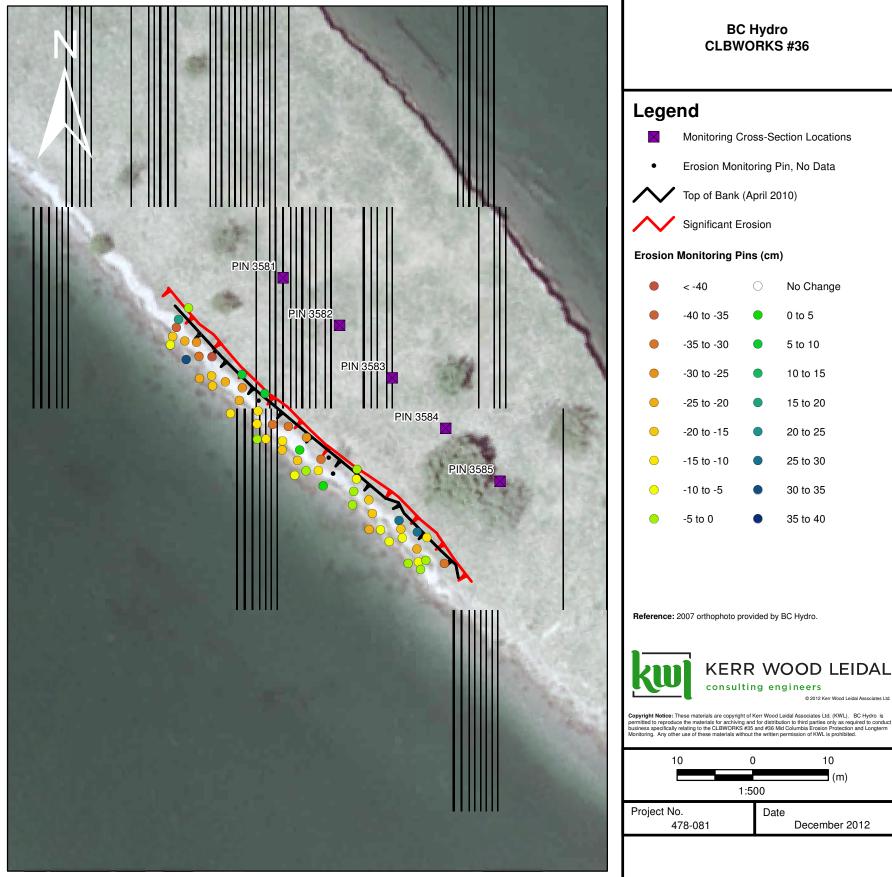


Photo 3-3: Looking upstream along bank (MON 2, May 12, 2010).

Photo 3-4: Looking upstream along bank (MON 2, Apr 20, 2012).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

	< -40	0	No Change
	-40 to -35	٠	0 to 5
	-35 to -30	٠	5 to 10
•	-30 to -25	•	10 to 15
•	-25 to -20		15 to 20
•	-20 to -15		20 to 25
•	-15 to -10	٠	25 to 30
•	-10 to -5	٠	30 to 35
•	-5 to 0	٠	35 to 40

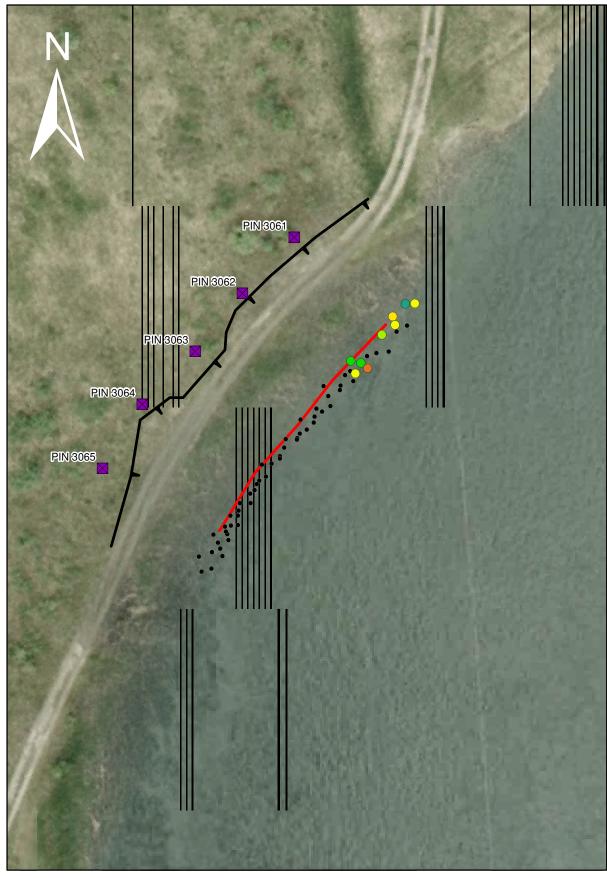
Monitoring Site # 2

			-
	in the	10.00	
	/ 1	22	
	1.5	1.1	
1.00	_	-	

Monitoring Site 3 (MON 3)

Monitoring Site 3 is located about 0.5 km upstream of the Illecillewaet River confluence, at Revelstoke, on the right bank of the main channel (Figure 3-2). This site is located in the vicinity of bioengineering sites A1 and A2, and is easily accessible from roads from the west side of the Columbia River. Site 2 is a well-developed floodplain deposit, with primarily uniform sand over most of the bank height and gravel at the base of the bank. The type of bank retreat at this site is generally due to toppling or erosion of the fine sediment and toppling of the organic and vegetated surface mat.

- bank sediment: sand
- range of water levels: 1-4 m annually
- influence of from Arrow Lakes: moderate
- erosion mechanism: fluvial and possible wave erosion of the sandy mid bank
- riparian vegetation: grass
- exposure to river current: high
- exposure to waves: moderate


At the time of the 2011 field visit, much of the bank was underwater (see Photo 3-6), and about 16% of the erosion pins could be located (Figure 3-5). In 2012, a total of 42 pins were found and the total change from 2010 to 2012 was -14.4 cm. The cross-section data supports the pin measurement with a 2010 to 2012 bank change of -0.24 m, about twice the pin exposure.

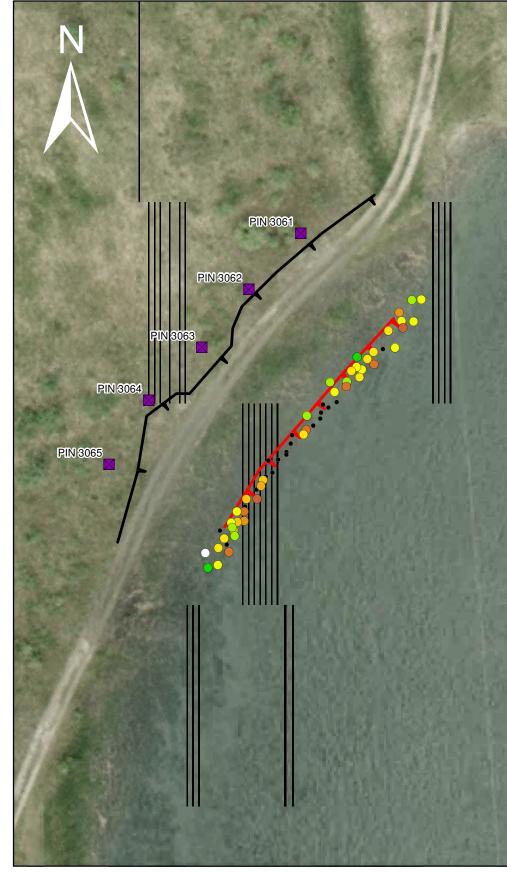
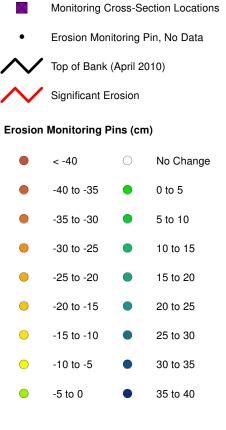


Photo 3-5: Looking downstream along bank (MON 3, April 25, 2012).

Photo 3-6: Looking downstream along bank (MON 3, June 13, 2011).

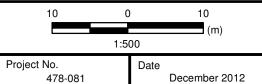

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

BC Hydro CLBWORKS #36

Legend

Reference: 2007 orthophoto provided by BC Hydro.



KERR WOOD LEIDAL

col

consulting engineers © 2012 Kerr Wood Leidal Associates

pyright Notice: These materials are copyright of Kerr Wood Leidal Associates Ltd. (KWL). BC Hydro is mittel to reproduce the materials for archiving and for distribution to third parties only as required to condu siness specifically relating to the CLBWORKS #35 and #36 Mid Columbia Erosion Protection and Longterm nitoring. Any other use of these materials without the written permission of KWL is prohibited.

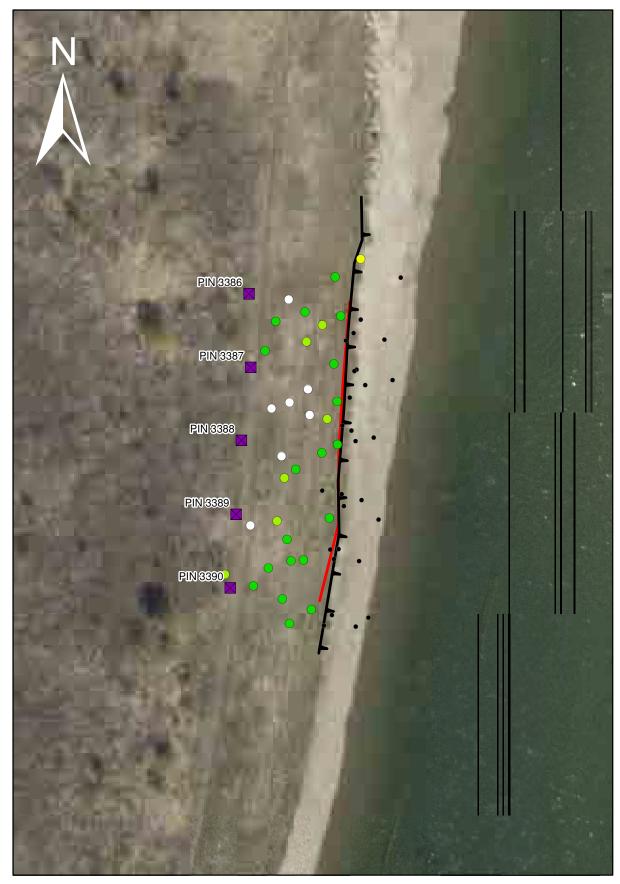
Monitoring Site # 3

			-
	in the	10.00	
	/ 1	22	
	1.5	1.1	
1.00	_	-	

Monitoring Site 4 (MON 4)

Monitoring Site 4 is located opposite the upstream end of the airport runway, near Revelstoke, on the right bank of the main channel (Figure 3-2). This site is not easily accessed. The site has a well developed low gradient grassy bank followed by a cut bank near the gravel bed. The grassy upper slope transitions to a higher floodplain. The contemporary erosion is occurring on the lower bank.

- bank sediment: gravel and sand
- range of water levels: 1-5 m annually
- influence of from Arrow Lakes: moderately high
- erosion mechanism: fluvial and wave erosion of the lower bank
- riparian vegetation: grass
- exposure to river current: moderate
- exposure to waves: moderate


At the time of the 2011 field visit, much of the bank was underwater (see Photo 3-7), and about half the erosion pins could be located (Figure 3-6). The interannual trend based on between 2010, 2011 and 2012 indicated minor deposition based on pin exposure (+0.2 cm) for each year. Based on all 60 pins, the average change on the site is -2.6 cm (between 2010 and 2012). The difference between the interannual and the biannual observations indicate the potential bias associated with a partial dataset. In this case, erosion in the edge of floodplain was not detected in 2011. Conversely, the cross-section data indicated an erosion trend -0.15 m in 2011, followed by deposition 0.04 m in 2012, and a total change of -0.07 m (-7 cm) for a two year period. For Site 4, there is a net trend of erosion.

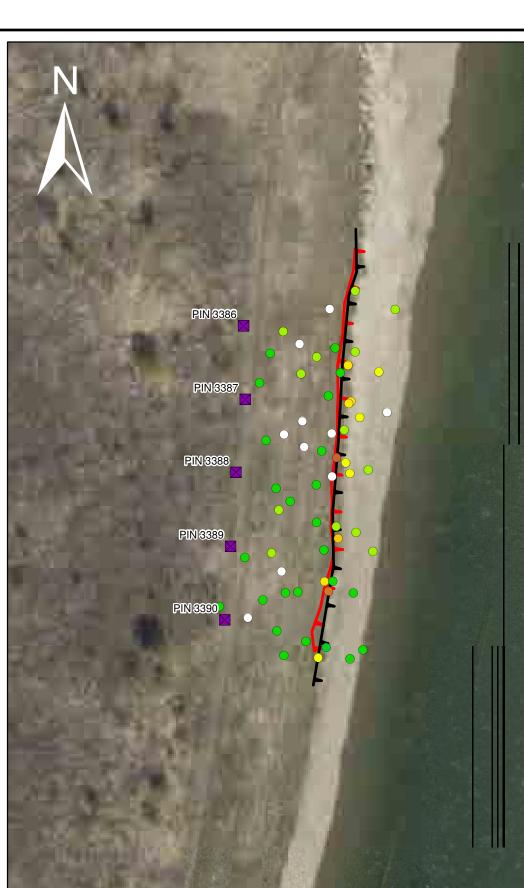
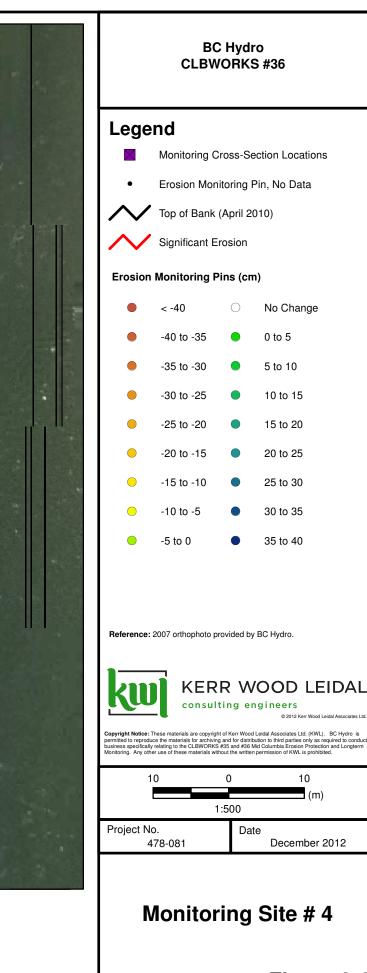


Photo 3-7: Looking downstream along bank (MON 4, June 13, 2011).


Photo 3-8: Looking downstream along bank (MON 4, April 20, 2012).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

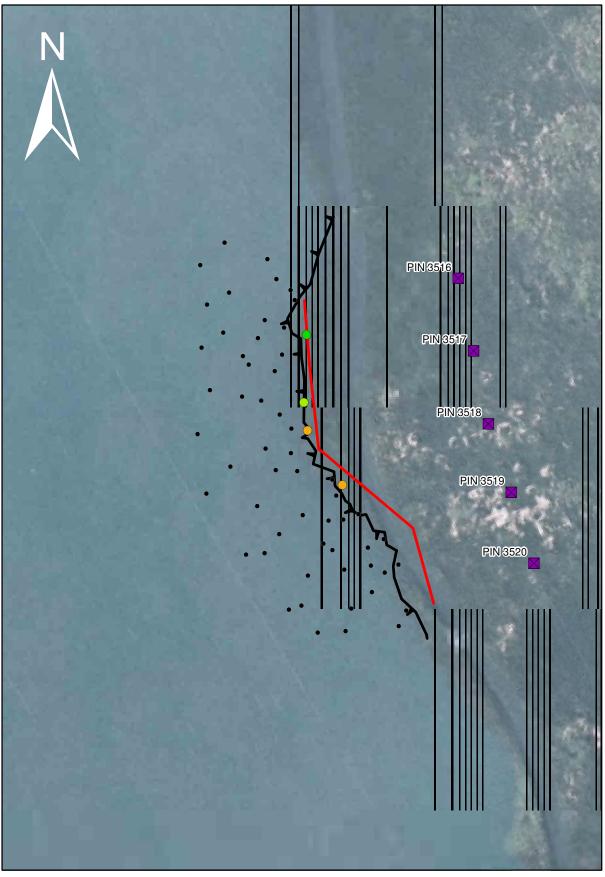
	-	-	_	-	ł,
	100	in it	ίđ.	đ	Ľ
	1			1	
, No.			6.0	11	ł

Monitoring Site 5 (MON 5)

Monitoring Site 5 is located about 1 km downstream of the airport, near Revelstoke, on the left bank of the main channel (Figure 3-2). This site is can be accessed by roads but the roads are quickly eroding, as is evident near the site. The banks are generally low compared to the right bank of the river and are uniformly sandy. Erosion at the downstream half of the site is most evident in the cross-sections.

- bank sediment: sand
- range of water levels: 1-5 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderate
- exposure to waves: high

At the time of the 2011 field visit, most of the bank was underwater, but lower lake levels in 2012 provided much better site conditions for monitoring (see Photos 3-9 and 3-10). The erosion in 2011 based on erosion pins was relatively low, and likely did not capture all of the erosion due to site conditions. Based on a much higher number of pines, the interannual erosion increased for the 2012 measurement to -11.3 cm, or a total average change based on a larger sample of -8.5 cm over two years (Figure 3-7). It should also be noted that several pins were lost to toppling or larger scale erosion at this site.


The cross-section data indicates a higher level of general erosion with total average two year change of -0.85 m, and a -0.48 m change in 2012. The maximum loss of bank at the floodplain level was about 2 m in 2011 and 2012 at one cross-section. Site 4 at the floodplain level is eroding at scales that are beyond the measurement of the erosion pins.

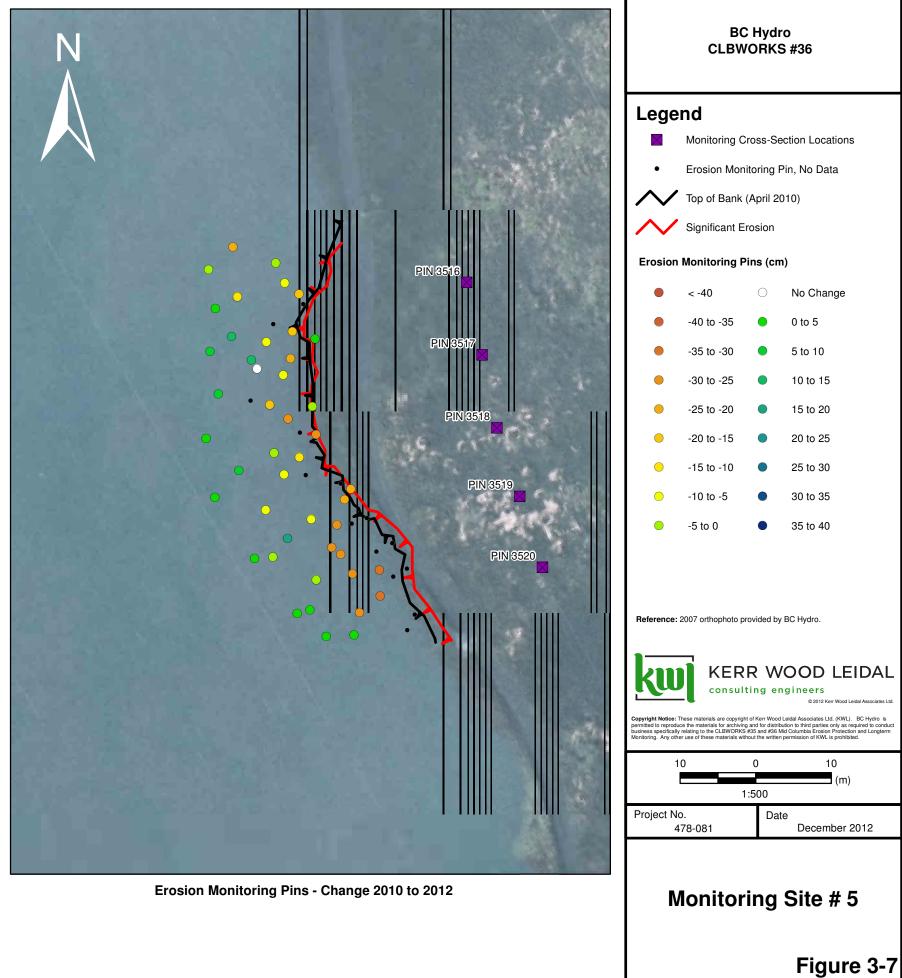


Photo 3-9: Looking upstream along bank (MON 5, April 17, 2012).

Photo 3-10: Looking upstream along bank (MON 5, June 13, 2011).

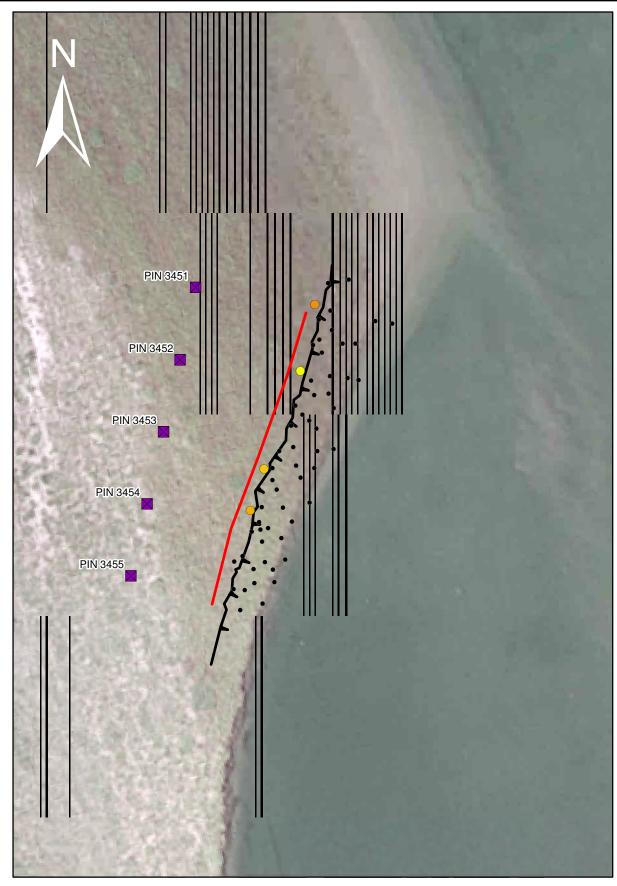
Erosion Monitoring Pins - Change 2011 to 2012

	-	1	
	In the local div	6	
Ц	KARA		
0	ELEU		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
1			

Monitoring Site 6 (MON 6)

Monitoring Site 6 is located about 1 km upstream of Begbie Creek, on the right bank of the river, on a vegetated island that is partially attached to the right bank floodplain (Figure 3-2). The floodplain is much lower than upstream sites, generally below 435 m elevation. The bank is not directly exposed to the main channel of the river, which is some 200 m to the east, but is fronted by a large side-channel that is partially wetted even at relatively low water levels. The water level at the time of the 2011 field visit was about 1.5 to 2 m higher than lower water conditions at the site. It is expected that this site is completely underwater for 3 months of the year.

- bank sediment: sand
- range of water levels: 1-5 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately low
- exposure to waves: high


The high water level at the time of the 2011 field visit precluded locating most of the erosion monitoring pins (Figure 3-8); however, the total two year erosion based on erosion pins indicates -10.3 cm of erosion. However, the monitoring cross-sections indicate that the bank is retreating much more, with a total two year change of -1.15 m. The maximum retreat at the top of bank is more than 1 m at four cross-sections.

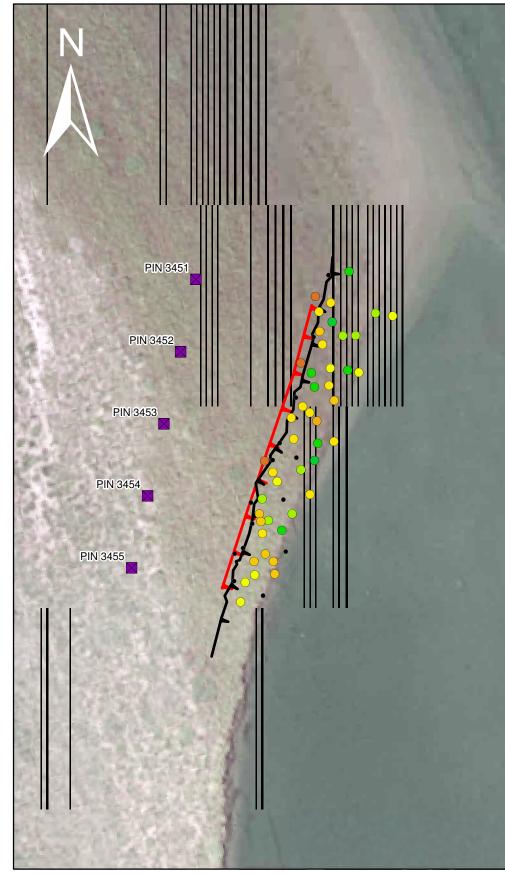
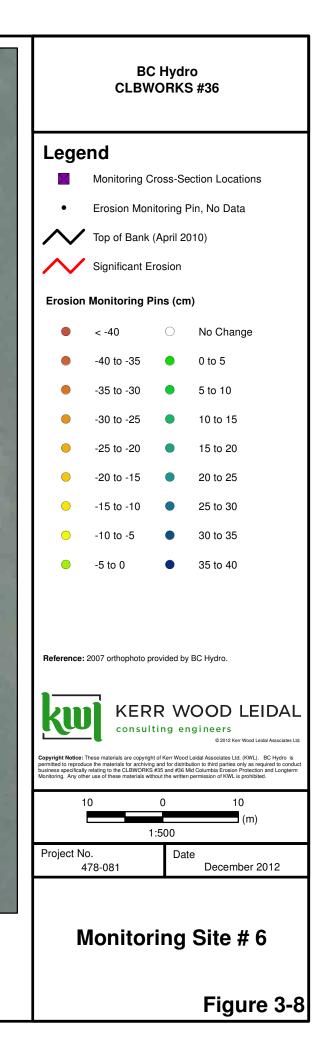


Photo 3-11: Looking upstream along bank (MON 6, April 18, 2012).


Photo 3-12: Looking upstream along bank (MON 6, June 1, 2011).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

	-	1	
	In the local div	6	
Ц	KARA		
0	ELEU		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
1			

Monitoring Site 7 (MON 7)

Monitoring Site 7 is located about 3.2 km downstream of the confluence of Begbie Creek and Columbia River, on the left bank of the main channel (Figure 3-2). Similarly to Monitoring Site 6, the floodplain at Monitoring Site 7 is lower than upstream sites, generally below 435 m elevation. Monitoring Site 7 is located in a reach of the river with a small complex of islands on the right bank, and is exposed to the main channel discharge. The water level at the time of the 2011 field visit was about 2 m higher than lower water conditions at the site. It is expected that this site is completely underwater for 3 months of the year.

- bank sediment: sand
- range of water levels: 1-5 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately high
- exposure to waves: high

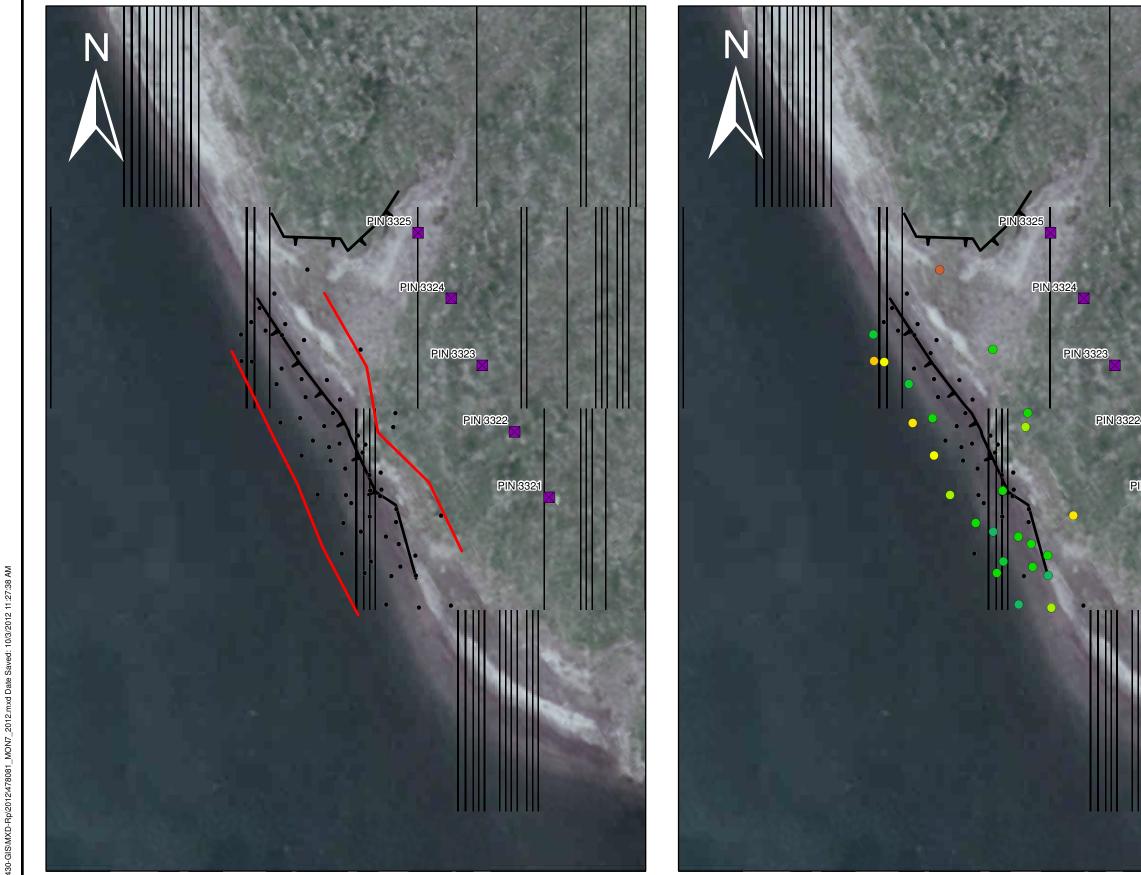

At the time of the 2011 field visit, the entire site was underwater (see Photo 3-14), and therefore no erosion pins could be located (Figure 3-9). A two year pin measurement based on 25 pins indicates a total change of -0.2 cm. The cross-section data collected in 2011 indicates a very high average erosion of -1.88 m, and that erosion is occurring uniformly at the 434 m elevation, creating a cut bank several metres from the 2010 surveyed location (**Error! Reference source not found.**).

Photo 3-13: Looking upstream along bank (MON 7, April 13, 2012).

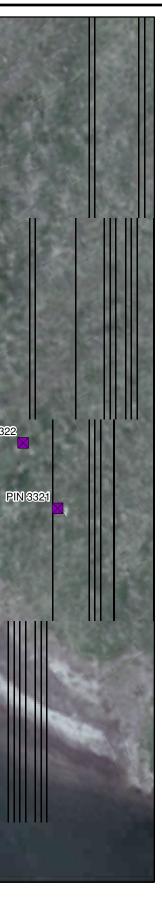


Photo 3-14: Looking downstream along upper bank (MON 7, June 13, 2011).

Erosion Monitoring Pins - Change 2011 to 2012

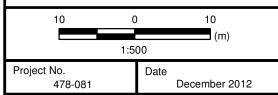
Erosion Monitoring Pins - Change 2010 to 2012

BC Hydro CLBWORKS #36

Legend

Monitoring Cross-Section Locations \times Erosion Monitoring Pin, No Data Top of Bank (April 2010) Significant Erosion

Erosion Monitoring Pins (cm)


•	< -40	0	No Change
•	-40 to -35	٠	0 to 5
•	-35 to -30	٠	5 to 10
•	-30 to -25	٠	10 to 15
•	-25 to -20		15 to 20
•	-20 to -15		20 to 25
•	-15 to -10	٠	25 to 30
•	-10 to -5	•	30 to 35
•	-5 to 0	٠	35 to 40

Reference: 2007 orthophoto provided by BC Hydro.

KERR WOOD LEIDAL consulting engineers

uce the materials for archiving and for distribut Iv relating to the CLBWORKS #35 and #36 Mic ion to third parties only as r of KWL is prohi

Monitoring Site # 7

	-	1	
	In the local division of	6	
Ц	KARA		
0	ELEU		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
1			

Monitoring Site 8 (MON 8)

Monitoring Site 8 is located, on the right bank of the river, opposite and slightly upstream of MON 9 (Figure 3-2). The site is located directly on the main channel of the river. Tree stumps on the terrace surface and historic air photos indicate that the terrace was previously forested prior to the creation of the Arrow Lakes reservoir. Observations during both field visits found that this site is very exposed to wind and wind generated waves. This site is slightly higher than the previous three floodplain sites.

The bank is relatively steep, as shown in Photos 3-15 and 3-16. The water level at the time of the 2011 field visit was 2 m higher than the low water level at the site.

- bank sediment: sand
- range of water levels: 1-5 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately high
- exposure to waves: high

As indicated in Figure 3-10 almost all of the pins placed in 2010 were found, with measurements indicating a total erosion of -2.2 cm for the two year period and a maximum erosion pin exposure of -10.8 cm. The 2012 exposed pin lengths are influenced by the process where the erosion at the top of bank is causing deposition lower down on the bank (Figure 3-10).

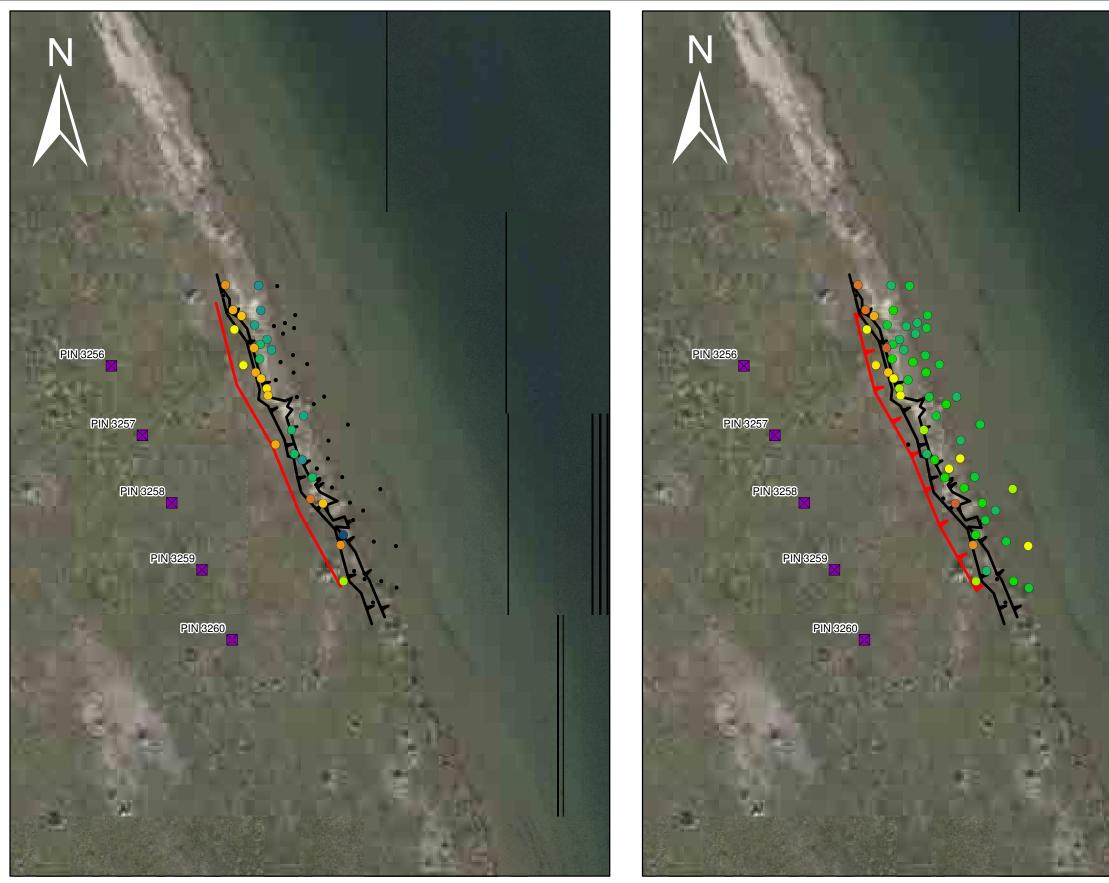

Based on the cross-sections, substantial erosion is occurring on the upper slope between about 433 and 435 m, which can be seen on the photos shown below. Based on the survey analysis, average cross-sectional erosion is -0.81 m and -0.54 for 2011 and 2012 monitoring respectively, with a total erosion of -0.52 m for the total period.

Photo 3-15: Looking upstream at steep, eroding bank (MON 8, June 1, 2011).

Photo 3-16: Looking upstream at steep, eroding bank (MON 8, April 18, 2011).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

KW		
- Barrison and State		in the local distance
And and a second se		2233
And and a second se		
	18	a second second
	. No	

Monitoring Site 9 (MON 9)

Monitoring Site 9 is located about 1.7 km upstream of Greenslide Creek, on the left bank of the river (Figure 3-2). The site is located at the break between a lower and higher floodplain surface. Erosion pins and monitoring cross-sections extend from the higher floodplain surface (the treeline) down onto the lower floodplain surface (Figure 3-11). This site was selected to provide a site that represents the very highest pool elevations.

Photos 3-17 and 3-18 show the characteristic summer vegetation, which is grass and scattered shrubs. The lower floodplain surface is heavily grass-covered, while the gently-sloping bank between the upper surface and lower surface is sparsely covered.

- bank sediment: gravel
- range of water levels: 0-3 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave erosion of the bank
- riparian vegetation: some grass
- exposure to river current: **low**
- exposure to waves: moderate

As indicated in Figure 3-11, the site experienced very little change between installation (2010) and the 2012 re-survey. The site is located on the margin of the reservoir and would be expected to be a depositional environment. The average change in pin exposure decreased from +0.8 cm to +0.5 cm in 2012, with a total exposure of +1.4 cm. In terms of cross-sectional changes, the interannual changes have been from net deposition to erosion in 2012, and a total deposition since 2010 of +0.45 m. Monitoring Site 9 is a relatively stable site that is frequented for recreation.

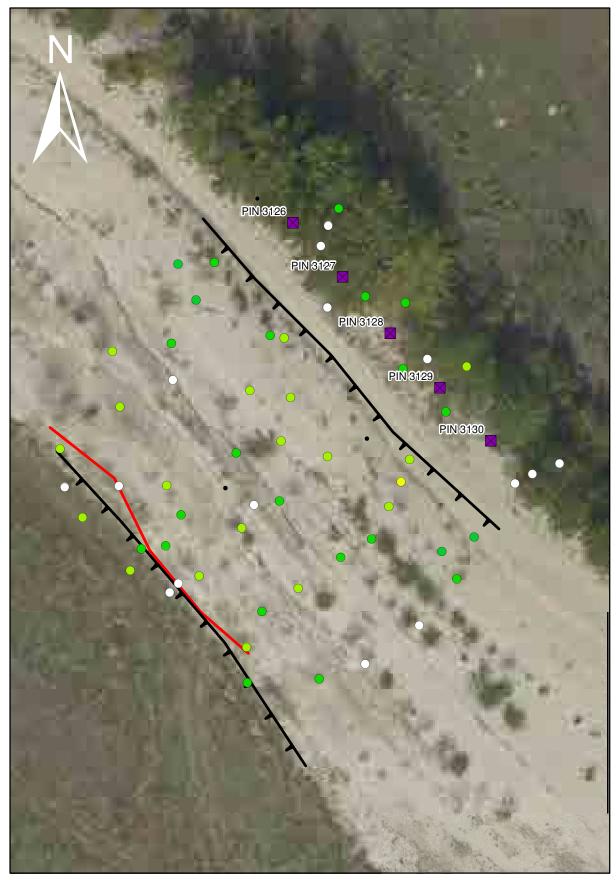


Photo 3-17: Looking downstream at upper floodplain surface and treeline (MON 9, May 31, 2011).

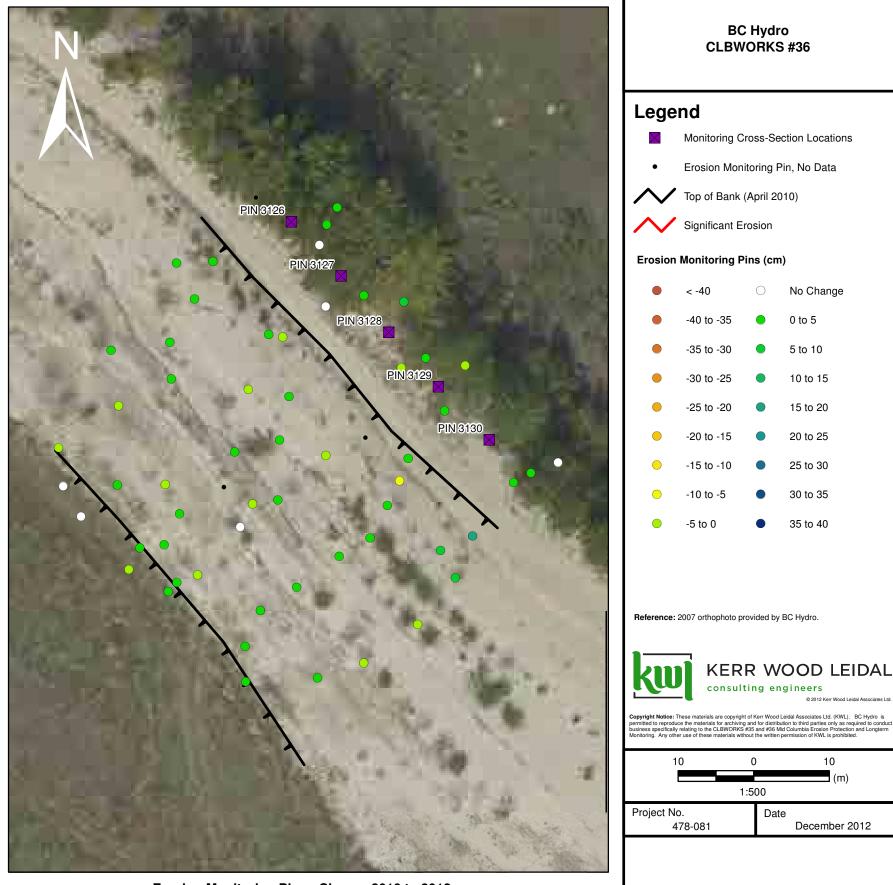
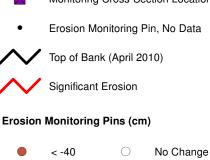


Photo 3-18: Looking upstream near the top of pool (MON 9, April 12, 2012).


KERR WOOD LEIDAL ASSOCIATES LTD.

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

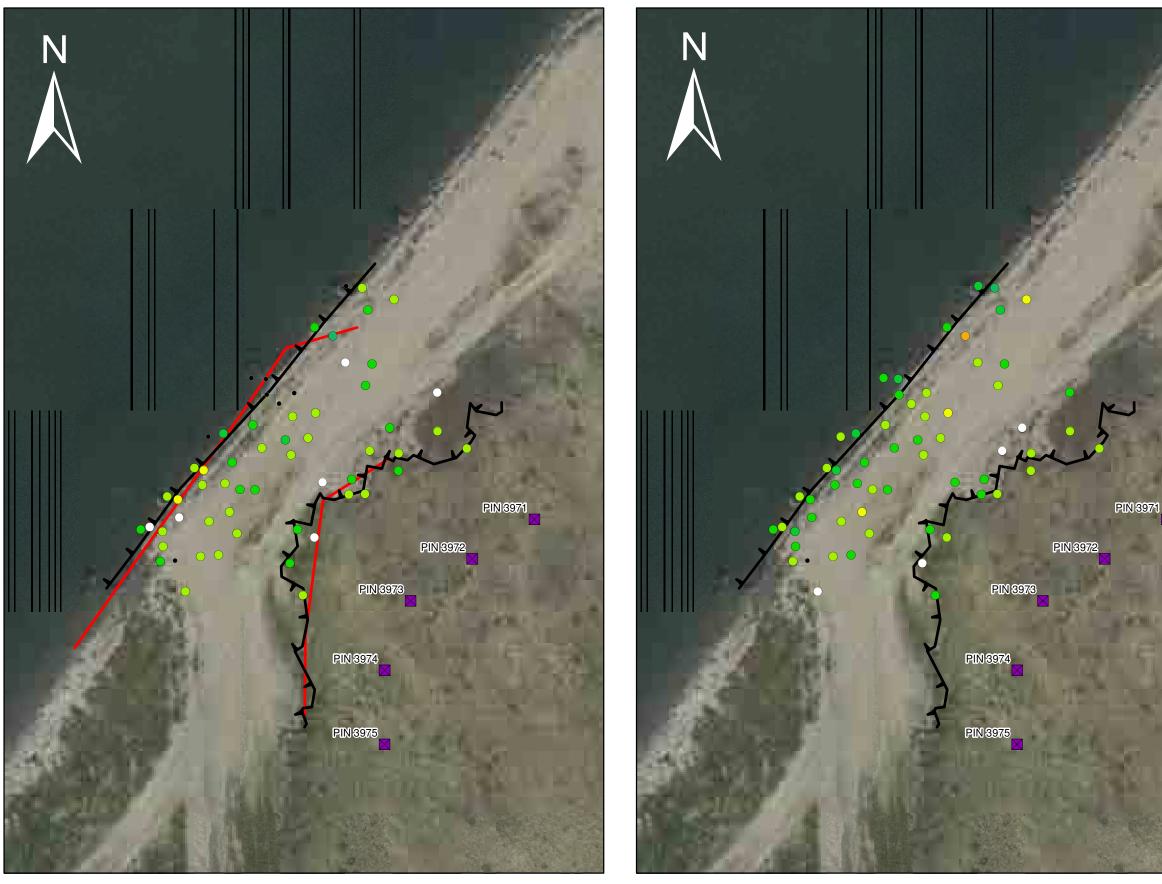
Monitoring Site # 9

			-
	in the	10.00	
	/ 1	22	
	1.5	1.1	
1.00	_	-	

Monitoring Site 10 (MON 10)

Monitoring Site 10 is located about 1.2 km upstream of Greenslide Creek, on the left bank side of the river, fronted by a major side channel (Figure 3-2). The bank is relatively high and composed of gravel, cobble and sandy sediment. This site is located on a side channel that is not expected to be exposed to high currents. This site is used for recreation and a well-travelled road crosses the site.

- bank sediment: gravel
- range of water levels: 1-6 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave erosion of the bank
- riparian vegetation: some grass
- exposure to river current: low
- exposure to waves: moderate


As indicated in Figure 3-12, the site experienced very little change between installation (2010) and the 2012 re-survey, with a general trend of deposition. The average change in pin exposure for 2012 was negative at 0.1 cm; however, the total trend since 2010 has been depositional (positive) at 0.4 cm. Very little change can be detected from the cross-sectional surveys; however, the trends match the pin observations with deposition in 2011, erosion in 2012, and almost no net change since 2010 (-0.03 m). Observations, such as Photo 3-20 below, suggest that wave action is the primary erosion mechanism.

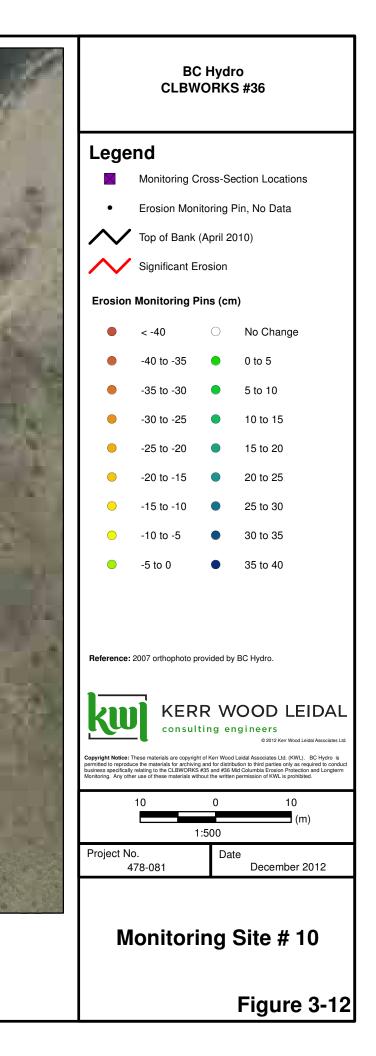

Photo 3-19: Looking downstream along bank (MON 10, April 11, 2012).

Photo 3-20: Looking downstream along bank (MON 10, June 1, 2011).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

	-	1	
	In the local division of	6	
Ц	KARA		
0	ELEU		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
1			

Monitoring Site 11 (MON 11)

Monitoring Site 11 is located on the left bank of the main channel, opposite Mulvehill Creek (Figure 3-2). This site is typified by very fine sediment and zones of cohesive sediment in the floodplain stratigraphy. Erosion at this site is very rapid: maximum bank retreat at the toe of the cut bank between 2010 and 2011 was 5 m or more at the upstream end of the site. This site is exposed to river current and wave attack, compounded with very erodible soils. This floodplain is quite low and would be flooded for more than 3 months of the year.

- bank sediment: sand and silt
- range of water levels: 1-6 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave and river erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately high
- exposure to waves: high

In 2011, very few pins could be measured due to high water conditions, and five were found to be toppled, but were reset. In 2012, 24 of the original pins could be recovered, predominately at lower elevations. The 2010 to 2012 pin exposure comparisons report an average of +11.2 cm (deposition); however, this does not account for large erosion at the top of the bank indicated by the red line on Figure 3-13. The cross-sectional data reflects the larger changes, where an average change of -1.25 m was observed between 2010 and 2011 and -1.21 between 2011 and 2012. The total change is -2.38 m for both years, or as much as 10 m at the top of bank at one cross-section, which is the largest observed erosion from all 15 sites.

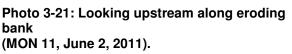


Photo 3-22: Looking upstream, eroding bank at right side (MON 11, April 12, 2012).

```
KERR WOOD LEIDAL ASSOCIATES LTD.
```


Erosion Monitoring Pins - Change 2011 to 2012

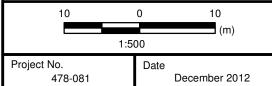
Erosion Monitoring Pins - Change 2010 to 2012

PIN 3194

BC Hydro CLBWORKS #36

Legend

Erosion Monitoring Pins (cm)


•	< -40	0	No Change
•	-40 to -35	٠	0 to 5
•	-35 to -30	٠	5 to 10
•	-30 to -25	٠	10 to 15
•	-25 to -20		15 to 20
•	-20 to -15		20 to 25
•	-15 to -10	٠	25 to 30
•	-10 to -5	٠	30 to 35
•	-5 to 0	٠	35 to 40

Reference: 2007 orthophoto provided by BC Hydro.

KERR WOOD LEIDAL consulting engineers

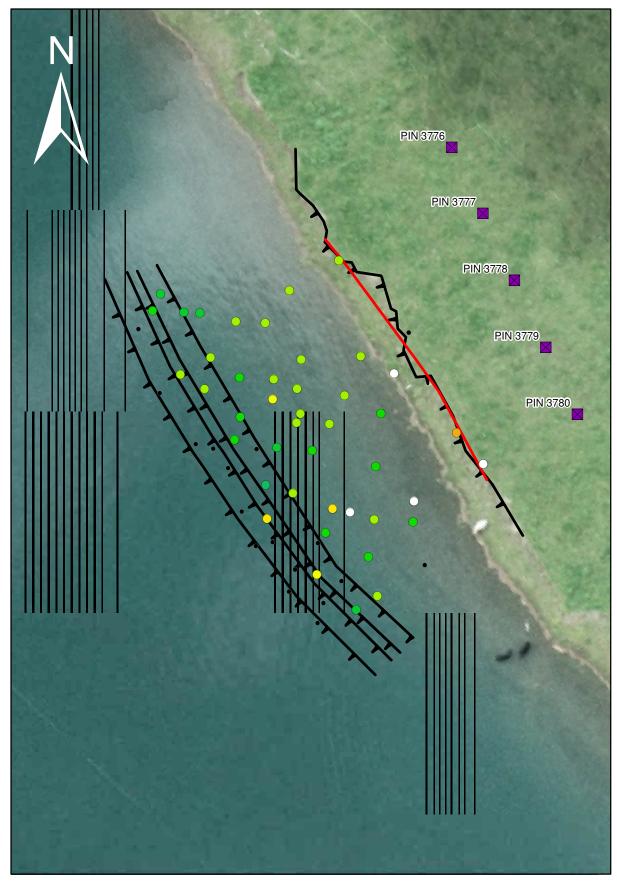
Copyright Notice: These materials are copyright of Kerr Wood Leidal Associates Ltd. (KWL). BC Hydri permitted to reproduce the materials for archiving and for distribution to third parties only as required to susiness specifically relating to the CLBWORKS #35 and #36 Mid Columbia Erosion Protection and Lon Monitoring. Any other use of these materials without the written permission of KWL is prohibited.

Monitoring Site # 11

	-	1	
	the starting of	6	
Ц	KARA		
0	ELEU		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
1			

Monitoring Site 12 (MON 12)

Monitoring Site 12 is on the left bank of the main channel, about 600 m downstream of the confluence of the Akolkolex River, and across from Cranberry Creek (north branch) (Figure 3-2). Monitoring Site 12 differs from the previous upstream sites in terms of the total height of the slope and bank composition. The floodplain surface at Site 12 is at about 438 m, and only would see inundation at the highest levels. However, the bank is exposed to a wide range of water levels on the rising and falling limb of the Arrow Lakes annual cycle. Observations during field work found this site to have a strong current and wave action.


- bank sediment: gravel and sand
- range of water levels: up to 6 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave and river erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately high
- exposure to waves: high

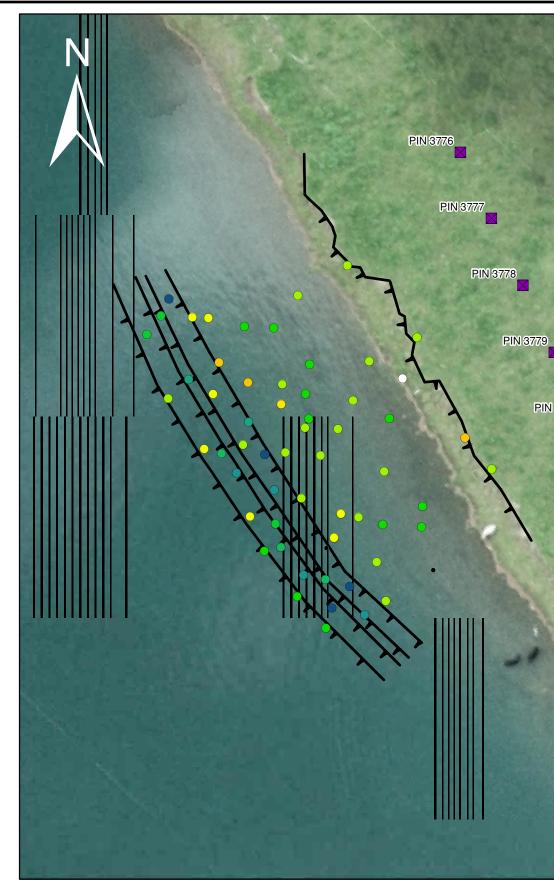
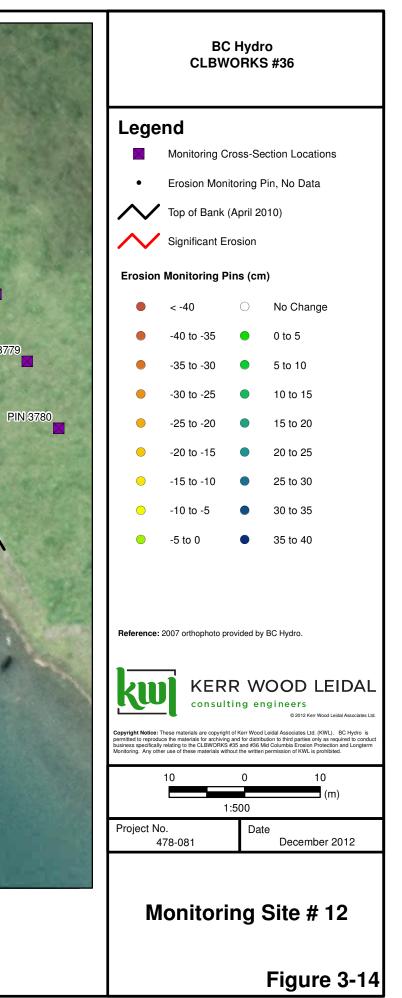

In 2012, the very low water levels allowed topographic survey that extended below the first 2010 topographic survey. Based on pin exposure there is moderate erosion in the mid-bank resulting in deposition on the lower pins (Figure 3-14). As a site, the average pin exposure varied slightly from year to year with +1.5 cm in 2011 and -0.6 cm in 2012, or a net change of +3.4 cm. The cross-sectional data is consistent through all time periods and is -0.06 m for 2011 to 2012 or a total change of -0.06 m (-6 cm). This site is strongly influenced by the reservoir level and wave effects. There is a very distinct stepped face to the gravel bank that is formed and observed each year.

Photo 3-23: Looking downstream along bank (MON 12, June 2, 2011).


Photo 3-24: Looking downstream along bank (MON 12, April 19, 2012).

Erosion Monitoring Pins - Change 2011 to 2012

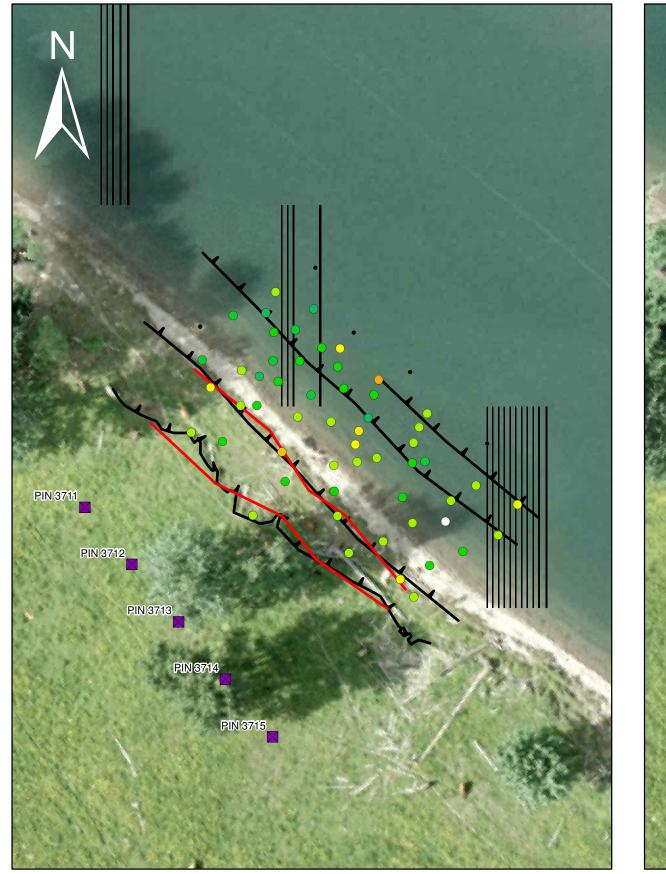
Erosion Monitoring Pins - Change 2010 to 2012

	-	_	- 10
1.1	Inc. des	10.0	10
	12	81	
242	100	1.	187
22		1	

Monitoring Site 13 (MON 13)

Monitoring Site 13 is located about 2.8 km downstream of the confluence of Cranberry Creek (north) and Columbia River, on the right bank of the main channel (Figure 3-2). Site 13 is a similar site to Site 12 in terms of slope height and composition. Site 13 is much more sheltered than the previous site from both river current and waves.

- bank sediment: gravel and sand
- range of water levels: up to 6 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave and river erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately high
- exposure to waves: high


A high percentage of pins was recovered at Site 13 in both monitoring years, pin exposure alternated from minor deposition (0.8 cm) to minor erosion (-0.2 cm) from 2011 to 2012. The net average pin exposure for two years is deposition with average exposure of +0.8 cm. The erosion and deposition is well distributed as is seen in Figure 3-15. Based on cross-sectional data, Site 13 had an average of no change in 2011, and an average 0.18 m of deposition between 2011 and 2012. This is likely due to some shifting material on the bank; however Site 13 is very stable comparatively. Site 13 does have a similar stepped bank profile, similar to Site 12, but far less pronounced. The photos below indicate that the strong stepped profile in 2011 is much more subtle in 2012.

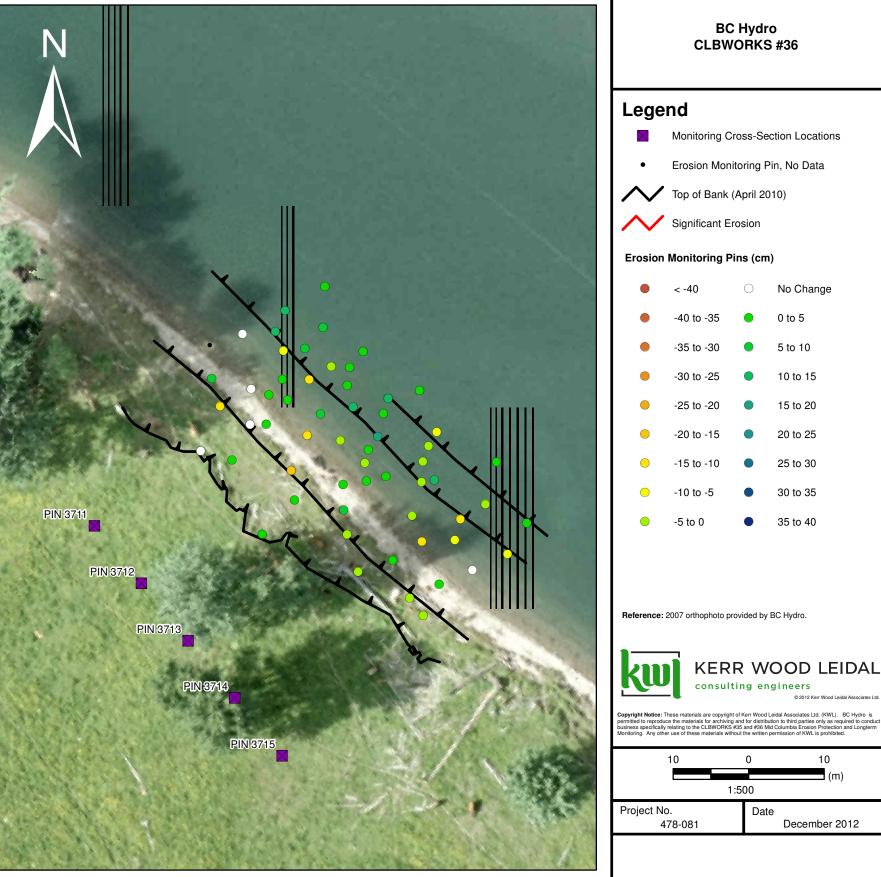
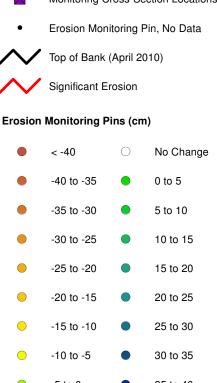


Photo 3-25: Looking downstream along bank (MON 13, June 2, 2011).


Photo 3-26: Looking downstream along bank (MON 13, April 19, 2012).

Erosion Monitoring Pins - Change 2011 to 2012

Erosion Monitoring Pins - Change 2010 to 2012

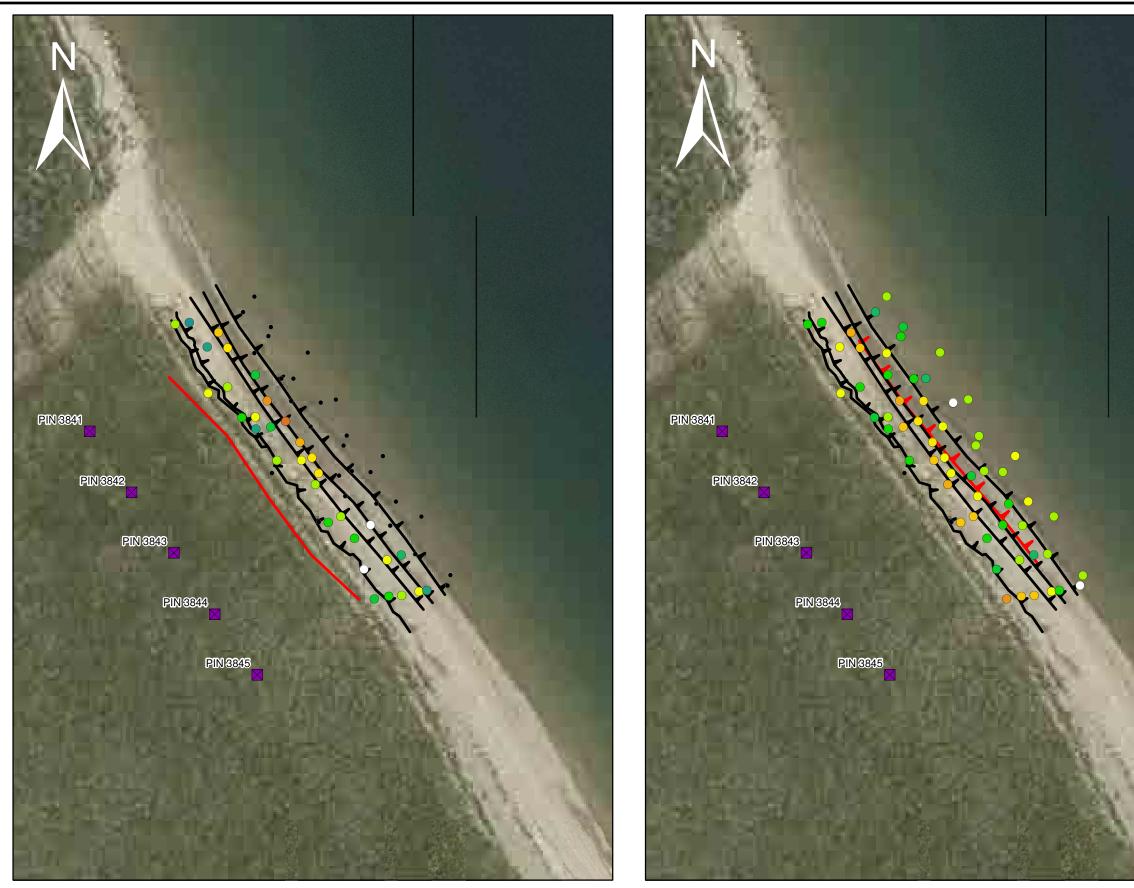
Monitoring Site # 13

			-
	in the	10.00	
	/ 1	22	
	1.5	1.1	
1.00	_	-	

Monitoring Site 14

Monitoring Site 14 is located immediately downstream of the confluence of Tank Creek and Columbia River, on the left bank of the main channel (Figure 3-2). Monitoring Site 14 is composed of much sandier deposits and has a lower general slope angle. During the 2011 field work, the land owner approached the KWL staff to note that this site, while in the flooding reserve, is considered private property. Prior to the site visit, the land owner noted pins that had become exposed and that he had removed as many pins as could be found. The land owner also noted that he had tried to establish trees at the upper floodplain limit. There appears to be a trend of retreat of the top of the bank (about elevation 439 m) as well as general steepening of the beach slope.

- bank sediment: sand and gravel
- range of water levels: up to 6 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave and river erosion of the bank
- riparian vegetation: grass and trees
- exposure to river current: moderately low
- exposure to waves: high


Pin recovery at MON 14 was very low (Figure 3-16) because the nearby landowner removed the majority of the pins. The cross-sections show both modest erosion (cross-section 2 and 3) and modest deposition (cross-section 5). The average change in pin exposure is -5.6 cm, and based on observations this site is eroding. Site 14 was not visited in 2012 to avoid potential conflict. While the pin data cannot be replicated, the cross-section survey could be repeated in 2014 to determine larger cross-sectional changes.

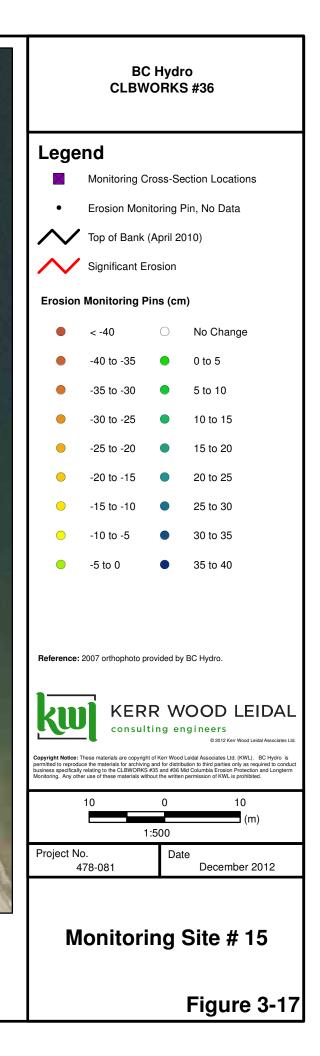

Photo 3-27: Looking upstream along bank (MON 14, June 2, 2011).

Photo 3-28: Looking downstream along bank (MON 14, June 2, 2011).

Erosion Monitoring Pins - Change 2011 to 2012

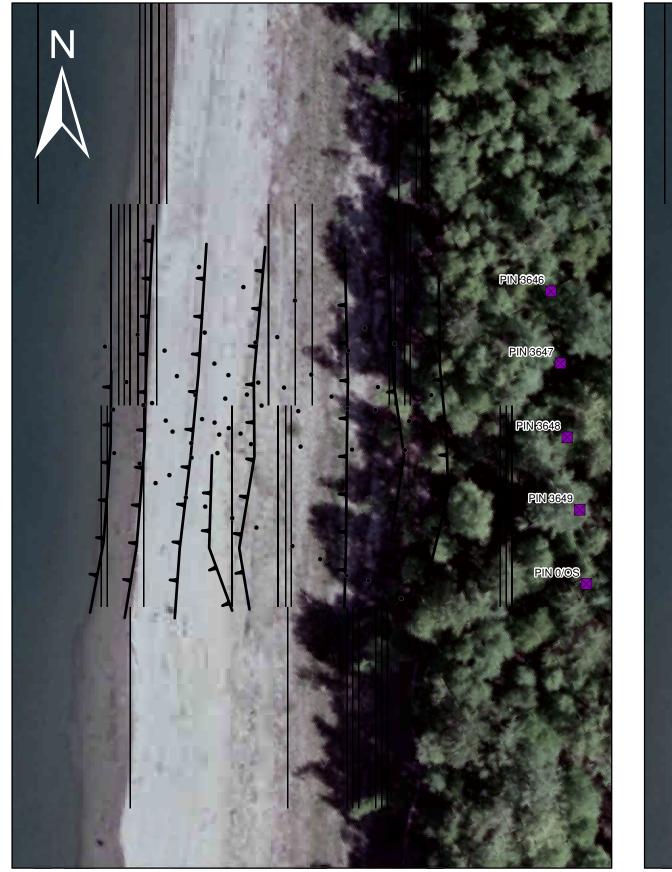
Erosion Monitoring Pins - Change 2010 to 2012

1	T					2	
	I.	p	h	1	B		
	F	R.	i.	Ē.			
	2	3	e.			ч.	

Monitoring Site 15

Monitoring Site 15 is located about 1.5 km upstream of Shelter Bay, on the right bank of the main channel (Figure 3-2). This is a very low lying area, with floodplain levels around 435 m. There are two distinct erosional cut slopes, one at the floodplain top, the second at the waters edge at the time of the field work. The lower bank erosional feature may be a transitory feature that advances with the rising water levels and can move rapidly due to the very erodible soils.

- bank sediment: sand and some gravel
- range of water levels: up to 6 m annually
- influence of from Arrow Lakes: high
- erosion mechanism: wave and river erosion of the bank
- riparian vegetation: grass
- exposure to river current: moderately low
- exposure to waves: high


During the 2012 monitoring period, the very low water levels allowed survey of more bank than what was exposed in 2010. A very large percentage of pins were relocated, and the average interannual pin exposure decreased from -7.0 cm to -1.9 cm likely due to measurement of the lower elevation pins (Figure 3-17). The total average pin exposure for two years is -4.7 cm. Based on cross-sectional data, the very high erosion in -1.64 m between 2010 and 2011 changed trends to be +0.01 m in 2012. The net cross-sectional change for the site from 2010 to 2012 is -1.01 m. Maximum loss of floodplain was largest between 2010 and 2011 and was as high as 5 m in some locations.

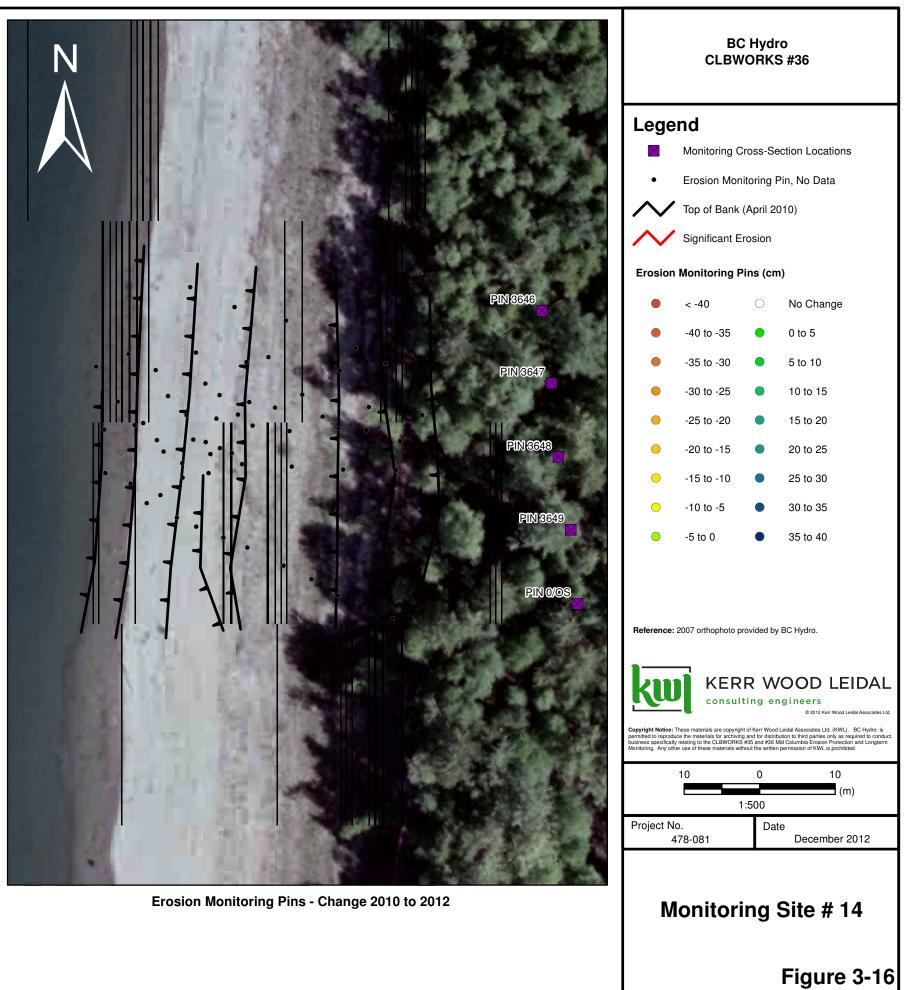


Photo 3-29: Looking downstream along bank (MON 15, June 2, 2011).

Photo 3-30: Looking downstream along bank (MON 15, April 19, 2012).

Erosion Monitoring Pins - Change 2011 to 2012

1.1	
	1 m m m m m m m m m m m m m m m m m m m
	the star being the
1.00	
- 1 Mar	
1.10	
1.00	

3.2 Wind Data

Based on field observations regarding the influence of wind generated waves on the erosion at the monitoring sites, hourly wind data were obtained from Environment Canada to characterize the wind climate in the CLBWORKS #36 study reach. Stations near or in the study reach include:

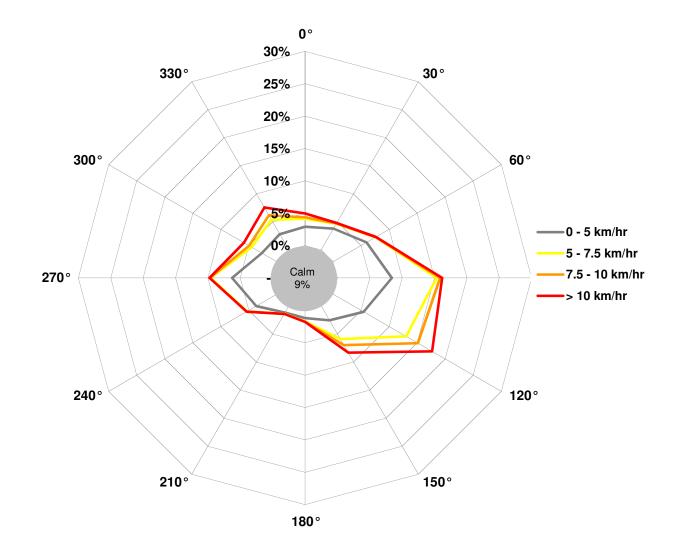
- Nakusp CS (station 1145297);
- Revelstoke A (station 1176749); and
- Revelstoke Airport Road (station 1176751).

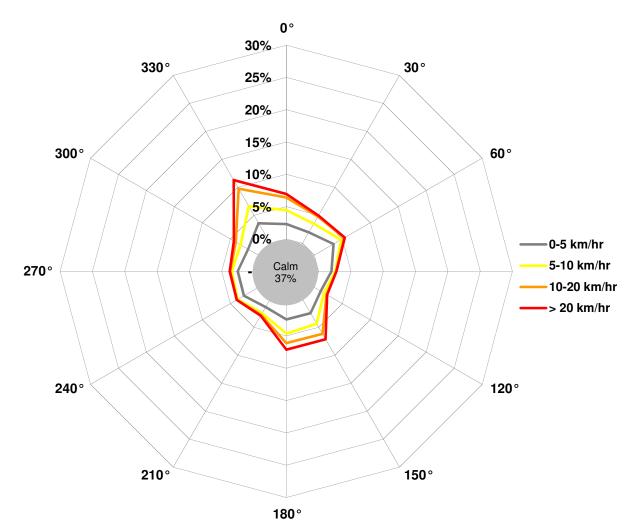
Wind roses showing the dominant wind directions and speeds for the three stations are shown in Figure 3-18, Figure 3-19 and Figure 3-20. Note that the wind direction is the direction from which the wind blows.

The dominant wind direction at Nakusp is from the south-east, which is aligned with the large Slocan Lake valley.

At Revelstoke, the wind direction is aligned with the Columbia River valley (NNW-SSE). Winds from the north are somewhat more common than from the south.

In general, "calm" conditions (i.e. no wind) are recorded much more frequently at Revelstoke (about 40% of the record) compared with Nakusp (about 9% of the record).


Based on these general observations, the monitoring sites have been reviewed as to probable wind exposure from a qualitative perspective. Some sites were found during the fieldwork to be quite windy, while others were sheltered.


There are currently seven of 14 sites that exhibit average cross-sectional bank erosion between 2010 and 2012 higher than -0.44 m. Six of the sites are located in the reservoir dominated reach of Columbia River and include Mon Sites: 5, 6, 7, 8, 11, and 15. These sites are located on either NNW or SSE facing aspects and erosion at these sites is likely to be exacerbated by wind generated waves.

KERR WOOD LEIDAL ASSOCIATES LTD.

A Second State of the seco

Nakusp Wind Rose (Station 1145297) Percent Duration, Hourly Data, 1994 to 2011

Revelstoke Airport Road Wind Rose (Station 1176751) Percent Duration, Hourly Data, 1971 to 1999

Revelstoke A Wind Rose (Station 1176749) Percent Duration, Hourly Data, 1994 to 2011

		÷
	and the second s	
	and the second s	
	A COLUMN TWO IS NOT	
2.10		
	and the second s	

3.3 Statistical Analysis

A statistical analysis was performed by Leska S. Fore (Statistical Design) to evaluate bank erosion from 2010 to 2012 at the 15 monitoring sites by:

- 1. Comparing the exposed length of pins placed in the river bank, and
- 2. Comparing the lateral distance between cross-section surveys at given elevations.

3.4 Erosion pin evaluation

Each of the 15 monitoring sites was evaluated for change in erosion (or deposition) by measuring the length of exposed pins in 2010, 2011, and 2012. At each site, 60 pins were placed in a random pattern and measured at installation in 2010. Sites were revisited in 2011 and 2012 and measured again. The difference in length between years was calculated for each pin, negative values indicating erosion and positive values indicating deposition.

To evaluate change in erosion (or deposition) through time at the sites, changes in pin lengths were averaged for all pins at each of the 15 monitoring sites. Overall change at a site was summarized by taking the average of changes for all pins.

Mean change in pin length for all sites was evaluated using a paired t test, such that each site was paired with itself through time. The change in mean pin length for all sites was averaged and evaluated for a statistical difference from 0 (indicating no change). The test statistic was calculated for three time periods, from 2010 to 2011, 2011 to 2012, and 2010 to 2012. The statistical test determines whether the mean change in pin length was significantly less than 0 (indicating erosion) or significantly greater than 0 (indicating deposition).

Several sites had missing pins. During the first revisit in 2011, 476 out of 900 pins could not be measured because they were submerged (>250 pins), toppled, lost or the bank was eroded. During the second revisit in 2012, a total of 195 out of 900 pins could not be measured because they were lost or toppled. Unmeasured pins were not included in any calculations and simply treated as missing. In 2011, toppled pins were reset and the number of pins available for comparisons from 2012 to 2010 increased.

Results varied across the 15 monitoring sites with some sites showing erosion and others showing deposition. From 2010 to 2012, three sites had an average increase in pin exposure (length), indicating deposition over 1 cm; seven sites showed a negative change in pin length (indicating erosion) of more than 2 cm; and four sites showed smaller changes. One site (MON14) was discontinued after discussions with the upland landowner. For comparisons from 2010 to 2012, most sites had more than 45 of the 60 pins that could be measured (N = 11 sites); three remaining sites had 24, 25, and 42 pins that could be measured. This was a large increase from 2011 when five sites had less than 10 pins that could be measured.

The average change in pin length at the 14 monitoring sites was negative for all three time periods, indicating erosion. From 2010 to 2011 the average change was statistically significant (–3.94 cm, Student's t test, p < 0.05; Table 2). From 2011 to 2012 the change in average pin length was not significant (–3.04, p = 0.08); nor was average change significant from 2010 to 2012 (–2.65, p = 0.17).

For each time period, a similar number of sites increased and decreased in mean pin length, but for sites with erosion, the change was generally a greater change (Table 3-2; Figure 3-22).

Monitoring sites were numbered from 1 to 15 beginning at the site closest to Revelstoke Dam. Sites were not placed equidistant downstream; therefore, locations represent a ranking from nearest the dam

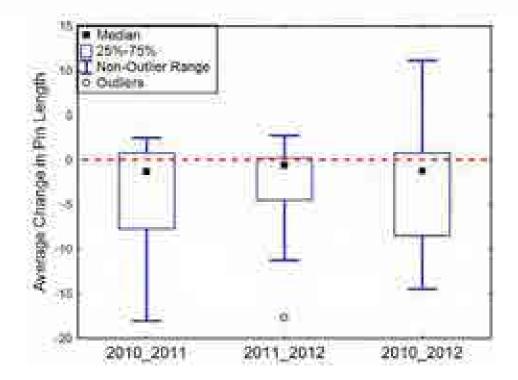
to furthest downstream toward Shelter Bay. Sites closer to the dam were significantly more eroded compared to sites downstream that had more deposition (Figure 3-22; Spearman's correlation coefficient = 0.55, p < 0.05).

Site	2010 to 2011		2011 to 2012		2010 to 2012		
	Change (cm)	N	Change (cm)	N	Change (cm)	N	
MON1	0.1	57	0.6	57	0.7	60	
MON2	-10.2	41	-6.1	37	-12.0	53	
MON3	-7.7	10	-4.5	9	-14.4	42	
MON4	0.2	33	0.2	33	-2.6	60	
MON5	-2.8	4	-11.3	4	-8.5	46	
MON6	-18.0	5	-17.6	4	-10.3	47	
MON7		0		0	-0.2	25	
MON8	-10.1	26	-1.2	28	-2.2	57	
MON9	0.8	58	0.5	57	1.4	57	
MON10	0.2	53	-0.1	52	0.4	59	
MON11	2.5	1	2.8	2	11.2	24	
MON12	1.5	45	-0.6	43	3.4	58	
MON13	0.8	56	-0.2	55	0.8	59	
MON14	-5.6	7		0		0	
MON15	-7.0	28	-1.9	32	-4.7	58	

Table 3-2: Site name, mean change in pin length, and the number of pins (N), that were measured
for three time periods.

Negative values indicate erosion, positive values indicate deposition. MON1 is closest to the dam and MON15 is closest to Shelter Bay

Table 3-3: Statistical results for testing change in mean pin length during three time periods	at
15 sites.	


Change measured as	Period	Mean	SD	Ν	Std. Err.	t-value	df	р
Mean pin length (cm)	2010 to 2011	-3.94	6.02	14	1.60	-2.45	13	0.029
Mean pin length (cm)	2011 to 2012	-3.04	5.69	13	1.58	-1.93	12	0.078
Mean pin length (cm)	2010 to 2012	-2.65	6.82	14	1.82	-1.45	13	0.170

Shown are results for change in mean pin length, time period of comparison, mean change in pin length, the standard deviation of the site means, number of sites, standard error of the mean, test statistic, degrees of freedom and p-value for Student's t test. Only the change in pin length from 2010 to 2011 was statistically significant.

KERR WOOD LEIDAL ASSOCIATES LTD.

eresteren atendearen eta erreten eta e

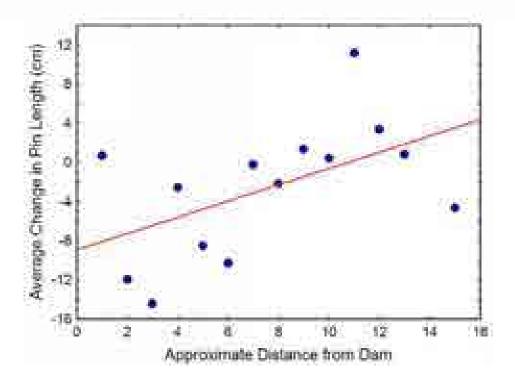


Figure 3-21: Average change in pin length (cm) at monitoring sites.

Shown are changes in the height of erosion pins from 2010 to 2011, 2011 to 2012 and 2010 to 2012. Negative values indicate erosion, positive values indicate deposition. See Table 3-2 for average values and number of sites.

KERR WOOD LEIDAL ASSOCIATES LTD.

Figure 3-22: Sites closest to the dam had higher pin erosion, and sites further downstream had greater deposition (Spearman's correlation = 0.55, p < 0.05)

Sites are rank ordered according to distance from the dam. Shown are changes in the exposed length of erosion pins from 2010 to 2012; negative values indicate erosion, positive values indicate deposition.

3.5 Cross-Section Evaluation

At each of the 14 monitoring sites, elevation was measured along five cross-sections from the top of the bank to the river's edge in 2010, 2011 and 2012. Each monitoring site was compared to itself through time in two ways:

- 1. by comparing all measurements made at each site during each of the three time periods, and
- 2. by comparing measurements made at the upper, middle, and lower elevation bands for the time period from 2010 to 2012.

Mean change in horizontal bank change was calculated two ways for both comparisons: as the midpoint of each elevation band and as the maximum observed difference in the elevation band.

Measurements taken along each cross-section were summarized at three points. The points were defined by dividing the total height of each cross-section into three equal heights from the highest elevation (at the top of the bank) to the lowest elevation (at the river edge). For example, if the elevation along a cross-section ranged from 400 to 415 m, the difference of 15 m was divided into three equal elevations (400–405, 406–410, and 411–415). The midpoint of each elevation band was intersected with the profile for each year. Thus, within each of the three "sub-sections" (lower, middle and upper),

KERR WOOD LEIDAL ASSOCIATES LTD.

entered the state of the state

the horizontal change at the midpoint of the sub-section was calculated. A second statistic, the maximum change within each of the three sub-sections, was calculated in a similar manner.

For five cross-sections summarized at three points, a total of 15 measurements were possible for each site-visit. Years were compared by calculating the horizontal change at the midpoint between years. Change over time was tested for statistical significant using a paired t-test. Changes were reported as the average for all 14 sites. These values were tested for a significant difference from 0 with a negative value indicating erosion and a positive value indicating deposition.

In 2011, many measurements were missing, particularly from the lowest elevations because many of the locations were underwater. High water was not a problem in 2012 and a complete data set was obtained with all 5 cross-sections measured at each elevation band for all 14 monitoring sites (Table 3-4). Data were complete in 2012 for both midpoint measurements and maximum measurements.

For comparisons made for the midpoints of the elevation bands from 2010 to 2012, more sites had negative values, indicating erosion (11 out of 14). For the shorter time periods from 2010 to 2011 and from 2011 to 2012 there were fewer measurements because many sites were underwater in 2011. Nonetheless, most sites showed a negative change indicating erosion (Figure 3-23). For comparisons made for the maximum differences in each elevation band, changes tended to be larger and also tended to indicate erosion (Table 3-4). For 2010 to 2012, 9 out of 14 sites had negative average values indicating erosion (Figure 3-23).

Statistical comparisons showed a significant difference for measures made at the midpoint from 2010 to 2011 and for 2010 to 2012 (-0.5 and -0.47 m, Student's paired t-test, p < 0.05; Table 5). Comparisons based on the maximum changes within each elevation band were not statistically significant for any of the three time periods. High variability in the maximum values contributed to the lack of significance when the sites were compared (Figure 3-5). Nonetheless, whether calculated at the midpoint or as the maximum, both provided very similar measures of site condition because the average values based on midpoint and maximum measurements were highly correlated (Pearson's correlation = 0.93, N = 42 [14 sites x 3 elevations]).

To evaluate the source of change, a similar statistical comparison was made for the upper, middle and lower elevations for the time period from 2010 to 2012 (Table 3-7). The three comparisons were made for measurements made at the midpoint and for the maximum differences.

For change measured at the midpoint of the elevation bands, change in the upper elevation band was significant (-0.97 m, p < 0.05) and nearly significant for the middle band (-0.56 m, p = 0.06). Both values were negative indicating erosion. Values for the lower elevation bands were positive for both the midpoint and maximum measurements, indicating deposition, but were not statistically significant. For change in elevation measured as the maximum for the elevation bands, change in the middle band was statistically significant (-1.0 m, p = 0.05).

Table 3-4: Mean horizontal bank change based on measurements at the midpoints of the cross-
section profiles (m); and the number of measurements (N) for each monitoring location. Shown
are changes for three time periods.

Site	Change 2010 to 2011	N	Change 2011 to 2012	N	Change 2010 to 2012	N
MON1	-0.07	15	0.10	15	0.02	15
MON2	-0.33	13	-0.13	13	-0.44	15
MON3	-0.28	12	-0.02	13	-0.24	15
MON4	-0.15	10	0.04	10	-0.07	15

KERR WOOD LEIDAL ASSOCIATES LTD.

Site	Change 2010 to 2011	Ν	Change 2011 to 2012	Ν	Change 2010 to 2012	Ν
MON5	-0.91	10	-0.48	10	-0.85	15
MON6	-0.54	12	-0.62	12	-1.15	15
MON7	-1.88	5	0.31	5	-0.55	15
MON8	-0.81	10	-0.54	10	-0.52	15
MON9	0.64	14	-0.22	14	0.45	15
MON10	0.25	15	-0.29	15	-0.03	15
MON11	-1.25	15	-1.21	15	-2.38	15
MON12	-0.05	11	-0.07	11	-0.06	15
MON13	0.00	15	0.18	15	0.21	15
MON15	-1.64	10	0.01	10	-1.01	15

Table 3-5: Mean horizontal bank change based on maximum differences in the cross-section profiles (m); and the number of measurements (N) for each monitoring location. Shown are average maximum changes for three time periods.

Site	Max Change 2010 to 2011	Ν	Max Change 2011 to 2012	Ν	Max Change 2010 to 2012	Ν
MON1	-0.15	15	0.22	15	0.09	15
MON2	-0.47	14	-0.14	14	-0.70	15
MON3	-0.34	15	0.04	15	-0.55	15
MON4	-0.33	15	0.17	15	-0.02	15
MON5	-1.35	10	-1.55	10	-1.79	15
MON6	-0.84	14	-0.43	14	-1.73	15
MON7	-3.07	6	0.41	6	-1.79	15
MON8	-1.13	10	-0.59	11	-0.62	15
MON9	2.07	15	-0.61	15	2.11	15
MON10	0.78	15	-1.13	15	0.03	15
MON11	-1.79	15	-1.90	15	-2.77	15
MON12	0.17	15	0.05	15	0.65	15
MON13	-0.06	15	0.49	15	0.79	15
MON15	-2.68	10	0.40	10	-1.82	15

KERR WOOD LEIDAL ASSOCIATES LTD.

service management of the service of

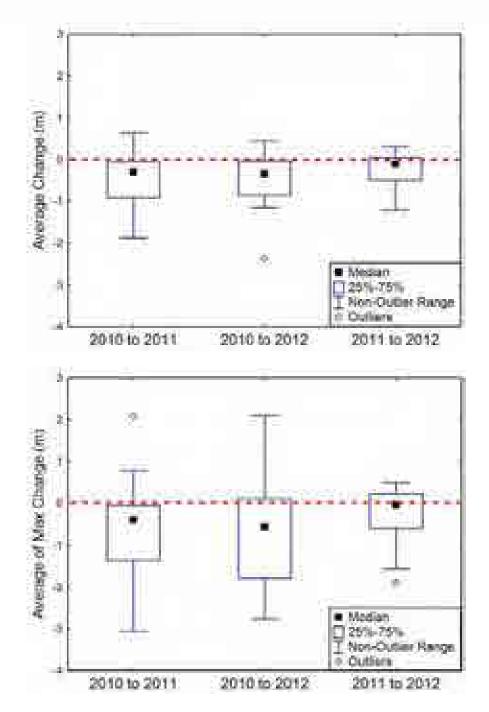


Figure 3-23: Average change at the 14 monitoring sites measured as change at the midpoint of the elevations (upper panel) and measured as the maximum observed difference (lower panel). Shown are changes in elevation for three time periods.

KERR WOOD LEIDAL ASSOCIATES LTD.

Table 3-6: Statistical results for comparisons of cross-section changes at 14 locations during three time periods. Shown are results for the changes measured at the midpoint and measured as the maxima.

Change measured as	Period	Mean	SD	Ν	Std. Err.	t-value	df	р
Average of Change at Midpoint	2010 to 2011	-0.50	0.72	14	0.19	-2.61	13	0.022
Average of Change at Midpoint	2011 to 2012	-0.21	0.40	14	0.11	-1.98	13	0.070
Average of Change at Midpoint	2010 to 2012	-0.47	0.72	14	0.19	-2.46	13	0.029
Average of Max Change	2010 to 2011	-0.66	1.33	14	0.36	-1.85	13	0.09
Average of Max Change	2011 to 2012	-0.33	0.75	14	0.35	-0.93	13	0.37
Average of Max Change	2010 to 2012	-0.58	1.31	14	0.35	-1.65	13	0.12

Each row represents a single statistical test; for each test are shown the mean, the standard deviation of the sample, the sample size, standard error of the mean, test statistic, degrees of freedom and p-value for Student's t test. Comparisons with p < 0.05 are highlighted in red.

Table 3-7: Statistical results for comparison of change in cross-section elevations within lower,
middle and upper bands along the bank. Shown are results for the changes measured at the
midpoint and measured as the maxima.

Measure	Elevat ion	Mean (m)	N	SD	Var	Std. Err.	t- value	p- value
Average change at Midpoint	Lower	0.11	14	0.57	0.32	0.15	0.74	0.47
Average Maximum change	Lower	0.33	14	1.17	1.37	0.31	1.04	0.32
Average change at Midpoint	Middle	-0.56	14	1.00	1.01	0.27	-2.09	0.06
Average Maximum change	Middle	-1.00	14	1.72	2.95	0.46	-2.17	0.05
Average change at Midpoint	Upper	-0.97	14	1.48	2.19	0.40	-2.44	0.03
Average Maximum change	Upper	-1.07	14	2.24	5.01	0.60	-1.79	0.10

For each test are shown the mean (m), the number of locations (N), the standard deviation, variance, standard error of the mean, test statistic, and p-value for Student's t test. Red highlighting indicates p <0.05.

3.6 Interim Conclusions

Measurements made for pins and for profiles in general agreed, and most measurements indicated erosion. For the pins, a statistically significant change was observed from the 2010 to 2011 (-3.94 cm average of all sites), but the trend was not significant for 2011 to 2012 or 2010 to 2012.

For cross-sectional profiles, about 75% of measurements were negative, indicating erosion. A statistically significant amount of erosion (~ 0.5 m) was observed from 2010 to 2011 and a similar

KERR WOOD LEIDAL ASSOCIATES LTD.

friendsteller adjustation

amount of erosion was significant for the overall period of measurement from 2010 to 2012. When erosion was evaluated within elevation bands, upper and middle elevations showed some statistically significant erosion (~ 1 m), while the lower elevation band had positive values indicating deposition, but were not statistically significant. Erosion of upper bands and deposition at lower bands may indicate sloughing of steep banks.

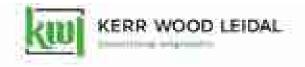
The erosion monitoring experimental design provided the means to assess erosion at two scales:

- erosion pins (change up to about 0.4 m and accurate to about 0.5 cm); and
- cross-sectional survey (change greater than about 0.2 m and accurate to about 0.05 to 0.1 m).

The erosion pins provide a very random sample of change occurring over the monitoring plot. The cross-sectional change provides a "spatially averaged" measure, where horizontal bank change is assessed at equally spaced cross-section locations, and three characteristic measurements are taken at equally representative elevation bands.

When reviewing that data, the erosion pins do not identify large change, i.e. where erosion is greater than 0.4 m, other than through loss of pins. This data is not included in the statistical analysis. There are always parts of the monitoring area where change is more subdued, and the erosion pins will tend to reflect those areas, rather than the larger change. In cross-sections where cross-sectional change is small or negligible, erosion pins data quantifies the erosional patterns and average change in an unbiased way. There are also potential problems with the erosion pins, when pins are lost, or unmeasurable due to deep deposition, the average can be biased to the observable measures as was the case for some of the 2011 data. Erosion is also episodic, so measurement at short time scales can lead to erroneous or results not representative of a longer term average.

The cross-sectional data does not include extreme measures of erosion (i.e. top of floodplain horiztonal change) as this is an extreme measure and could negatively influence the statistics. Therefore, spatially representative measurements are provided for top, mid and lower bank ranges.


The amount of erosion on both the pins and the cross-sections is statistically significant for most periods. However, statistical significance does not describe the processes dictating the erosion, nor whether the erosion is significant within the larger Columbia River context.

It could also be seen this year that erosion patterns followed a gradient from upstream to downstream sites. The most eroded sites were located nearest the Revelstoke Dam and sites with greatest deposition were furthest downstream. While this is a preliminary result, this trend is physically consistent with what would be expected in a river mouth / lake environment.

3.7 Channel Mapping

The *2010 Progress Report* (KWL, 2010¹) documented 2007 channel mapping and a comparison of 2000 to 2007 channel changes. Subsequent to that report, the 2010 orthophotos were obtained from BC Hydro. Upon review of the 2010 orthophotos, it was determined that they are not suitable for channel mapping. The main issue is that the 2010 orthophotos only cover a small fraction of the reach of interest, and therefore leave large sections of the river banks that could not be mapped. Since the goal of the channel mapping is to evaluate reach-scale changes, the 2010 orthophotos are not suitable.

¹ KWL, 2010. CLBWORKS #35 and #36 2010 Progress Report. Report prepared for BC Hydro. (KWL Project 478.081).

Section 4

Summary and Future Works

manue becaused in Champers of Secondaria States

kwl.ca

	/222	
	101	
144		

4. Summary and Future Works

4.1 CLBWORKS #35

Construction of the bioengineering works is complete. The final lower elevation portion of Site A1 was installed in April 2012. Baseline erosion monitoring pins and cross-sections have been established at all CLBWORKS #35 sites, including the lower elevations of Site A1. Erosion monitoring pin measurement data and transect survey data was collected in April 2012. The initial data analysis is summarized in this report.

The first round of erosion monitoring measurements (Year 2) provides a partial year of data. This allows understanding of the change over a winter season of lower of the Arrow Lakes water levels and does not include a flood cycle.

Initial measurements of the erosion monitoring pins indicate that there is no statistically significant change in erosion or deposition from 2011 to 2012 for the bioengineered versus control sites. Control sites do show slightly more erosion based on average exposed pin length; however, it is not significantly significant. The transect profiles indicate that the control sites show slightly more deposition, again, these results are not statistically significant.

The length of time for this comparison is relatively short (four months) and changes likely will take longer to develop. Year 3 monitoring for this project is scheduled for spring 2013.

4.2 CLBWORKS #36

Year 3 erosion monitoring measurements have been completed at the CLBWORKS #36 sites, and the data analysis is summarized in this report.

There are a total of 15 long term erosion monitoring sites for CLBWORKS #36. One site (MON 14) was excluded from data collection and analysis because of conflicts with the upland landowner. Erosion pin measurements and transect surveys were conducted between May 31 and June 2, and between June 13 and 14, 2012.

Each of the 14 remaining monitoring sites was evaluated for change in erosion or deposition by comparing the average change in exposed erosion pin length for three time periods: 2010 to 2011, 2011 to 2012 and 2010 to 2012.

At each of the 14 monitoring sites, elevation was measured along five cross-sections (transects) from the top of the bank to the river's edge in 2010, 2011 and 2012. The average elevation of the transects at each site were compared for the same three time periods and the average elevation of the transects at each site separated into upper, middle and lower elevation bands were compared for the same three time periods.

In general, measurements made of the pins and transects agreed and most measurements indicated erosion. For the pins, a statistically significant change (erosion) was observed from 2010 to 2011; however, the trend was not statistically significant for 2011 to 2012 or from 2010 to 2012.

For the transects, approximately 75% of the measurements indicated erosion. A statistically significant amount of erosion was observed from 2010 to 2011 and over the overall period from 2010 to 2012. When erosion was evaluated within elevation bands, the upper and middle elevations showed some statistically significant erosion, while the lower elevations showed deposition that was not statistically significant.

KERR WOOD LEIDAL ASSOCIATES LTD.

It could also be seen this year that erosion patterns followed a gradient from upstream to downstream sites. The most eroded sites were located nearest to the Revelstoke Dam and sites with the greatest deposition were furthest downstream. While preliminary, this trend is physically consistent with what would be expected for a river mouth/lake environment.

Year 4 monitoring is scheduled for the spring of 2014 for this project.

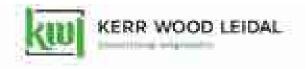
KERR WOOD LEIDAL ASSOCIATES LTD.

κW

BC INVDRO CLEWYONDE ESS and ESH 2012 Program Report December 2013

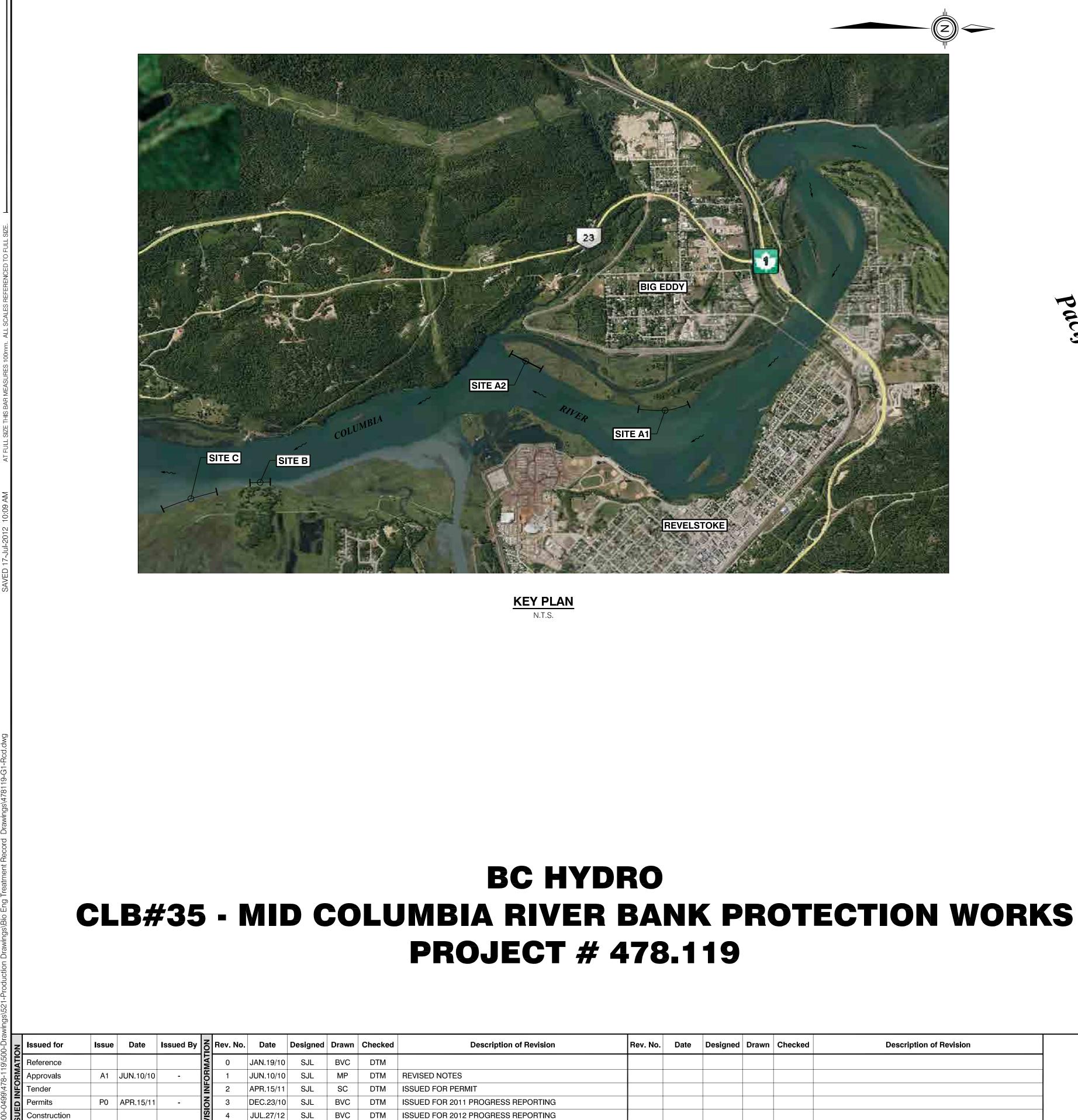
4.3 Report Submission Prepared by

KERR WOOD LEIDAL ABBOGIATES LTD.

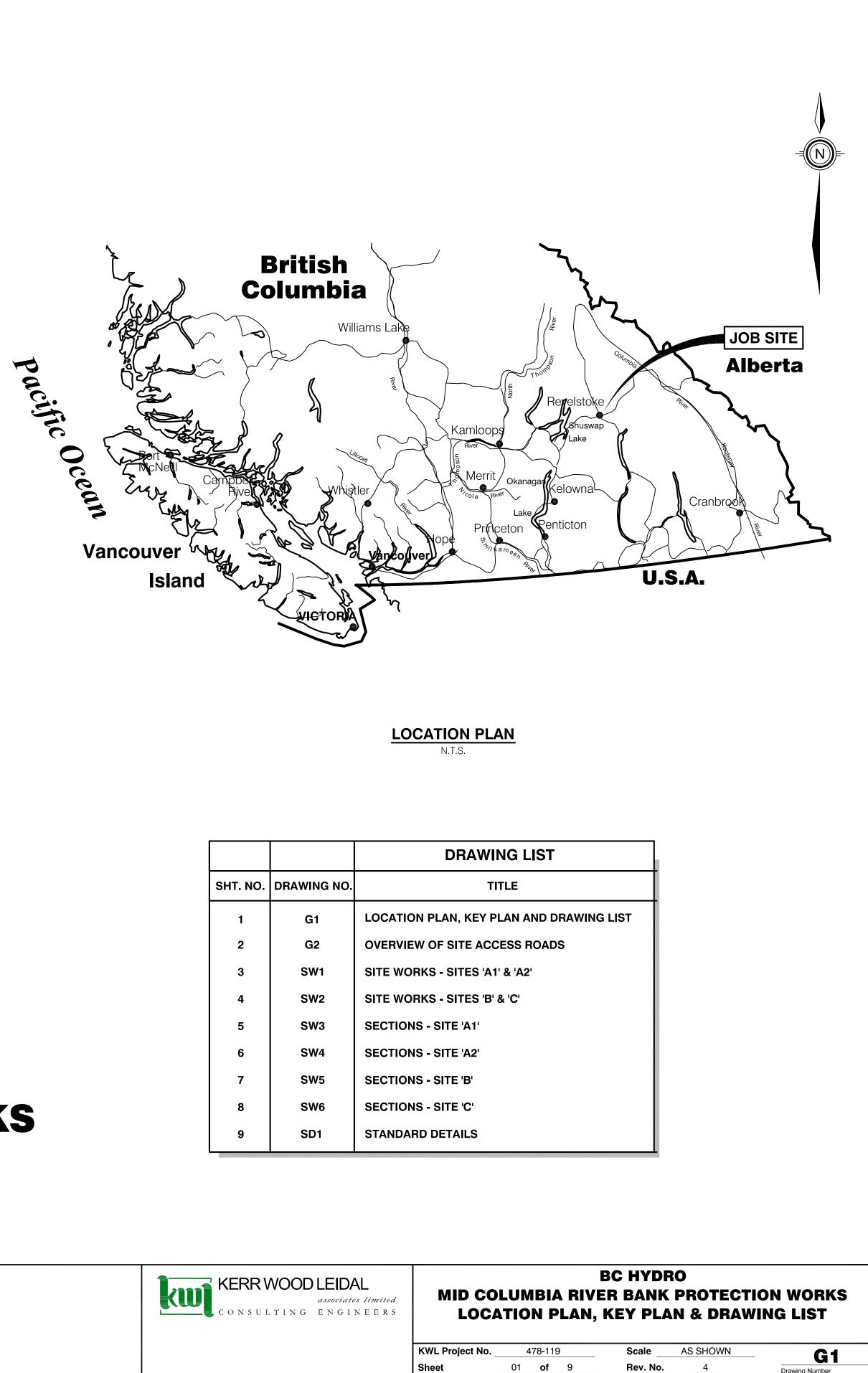

Sarah Listenik, M.A. So., P.Eng Weetin Rosoluccan Engineer

David Matsuedra, M.Eng., P.Eng. Project Manager

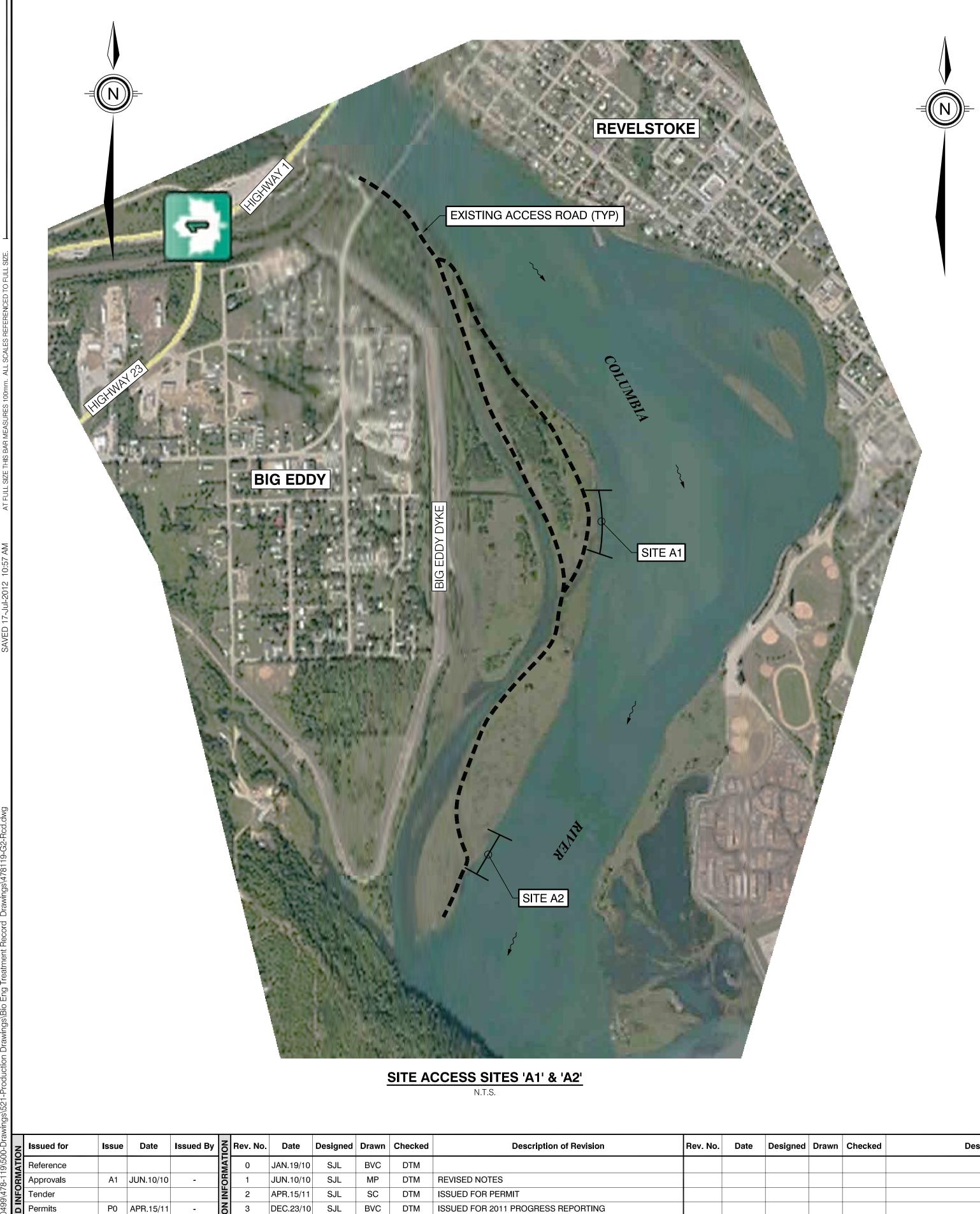
KERR WOOD LEIDAL ASSOCIATES LTD.



Appendix A CLBWORKS #35 Drawings (Record Drawings)


kwl.ca

Record Drawings

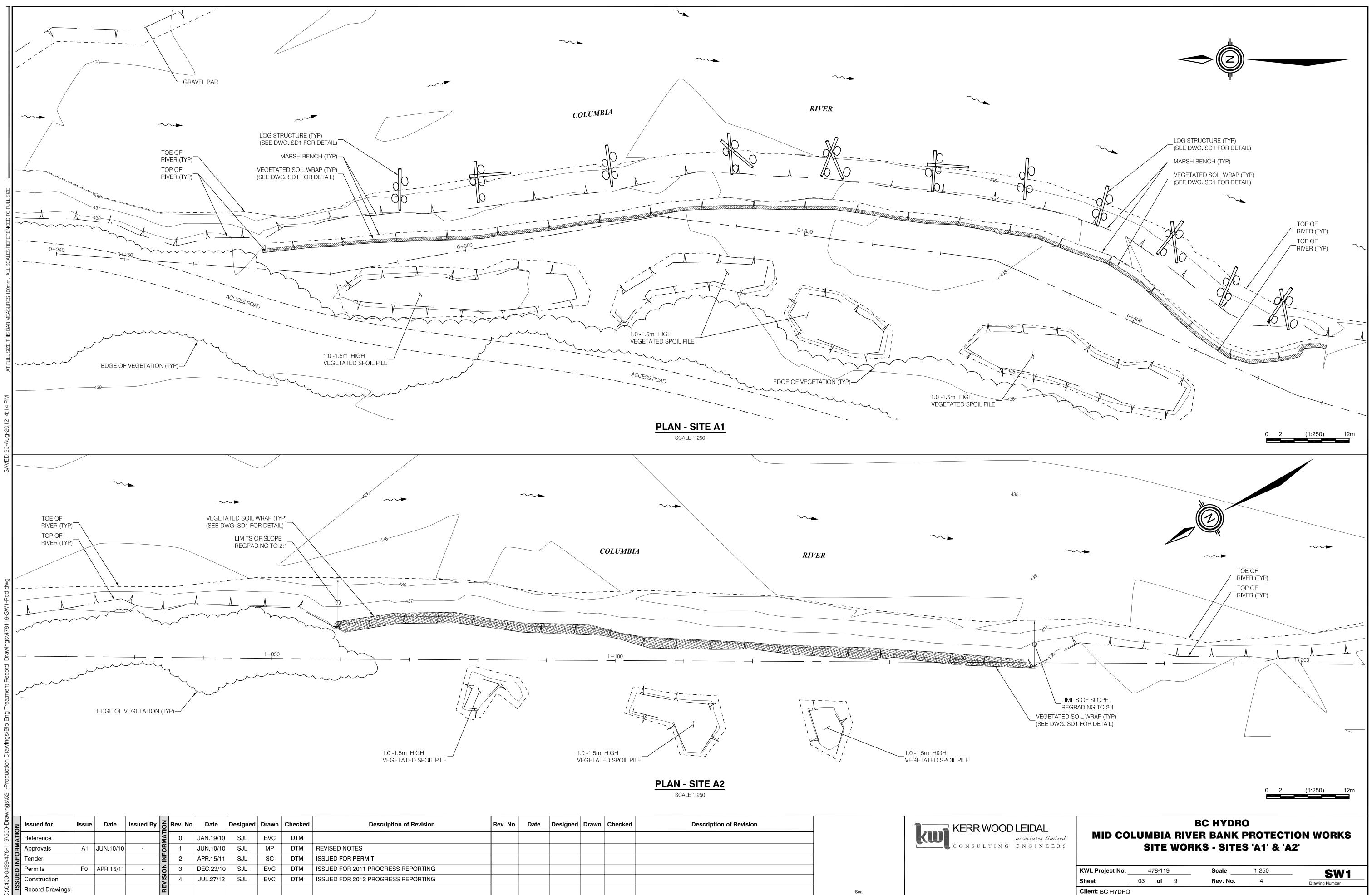

Rev. No.	Date	Designed	Drawn	Checked	Description of Revis	ion		KERR'
							Seal	

SHT. NO.	DRAWING
1	G1
2	G2
3	SW1
4	SW2
5	SW3
6	SW4
7	SW5
8	SW6
9	SD1

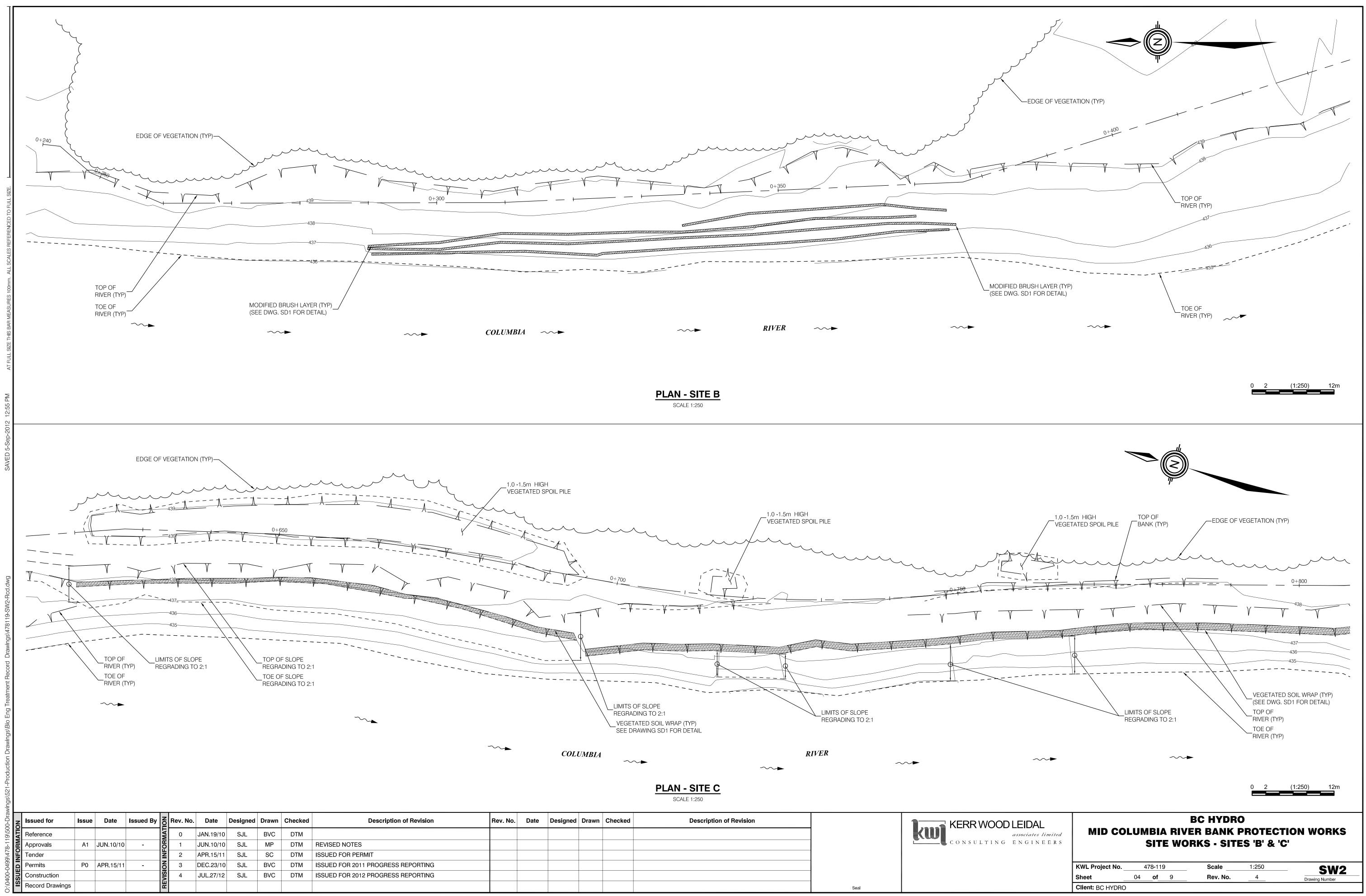
Client: BC HYDRO

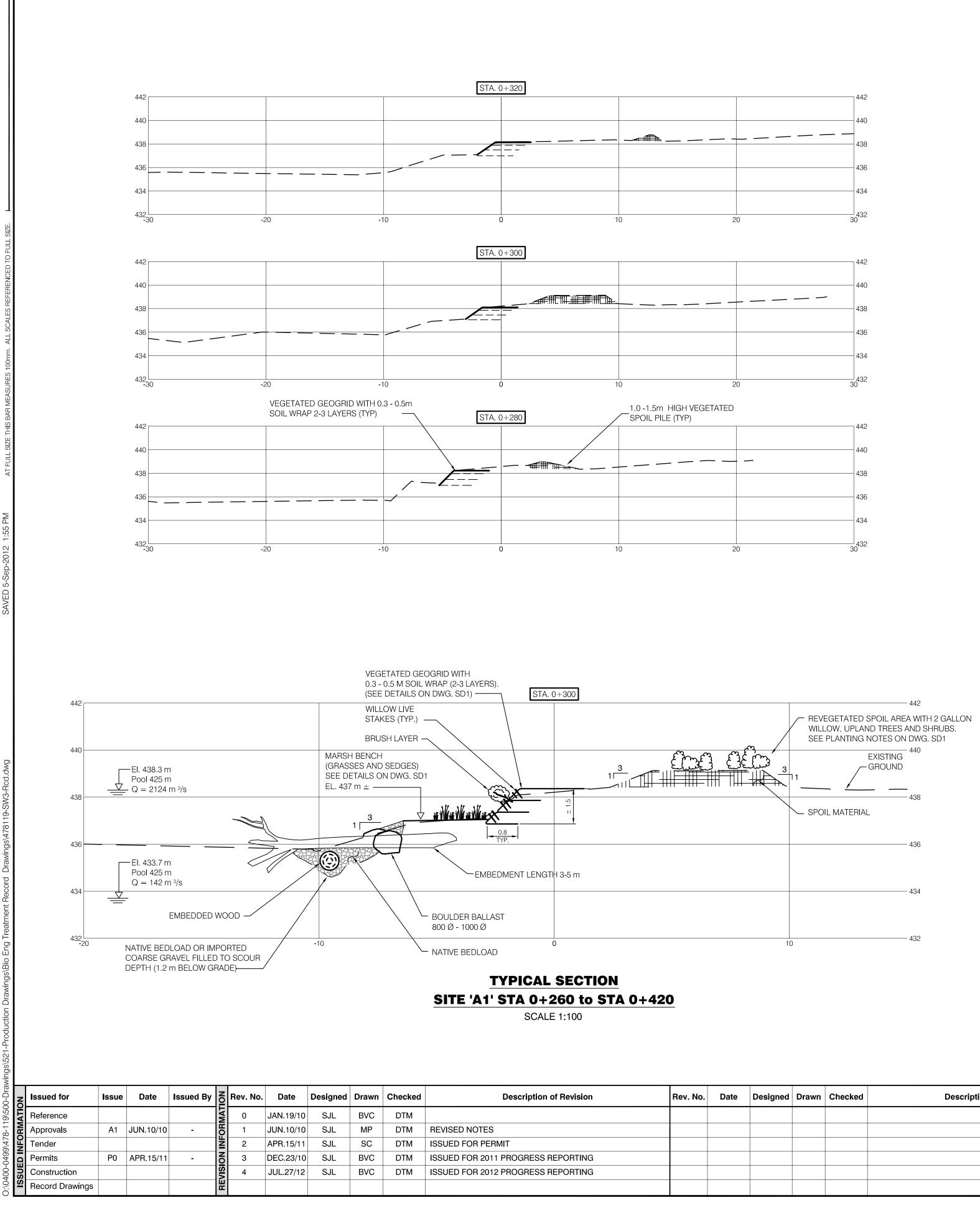
Drawing Number

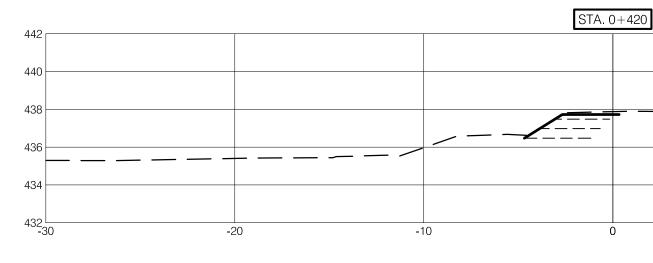
JUL.27/12 SJL BVC DTM ISSUED FOR 2012 PROGRESS REPORTING

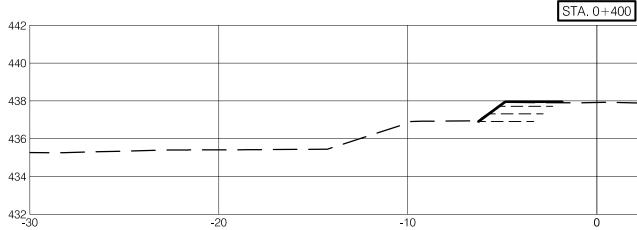

4

Construction

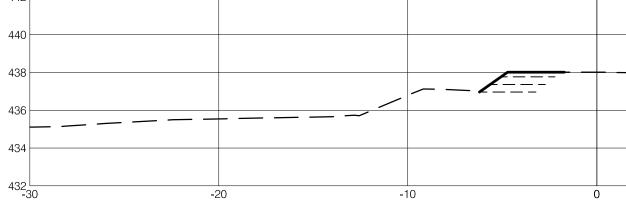

Record Drawings

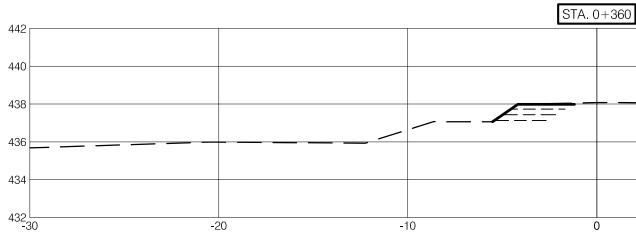

Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		
							CONSULTING EN
						Seal	

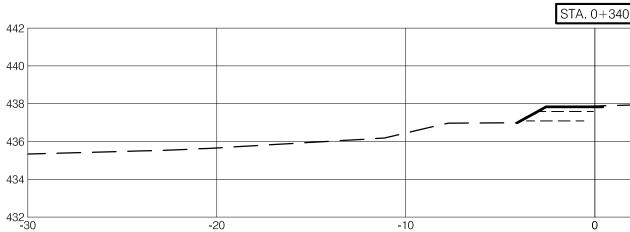

Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		KERR WOOD L
							KERR WOOD L
							CONSULTING E
						Seal	

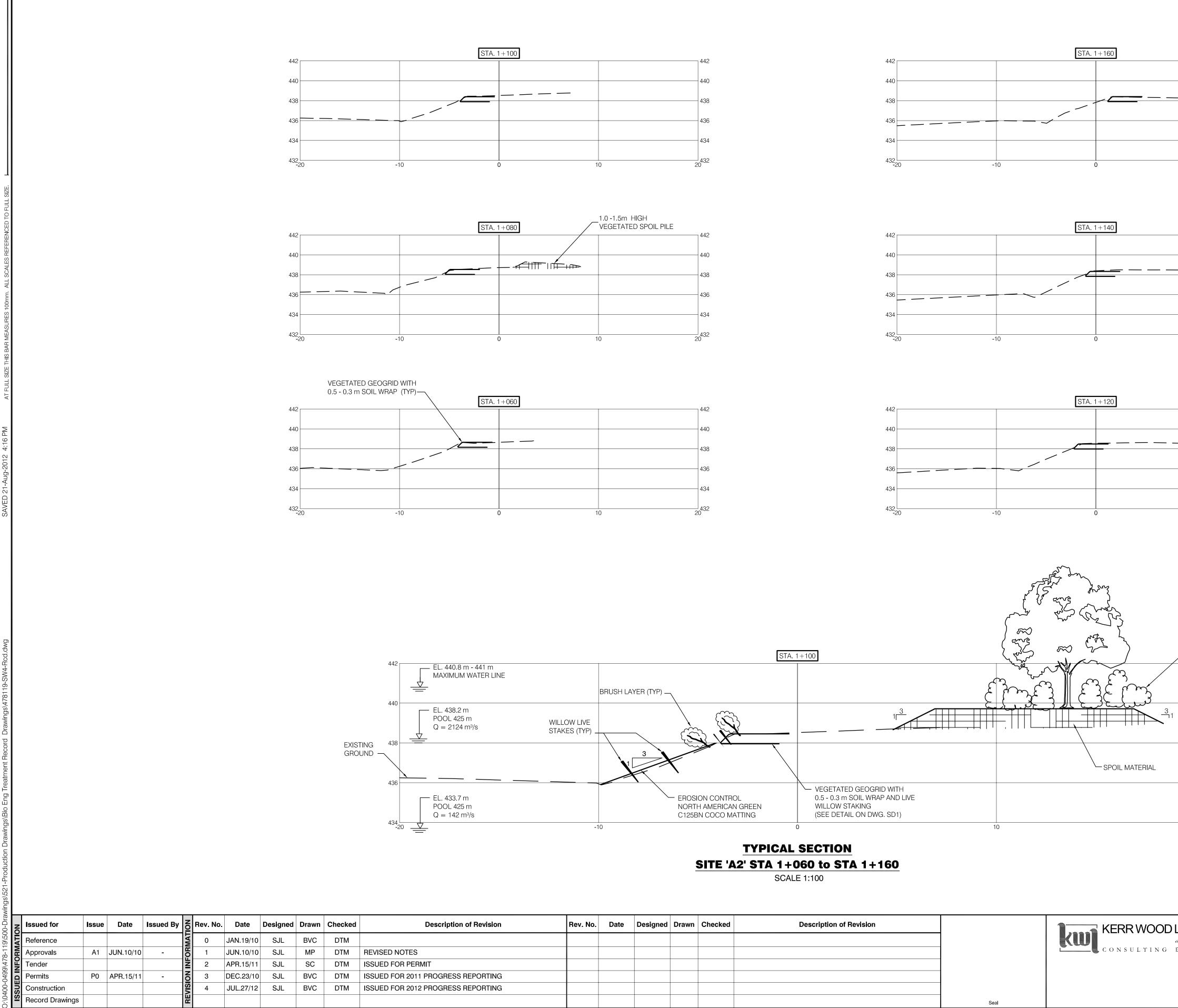


Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		KERR WOOD LE
							KERR WOOD LE
							CONSULTING EN
						Seal	




		442
		2
	c	44(
		438
	· · · · · · · · · · · · · · · · · · ·	436
		434
		121
2)



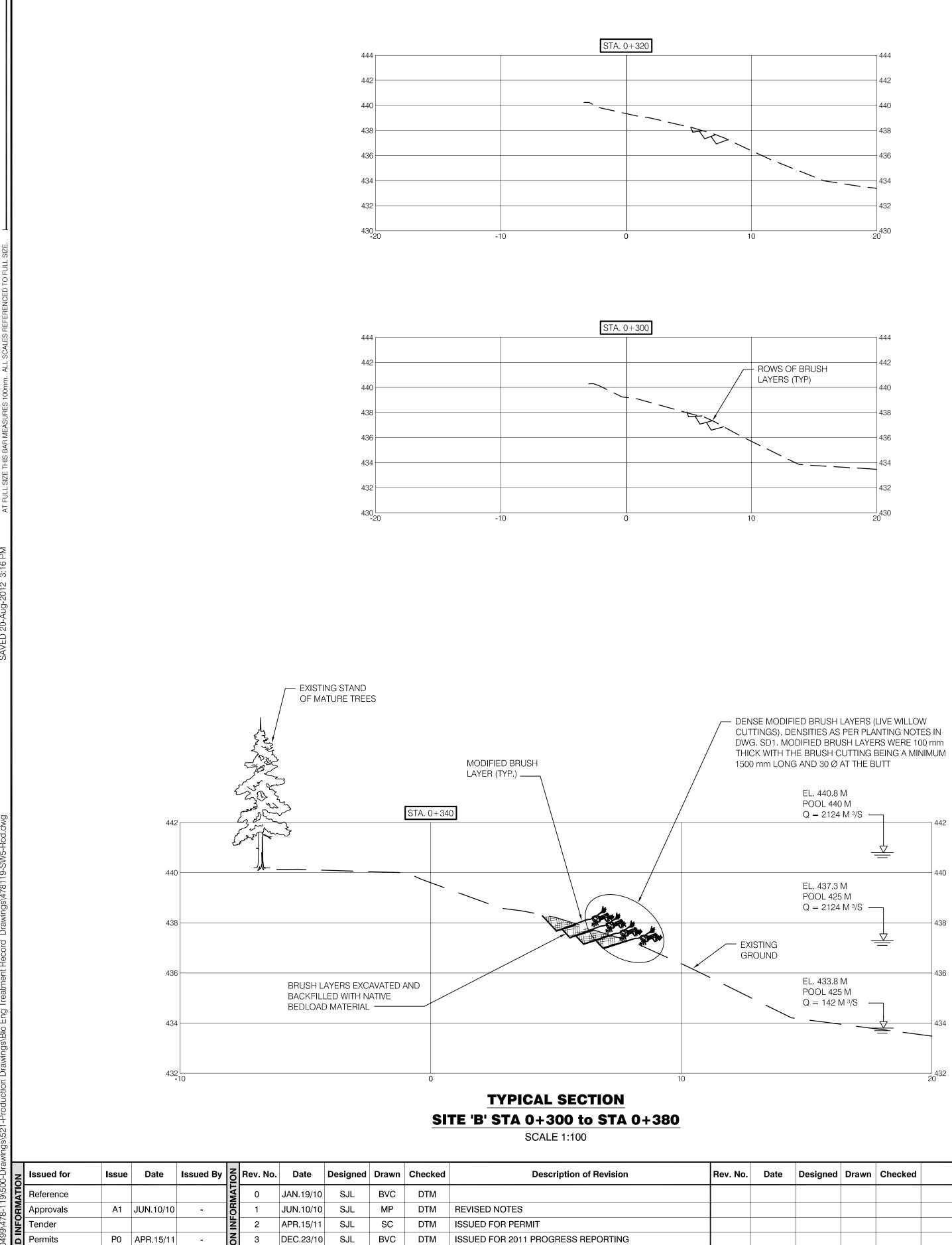


Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		KERR WOOD L
							KERR WOOD LI
 							CONSULTING E
						Seal	

	Client: BC HYDRO				
	Sheet	05 of 9	Rev. No.	4	Drawing Number
	KWL Project No.	478-119	Scale	1:200	ewo
ENGINEERS		SEC.	FIONS - SI	ГЕ 'А1'	
associates limited					ION WORKS
LEIDAL			BC HYDR	D	
			0	2 (1:20	0) 10m
	-				
	10	20		432	
				434	
				436	
/* 111 1 1111 1111 1				438	
	₽				
				440	
40				442	
_					
	10	20		432 30	
				434	
				436	
				438	
				440	
				442	
60					
	10	20		432 30	
				434	
				436	
				438	
				440	
				442	
30					
	10	20		JU	
	10			432	
				434	
				436	
				438	
				440	
00				442	
	10	20		3U	
	10			432	
				434	
				436	
				438	
				440	
20				442	
20					

16	Issue	Date Issued By	No Rev. No	Date	Designe	d Drawn	Checked	Description of Revision	ev. No.	Date Designed Drawn Checked	Description of Revision		ERR WOOD LEIDAL		BC HYDRO	
Reference Approvals Tender Permits			0 MAT	JAN.19/	10 SJL	BVC	DTM						associates limited	MID COLUMBIA RIV		ON WORKS
Approvals	A1 JI	JN.10/10 -		JUN.10	10 SJL	MP	DTM F	REVISED NOTES				C O	NSULTING ENGINEERS	SECT	FIONS - SITE 'A2'	
Tender			2	APR.15	11 SJL	SC	DTM IS	ISSUED FOR PERMIT								
Permits	P0 A	PR.15/11 -	NO 3	DEC.23,	10 SJL	BVC	DTM IS	ISSUED FOR 2011 PROGRESS REPORTING						KWL Project No. 478-119	Scale 1:200	SW4
Construction Record Drawings			ISI 4	JUL.27/	I2 SJL	BVC	DTM IS	ISSUED FOR 2012 PROGRESS REPORTING						Sheet 06 of 9	Rev. No. 4	Drawing Number
Record Drawings			R									Seal		Client: BC HYDRO		-

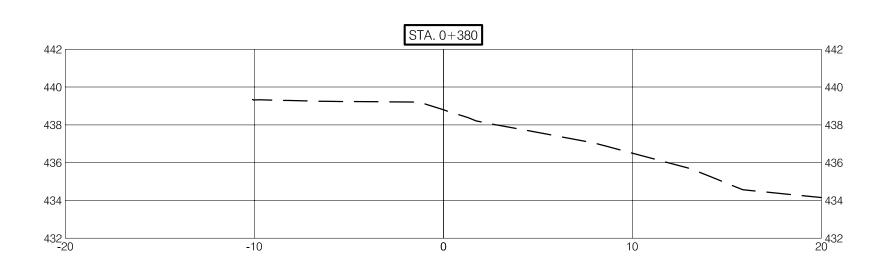
	10.1		
2	434 0		

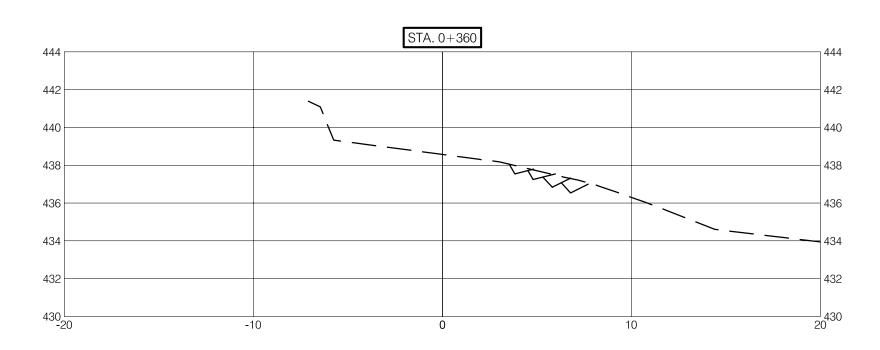

- 442

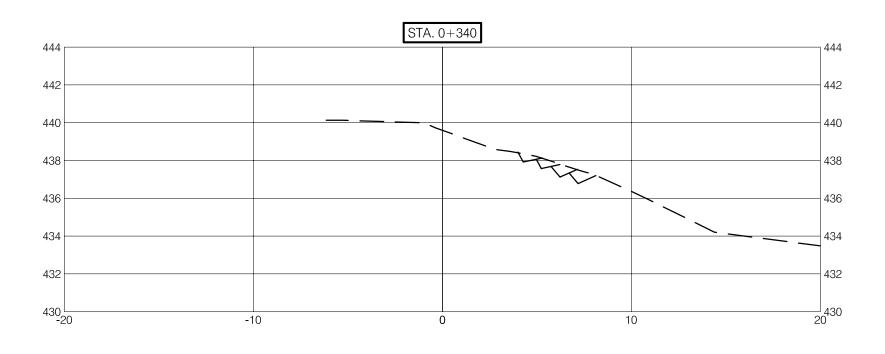
0<u>2 (1:200)</u>10m

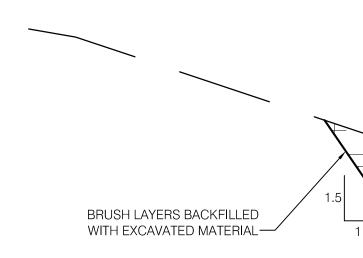
		442
		440
		438
		436
		434
1	0 2	432 0

		442
		440
		438
		436
		434
1	0 2	432 0

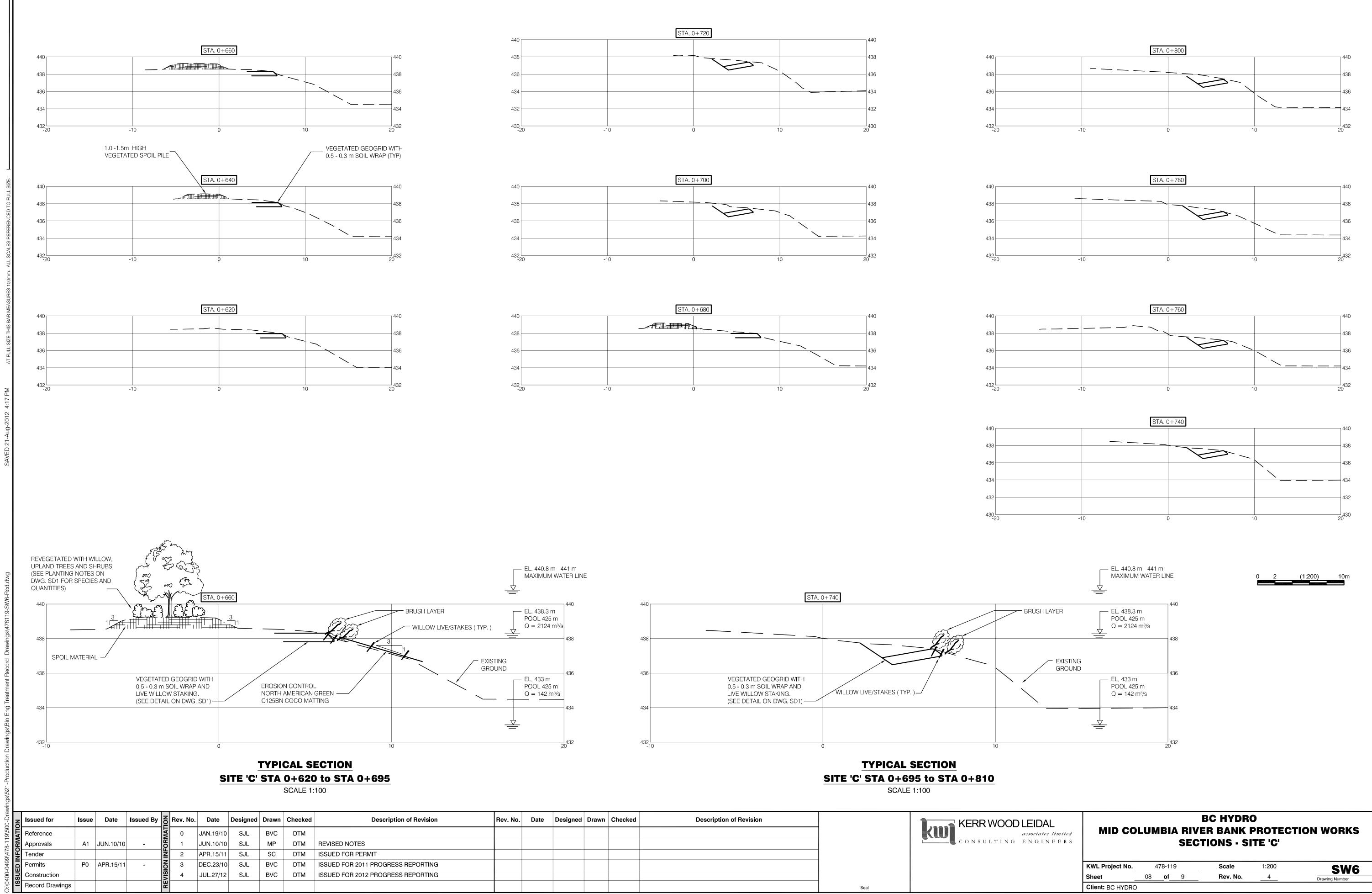

		442
		440
		438
		436
		434
1	0 2	432 0
I	0 2	0

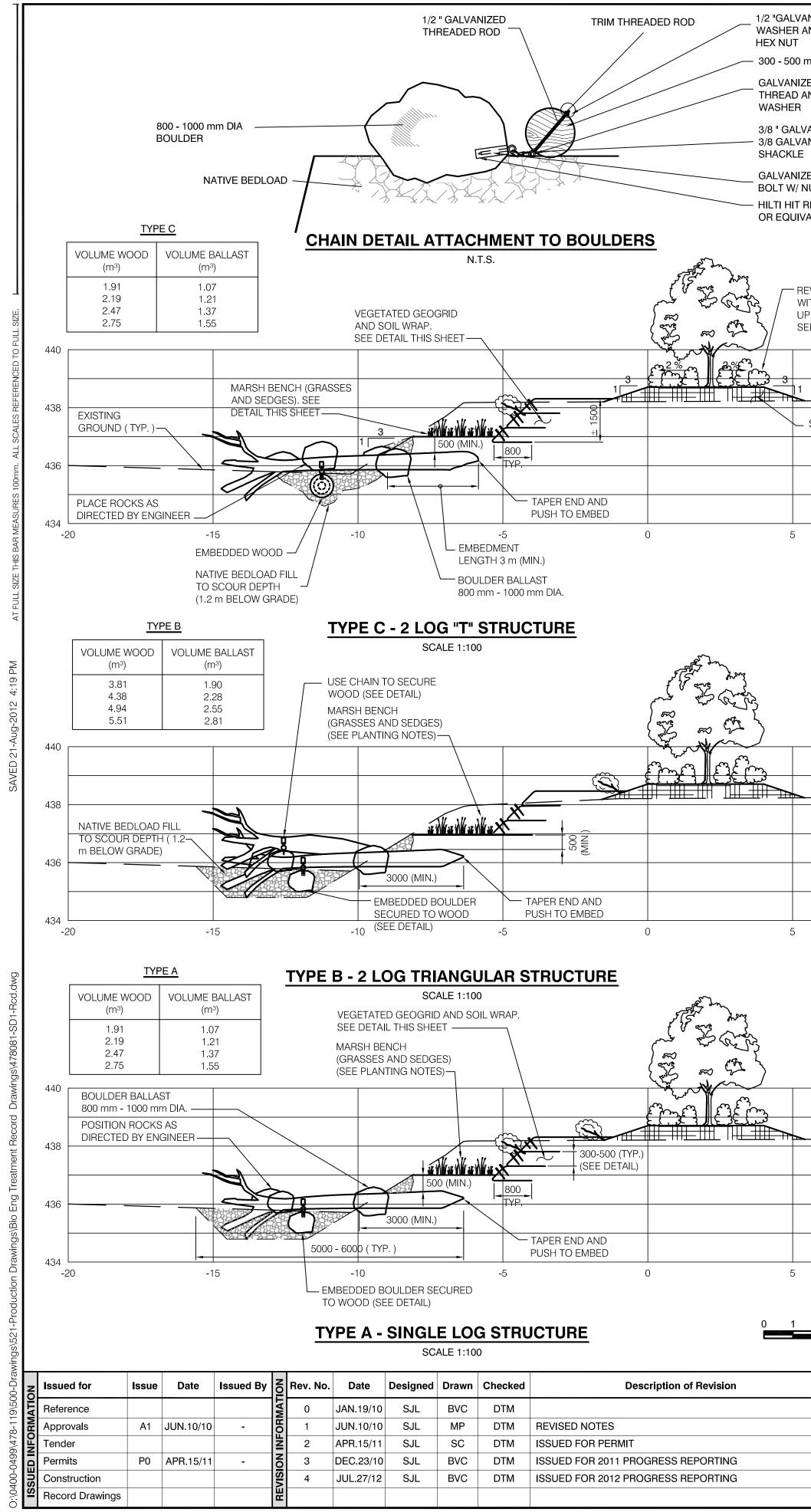



4 JUL.27/12 SJL BVC DTM ISSUED FOR 2012 PROGRESS REPORTING


Construction

Record Drawings

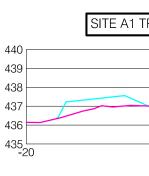


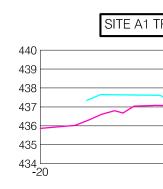


0 2 (1:200) 10m


0		Q = 142 M ³ /S	434 434 432		BRU: WITF	SH LAYERS BACKFILLED EXCAVATED MATERIAL 1.5 1 6 1.5 1 6 1300 TYPICAL BRUS	SH LAYER	
Rev. No	o. Date	Designed Drawn	n Checked D	escription of Revision		SCALE 1:		
Rev. N	o. Date	Designed Drawn	n Checked Do	escription of Revision			BC HYDRO BC HYDRO MID COLUMBIA RIVER BANK PROTECTION WOR SECTIONS - SITE 'B'	KS N5

DODL
DOD L as ing e
NGE


VANIZED TIMBER	SUMMARY PLANT LIST				
R AND 1/2 " GALVANIZED T		SPECIES NAME	BY AREA/LENGTH	STOCK SIZE	CALCULATE QUANTITY BASED ON
00 mm DIA LOG	BIOENGINEERING PLANTINGS PACIFIC WILLOW	SALIX LUCIDA	30% BY BANK TREATMENT LENG	GTH 1.5 m CUTTING; 40 mm DIAMETER AT BUT 0.65 m CUTTING: 40 mm DIAMETER AT BL	
NIZED EYE NUT 3/8 " BODY, 1/2 " D AND 1/2 " GALVANIZED TIMBER	SHRUB WILLOWS	SALIX BARCLAYI, SALIX BEBBIANA, SALIX DRUMMONDIANA	70% BY BANK TREATMENT LENG	GTH 1.5 m CUTTING; 40 mm DIAMETER AT BUT 0.65 m CUTTING; 40 mm DIAMETER AT BU	TTCALCULATE BASED ON 20 LIVESTAKES PER LINEAR METER OF BRUSH LAYERJTTCALCULATE LIVESTAKES BY EITHER 30 cm OR 50 cm ON CENTRE SPACING BY AREA
R	BLACK COTTONWOOD MOUNTAIN ALDER RED-OSIER DOGWOOD	POPULUS TRICHOCARPA ALNUS INCANA CORNUS SERICEA	2 PLANTS PER 10 m OF BANK 5 PLANTS PER 10 m OF BANK	K 1 GAL	THESE ARE ADDED TO THE FOUNDATION PLANTINGS OF WILLOW (NEED LINEAR METERS THESE ARE ADDED TO THE FOUNDATION PLANTINGS OF WILLOW (NEED LINEAR METERS
LVANIZED BOLT LE	RIPARIAN (UPSLOPE) PLANTINGS		5 PLANTS PER 10 m OF BANK	< 1 GAL	THESE ARE ADDED TO THE FOUNDATION PLANTINGS OF WILLOW (NEED LINEAR METERS
	SHRUB WILLOWS MOUNTAIN ALDER	SALIX BARCLAYI, SALIX BEBBIANA, SALIX DRUMMONDIANA ALNUS INCANA	30% BY AREA 20% BY AREA	1 GAL 2 GAL	CALCULATE LIVESTAKES BY EITHER 30 cm OR 50 cm ON CENTRE SPACING BY AREA TREE SPACING IS 2.5 m ON CENTRE
// NUT 1/2 " X 6 " T RE500 ANCHOR ADHESIVE	PAPER BIRCH ENGLEMANN SPRUCE	BETULA PAPYRIFERA PICEA ENGELMANNII	15% BY AREA 5% BY AREA	2 GAL 2 GAL	TREE SPACING IS 2.5 m ON CENTRE TREE SPACING IS 2.5 m ON CENTRE
JIVALENT	WESTERN REDCEDAR RED-OSIER DOGWOOD THIMBLEBERRY	THUJA PLICATA CORNUS SERICEA RUBUS PARVIFLORUS	5% BY AREA 10% BY AREA 5% BY AREA	2 GAL 1 GAL 1 GAL	TREE SPACING IS 2.5 m ON CENTRE TREE SPACING IS 1.5 m ON CENTRE TREE SPACING IS 1.5 m ON CENTRE
	SASKATOONBERRY BLACK TWINBERRY	AMELANCHIER ALNIFOLIA LONICERA INVOLUCRATA	5% BY AREA 5% BY AREA	1 GAL 1 GAL	TREE SPACING IS 1.5 m ON CENTRE TREE SPACING IS 1.5 m ON CENTRE TREE SPACING IS 1.5 m ON CENTRE
REVEGETATED SPOIL AREA	MARSH BENCH PLANTINGS SEDGES	CAREX LENTICULARIS,	85% BY AREA	25 mm DIAMETER PLUG	SEDGE AND GRASS SPACING IS 30 CM ON CENTRE
WITH 2 GALLON WILLOW, UPLAND TREES AND SHRUBS.	COMMON SPIKE RUSH	CAREX UTICULATA, CAREX AQUATALIS ELEOCHARIS PALUSTRIS	5% BY AREA	25 mm DIAMETER PLUG	SEDGE AND GRASS SPACING IS 30 CM ON CENTRE
SEE PLANTING NOTES.	REDTOP	AGROSTIS GIGANTEA	10% BY AREA	25 mm DIAMETER PLUG	SEDGE AND GRASS SPACING IS 30 CM ON CENTRE
	NOTES ON PLANTING:				
438	GENERAL PLANTING			ETATED GEOGRID - SEEDING	
SPOIL MATERIAL	2. SUPPLIES OF WILLOW LIVE STAK	MED TO BCSLA / BCNTA LANDSCAPE STANDARD. ES AND BRUSH LAYERS APPROVED BY PROJECT BIOLOGIST PRI ND TIMING OF LADVEST	OR TO ON-SITE REC	LAMATION MIX OR AN APPROVED SUBSTITUTE AT	P PRIOR TO CLOSURE WITH RICHARDSON'S COASTAL THE MANUFACTURES RECOMMENDED RATE OF APPLICATION.
100		ND TIMING OF HARVEST. /ESTAKES PROTECTED FROM DESSICATION DURING STORAGE A PROVAL FROM PROJECT BIOLOGIST.	ND INSTALLATION. 1. IN	<u>ISH BENCH</u> ISTALLED 25 mm DIAMETER PLUGS OF SEDGES, RU RARIAN - SEEDING, SHRUBS AND TREE PLANTINGS	
436	VEGETATED GEOGRID - WILLOW BF		1.1/	AND 2 GALLON SHRUBS (SEE PLANTING LIST FOR	LISTS OF SPECIES) PLANTED AT SPACING GIVEN IN PLANT LIST. PARIAN PLANTING ZONE WITH RICHARDSON'S INTERIOR
	DIAMETER AT TOP. 2. ALL WILLOW WAS SALIX LUCIDA,	SALIX BARCLAYI, SALIX BEBBIANA, SALIX DRUMMONDIANA OR S	SUBSTITUTE 3. CL	EGETATION MIX, AT THE MANUFACTURER'S SPECI LUMP CONSISTED OF 10 TO 15 PLANT IN IRREGUL	FIED RATES (OR APPROVED EQUAL).
434	APPROVED BY PROJECT BIOLOGIST 3. AVERAGE OF 20 STEMS PER MET		1. WI	<u>DIFIED BRUSH LAYERS</u> ILLOW FOR MODIFIED BRUSH LAYERS WAS 1.5 m l IMUM DIAMETER AT TOP.	LONG AND 40 mm MINIMUM DIAMETER AT BUTT AND 20 mm
		ARIABLE ANGLES (HORIZONTALLY WITHIN WRAP STRUCTURE) TO	PROMOTE ROOT 2. AL		SALIX BEBBIANA, SALIX DRUMMONDIANA OR SUBSTITUTE
	VEGETATED GEOGRID - WILLOW LIV	<u>VE STAKES</u> AS 0.65 m LONG AND 40 mm MINIMUM DIAMETER AT BUTT AND 20	3. AV	VERAGE OF 20 STEMS PER METER. ODIFIED BRUSH LAYERS STAGGERED TO CREATE /	A CHECKERBOARD PATTERN.
	,	SALIX BARCLAYI, SALIX BEBBIANA, SALIX DRUMMONDIANA OR S		ISTALLED MODIFIED BRUSH LAYERS AT VARIABLE	ANGLES (HORIZONTALLY) TO PROMOTE ROOT DEVELOPMENT.
		ANGLES; DEPTH INTERSECTED AT LEAST BRUSH LATER INTERFA			
	VEGETATED GEOGRID - WILLOW FA	500 mm SPACINGS IN EACH WRAP AND STAGGERED BETWEEN \$ <u>ASCINE</u> /IINIMUM OF 1.0 m LONG AND 40 mm MINIMUM DIAMETER AT BUT			
	MINIMUM DIAMETER AT TOP.	LOW (SALIX HOOKERIANA) OR SUBSTITUTE APPROVED BY PROJ			
		ERLAPPING WILLOW STEMS WITH A MINIMUM OF 10 STEMS AT AN D OR SIMILAR BIODEGRADABLE SUBSTITUTE EVERY 300 mm.	NY POINT.		
440					
438	WILLOW LIVE STAKES (TYP.)			WILLOW LIVE STAKES (TY	(P.) GRADED SOIL SLOPE
	EROSION CONTROL MATTING (NORTH AMERICAN GREEN			EROSION CONTROL MAT (NORTH AMERICAN GREE	
436	C125 BN OR EQUIVALENT)		PLANTING SOIL AT TH SPECIFIED SEED MIX	C125 BN OR EQUIVALENT	
			TED WRAP SOIL WITH QUIPMENT OR EXCAVATOR	_	FACE WITH SPECIFIED SEED MIX
434	WILLOW BRUSH LAYERS 20 STEMS/m IN A GRID 2	BUCKET	(NOT OVER-COMPACT), PENETRATE WITH A LIVE		COMPACTED WRAP SOIL WITH HAND EQUIPMENT OR EXCAVATOR
	1500 mm LONG (TYP.) _ 1		Y HAMMERING WITH A	7P.)	BUCKET (NOT OVER-COMPACT), ABLE TO PENETRATE WITH A LIVE STAKE BY HAMMERING WITH A
	NATIVE BEDLOAD			WILLOW BRUSH LAYERS	MALLET
	± 200 Ø WILLOW FASCINE STAKED			20 STEMS/m IN A GRID 1500 mm LONG (TYP.)2	
	INTO PLACE WITH 600 mm (MIN.) LONG CONSTRUCTION STAKES		D PLANTING		
	AND PARTIALLY BURIED	SOIL ARC			PROVIDED PLANTING
440	ENSE BRUSH LAYERS (LIVE WILLOW CUTTII	NGS)			BRUSH LAYERS
D	ENSITIES AS PER PLANTING NOTES. WILLC PECIES WAS PACIFIC OR AS DIRECTED IN F	ý ví		VEGETATED GEOGRID (SOIL WRAP): EF MAT C125BN NORTH AMERICAN GREE	
438 BI	RUSH LAYER WAS 100 mm THICK WITH THE RUSH CUTTING BEING A MINIMUM 1500 mn	n /		DENSE BRUSH LAYERS (LIVE WILLOW (CUTTINGS).
L(ONG AND 30 Ø AT THE BUTT			DENSITIES AS PER PLANTING NOTES. SPECIES WAS HOOKER'S OR AS DIREC FIELD, BRUSH LAYER WAS 100 mm THI	
436			2^{1}	THE BRUSH CUTTING BEING A MINIMU LONG AND 30 Ø AT THE BUTT	
	VE STAKE GEOGRID FACE WITH		_		
434 C/	/c. STAKES WERE 1200 mm LONG ND MEASURE 30 Ø (MIN.) AT THE	· ·		LIVE STAKE GEOGRID FACE WITH WILLOW LIVE STAKES AT 300 mm c/c.	
	UTT WITH MIN. PENETRATION OF T LEAST ONE BRUSH LAYER			STAKES WERE 1200 mm LONG AND MEASURE 30 Ø (MIN.) AT THE BUTT WITH MIN. PENETRATION OF AT	
l (1:100) 5m		800 (TYP.)		LEAST ONE BRUSH LAYER	800 (TYP.)
	EGETATED GEOGRID - SO	OIL WRAP WITH WILLOW FASCINE (SE	ECTION) DETAIL	VEGETATED	GEOGRID - SOIL WRAP (SECTION) DETAIL
Doy No. Date D.	igned Drewn Checked	N.T.S.			N.T.S. BC HYDRO
Rev. No. Date Desi	igned Drawn Checked	Description of Revision	kwi	KERR WOOD LEIDAL associates limited	BC HYDRO MID COLUMBIA RIVER BANK PROTECTION WORKS
			in	CONSULTING ENGINEERS	STANDARD DETAILS
				ĸ	WL Project No. 478-119 Scale AS SHOWN CD4
				SI	heet 09 of 9 Rev. No. 4 Drawing Number
			Seal	C	lient: BC HYDRO



Appendix B CLBWORKS#35 Survey and Cross-section Drawings

kwl.ca

SITE A1 UPSTREAM CONTROL-3 (REBAR4283)

-10

SITE A1 UPSTREAM CONTROL-2 (REBAR4284)

-10

SITE A1 UPSTREAM CONTROL-1 (REBAR4285)

-10

1441

440

439

438

437

436

435

440

439

438

437

436

435

434

¬ 44⁻

440

439

438

437

436

435

_____434 0

441

440

439 -

438 -

437

436 -

435 <u>–</u> -20

441 440

439

438 -

437

436

435 -

434 └── -20

441

440

439

438 -

437 -

436 -

435 -

434 <u>–</u> -20

			0 2	2 (1:200) 10m			
Issued for Issue Date Issued I	Rev. No. Date Designed	d Drawn Checked Description of Revision	Rev. No. Date Designed Drawn Checked	Description of Revision		KERR WOOD LEIDAL	REVELSTOKE BIOENGINEERING
reference Image: Construction reference Image: Construction record Drawings Image: Construction	0 JUL.27/12 DTM	BVC ISSUED FOR 2012 REPORTING				KUI Activitie associates limited	SITE WORKS
Approvals	NO NO					CONSULTING ENGINEERS	SITE A1 SECTIONS
Tender	Ľ						
Permits	NO						KWL Project No. 478.119 Scale 1:200 CM
Construction	NISI						KWL Project No. 478.119 Scale 1:200 SW Sheet 1 of 4 Rev. No. 0 Drawing Number
Record Drawings	HAR IN THE REPORT OF THE REPOR				Seal		Client: BC HYDRO

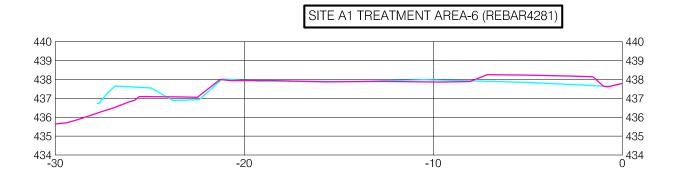
SITE A1 TREATMENT AREA-4 (REBAR4279)

		440
		439
		438
	/	437
		436
		435
-1	0 0)

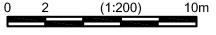
SITE A1 TREATMENT AREA-3 (REBAR4278)

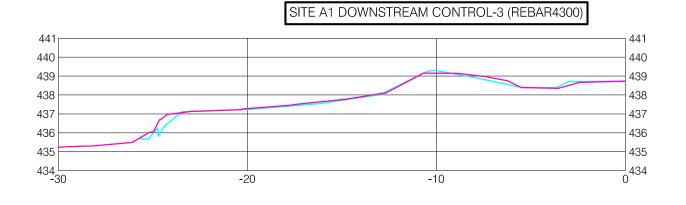
		440 ן
		439
		438
		437
		436
		435
		434
-1	0 ()

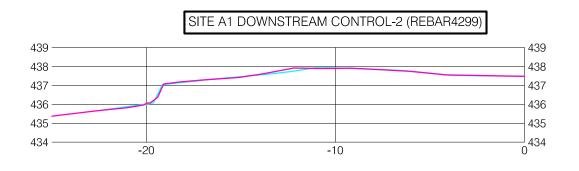
	SITE A1 TREATMENT AREA-7 (REBAR4282)	
440		440
439		439
438		438
437		437
436		436
435	-10	435 0

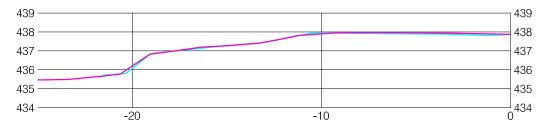

- 436

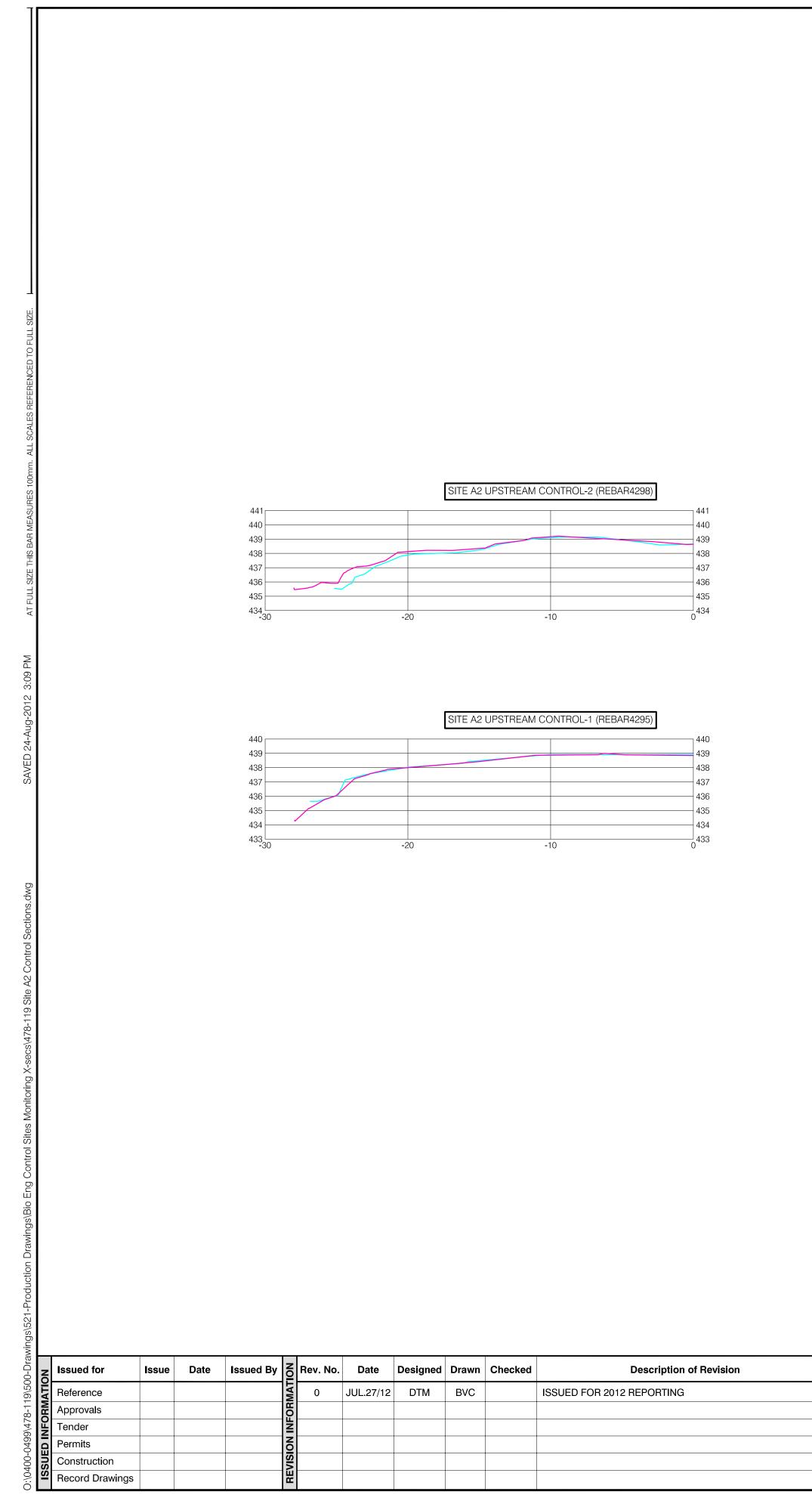
435

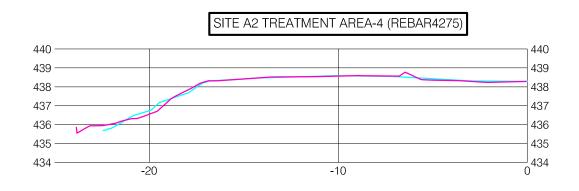

434

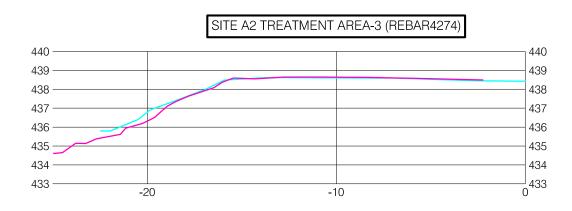

SITE A1 TREATMENT AREA-1 (REBAR4276)


		441
		440
		439
		438
		437
		436
		435
		434
-1	0 0) '0 '

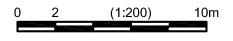

	SITE A1 TREATMENT AREA-5 (REBAR4280)	
440		440
439		439
438		438
437		437
436		436
435	-10	435 0





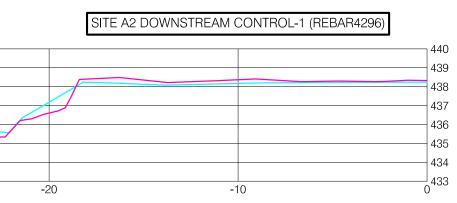


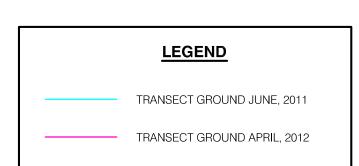
LEGEND							
	TRANSECT GROUND JUNE, 2011						
	TRANSECT GROUND APRIL, 2012						



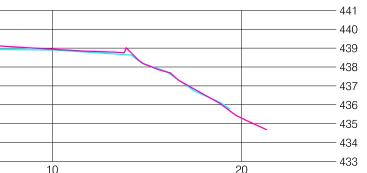
	SITE A2 TREATMENT AREA-2 (REBAR4273)	
440		440
439		439
438		438
437		437
436		436
435		435
434	-10	434

	SITE A2 TRE	ATMENT AREA-1 (REBAR427	'2)
441			441
440			440
439			439
438			438
437 —			437
436			436
435			435
434			434
433	-20	-10	433

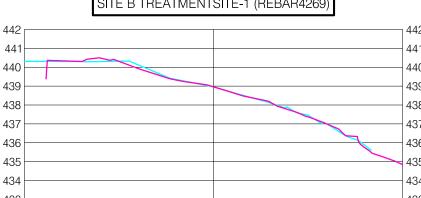

Rev. N	No.	Date	Designed	Drawn	Checked	Description of Revision		KERR WOOD LEIDAL		REVELSTO			NG
								Associates limited CONSULTING ENGINEERS			ITE WORI E A2 SECT		
										JIL	AZ JEVI		
									KWL Project No.	478.119	Scale	1:200	SW2
									Sheet	2 of 4	Rev. No.	0	Drawing Number
							Seal		Client: BC HYDRO				

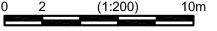

440 ———
439
438 ———
437 ———
436
435
434 ———

440	
439	
438	
437	
436	
435	
100	


SITE A2 DOWNSTREAM CONTROL-2 (REBAR4297	')
---	----

		440 ך
		439
		438
		437
_		436
		435
		434
-2	-10	0

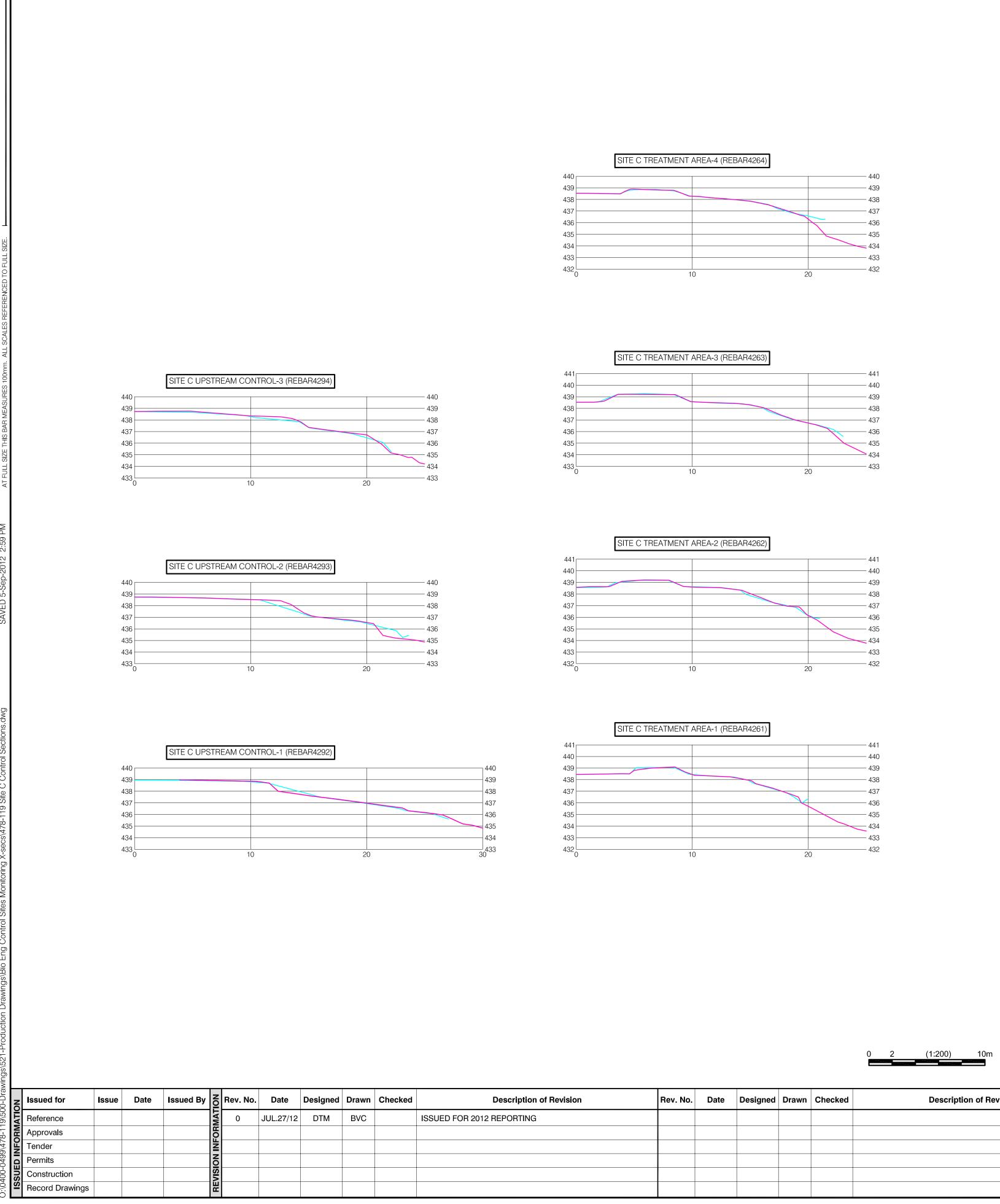


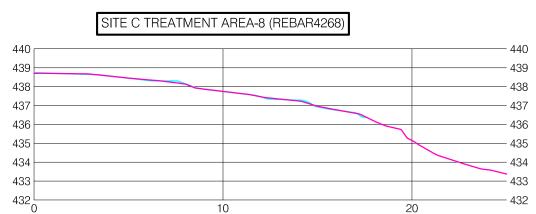

CED TO FULL SIZE.														
SIZE THIS BAR MEASURES 100mm. ALL SCALES REFERENC							SITE E	B UPSTREAM CONTROL	3 (REBAR4286)	20		SITE B TREA	TMENTSITE-3 (REBAR4271)	$ \begin{array}{c} 442 \\ 441 \\ 440 \\ 439 \\ 438 \\ 437 \\ 436 \\ 435 \\ 434 \\ 433 \\ 20 \\ \end{array} $
SAVED 24-Aug-2012 2:26 PM AT FULL							SITE E	B UPSTREAM CONTROL	2 (REBAR4287)	20	442 441 440 439 438 438 437 436 435 434 433	SITE B TREA 442 441 440 439 438 437 436 435 434 0	TMENTSITE-2 (REBAR4270)	$ \begin{array}{c} 442 \\ 441 \\ 440 \\ 439 \\ 438 \\ 437 \\ 436 \\ 435 \\ 434 \\ 20 \\ \end{array} $
8-119 Site B Control Sections.dwg							SITE E	B UPSTREAM CONTROL	-1 (REBAR4288)	20		SITE B TREA 442 441 440 439 438 437 436 435 434 433 0	TMENTSITE-1 (REBAR4269)	$ \begin{array}{c} 442 \\ 441 \\ 440 \\ 439 \\ 438 \\ 437 \\ 436 \\ 435 \\ 434 \\ 20 \\ \end{array} $
Drawings\Bio Eng Control Sites Monitoring X-secs\4														
-119\500-Drawings\521-Production	Issued for Issue Date Reference Approvals	Issued By	Rev. No. Date 0 JUL.27/12	Designed	Drawn Checked	Desc ISSUED FOR 2012 REPO	ription of Revision	Rev. No.	Date Designe	d Drawn Chec		(1:200) 10m Description of Revision		KERR WOOD LE
0:\0400-0499\478	Issued forIssueDateReferenceImage: ConstructionImage: ConstructionImage: ConstructionRecord DrawingsImage: ConstructionImage: ConstructionImage: Construction												Seal	

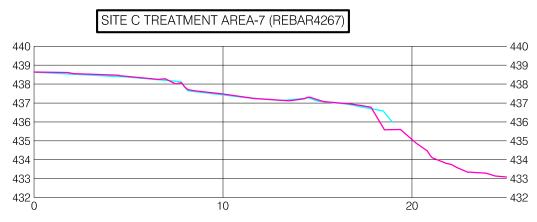
	SITE B TREATMENTSITE-3 (REBAR4271)	
442		442
441		441
440		440
439		439
438		438
437		437
436		436
435		435
434		434
433) 10 2	433 0

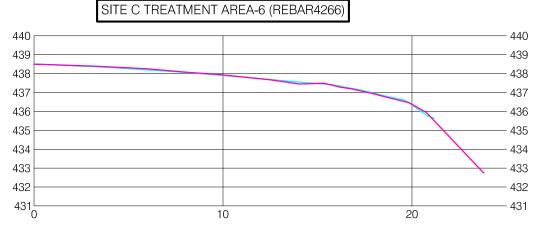
	SITE B TREATMENTSITE-2 (REBAR4270)	
442		442
441		441
440		440
439		439
438		438
437		437
436		436
435		435
434	D 10 20	434 0

<u>LEGEND</u>

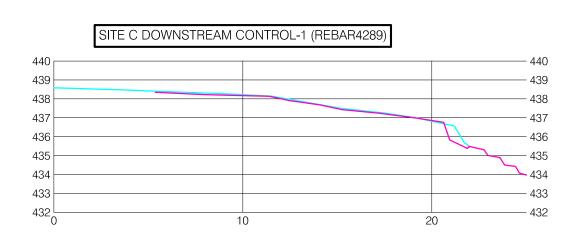

TRANSECT GROUND JUNE, 2011

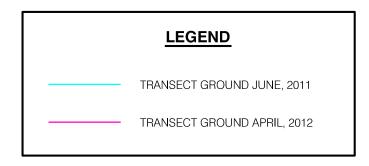

TRANSECT GROUND APRIL, 2012


)	LEIDAL									
	a.	sso	cic	ı t	es	li	m	ite	d	
	E	Ν	G	I	Ν	E	Е	R	S	


REVELSTOKE BIOENGINEERING SITE WORKS SITE B SECTIONS

KWL Project No.		478.119	9	Scale	1:200	– SW3
Sheet	3	of	4	Rev. No.	0	Drawing Number
Client: BC HYDRO						

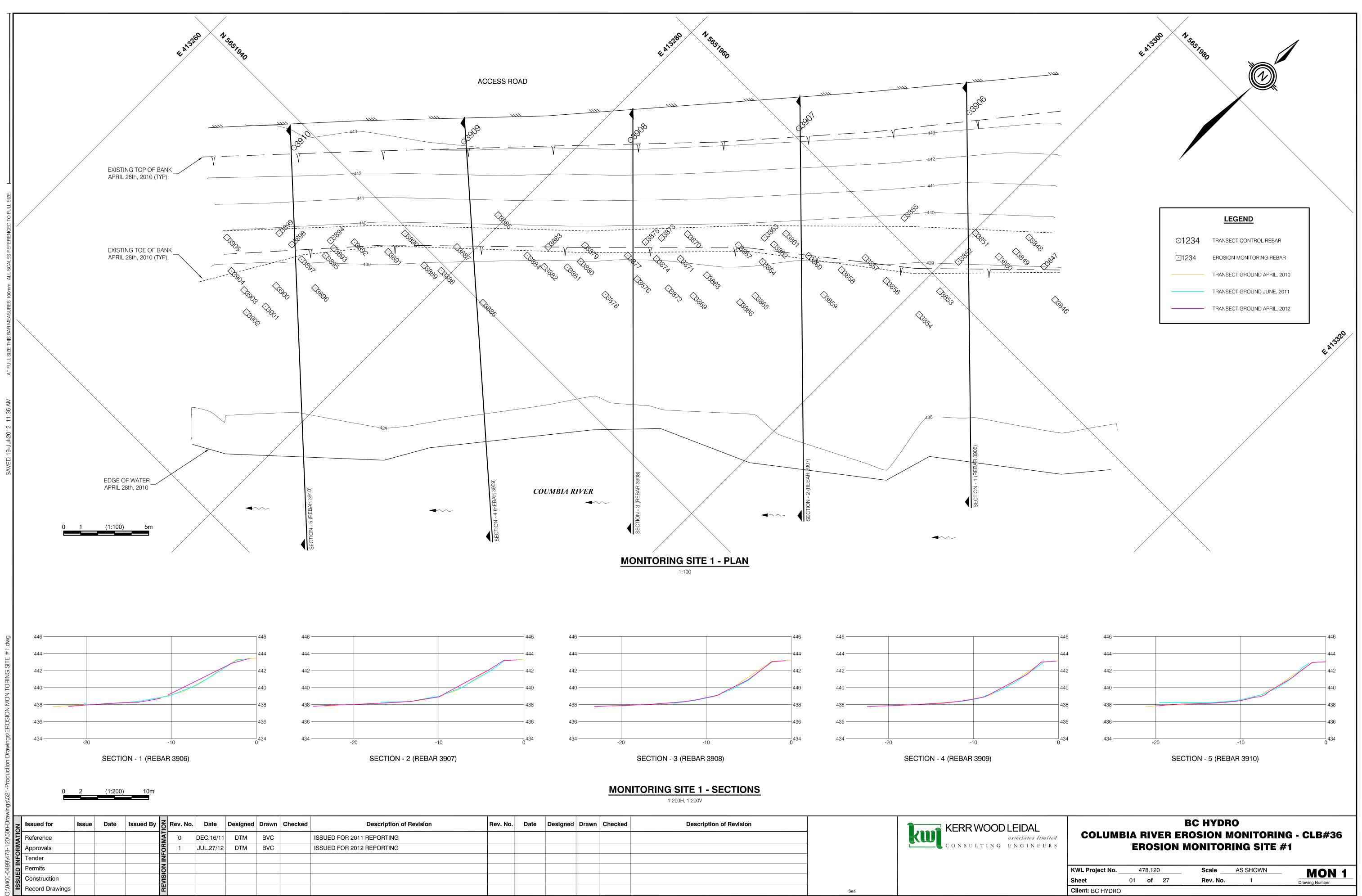


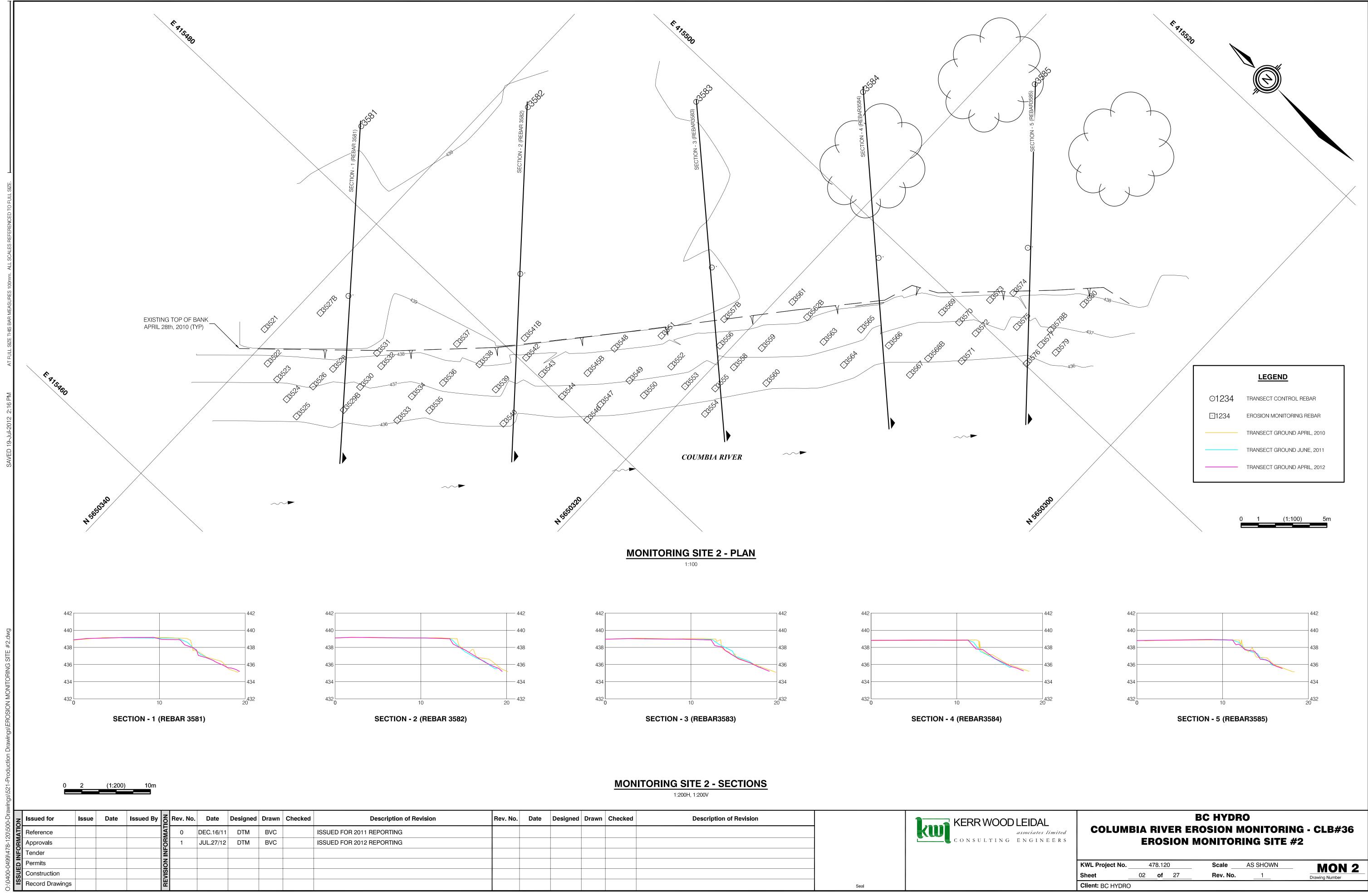


Rev. No.	Date	Designed	Drawn	Checked Description of Revision			REVELSTOKE BIOENGINEERING SITE WORKS		
						KERR WOOD LEIDAL associates limited consulting engineers			
					_	CONSULTING ENGINEERS	SITE C SECTIONS		
					_				
					_		KWL Project No. 478.119 Scale 1:200 SW4		
					-1		Sheet 4 of 4 Rev. No. 0 Drawing Number		
					Seal		Client: BC HYDRO		

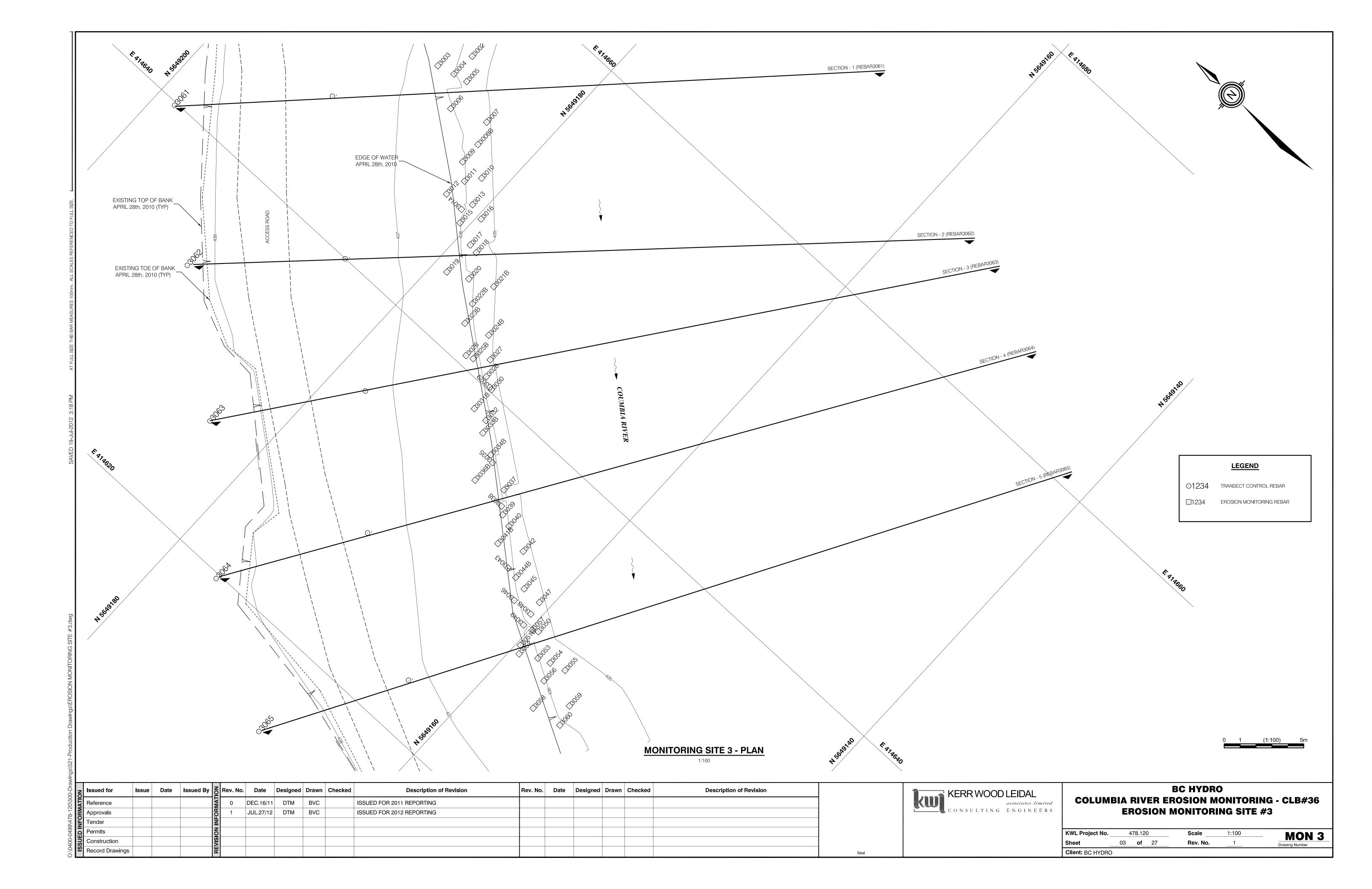
	SITE C DOWNSTREAM CO	ONTROL-3 (REBAR4291)	
440			440
439			439
438			438
437			437
436			436
435			435
434			434
433			433
432 <u>∟</u>	10		432

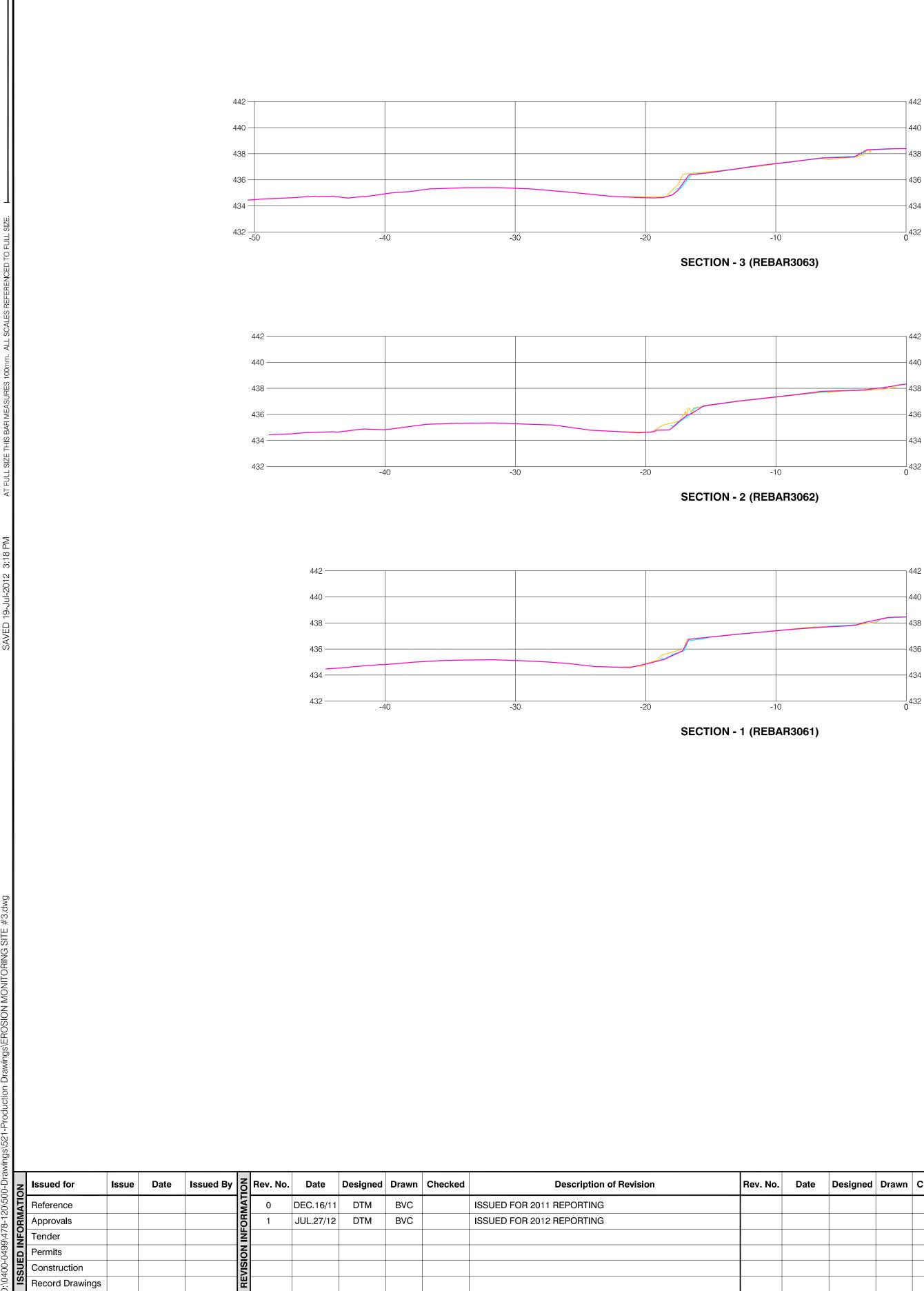
	SITE C DOWNSTREAM CONTROL-2	(REBAR4290)
440		440
439		
438		438
437		437
436		436
435		
434		434
433		433
432└── 0	10	20 432

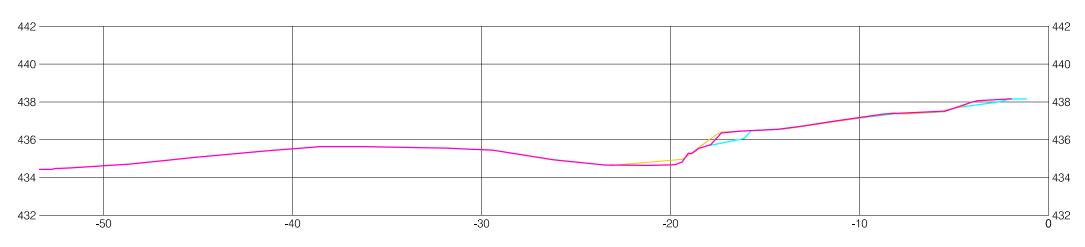


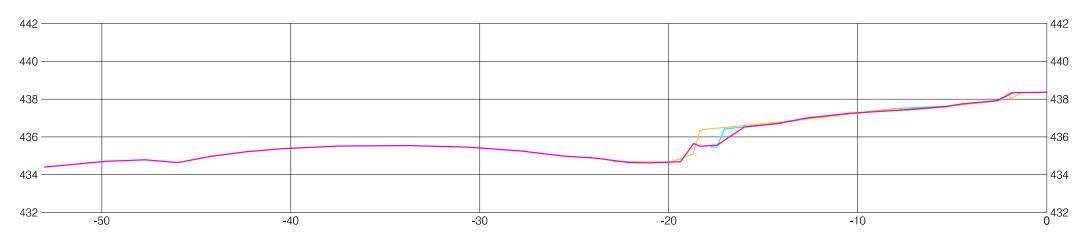


Appendix C CLBWORKS#36 Survey and Cross-section Drawings

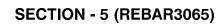


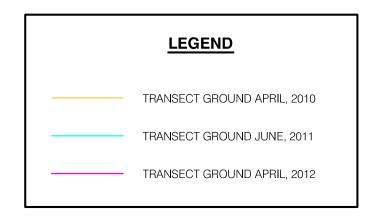

kwl.ca





Rev. No.	Date	Designed	Drawn	Checked Description of Revision		KERR WOO
						KU consultin
					Seal	
					Seal	

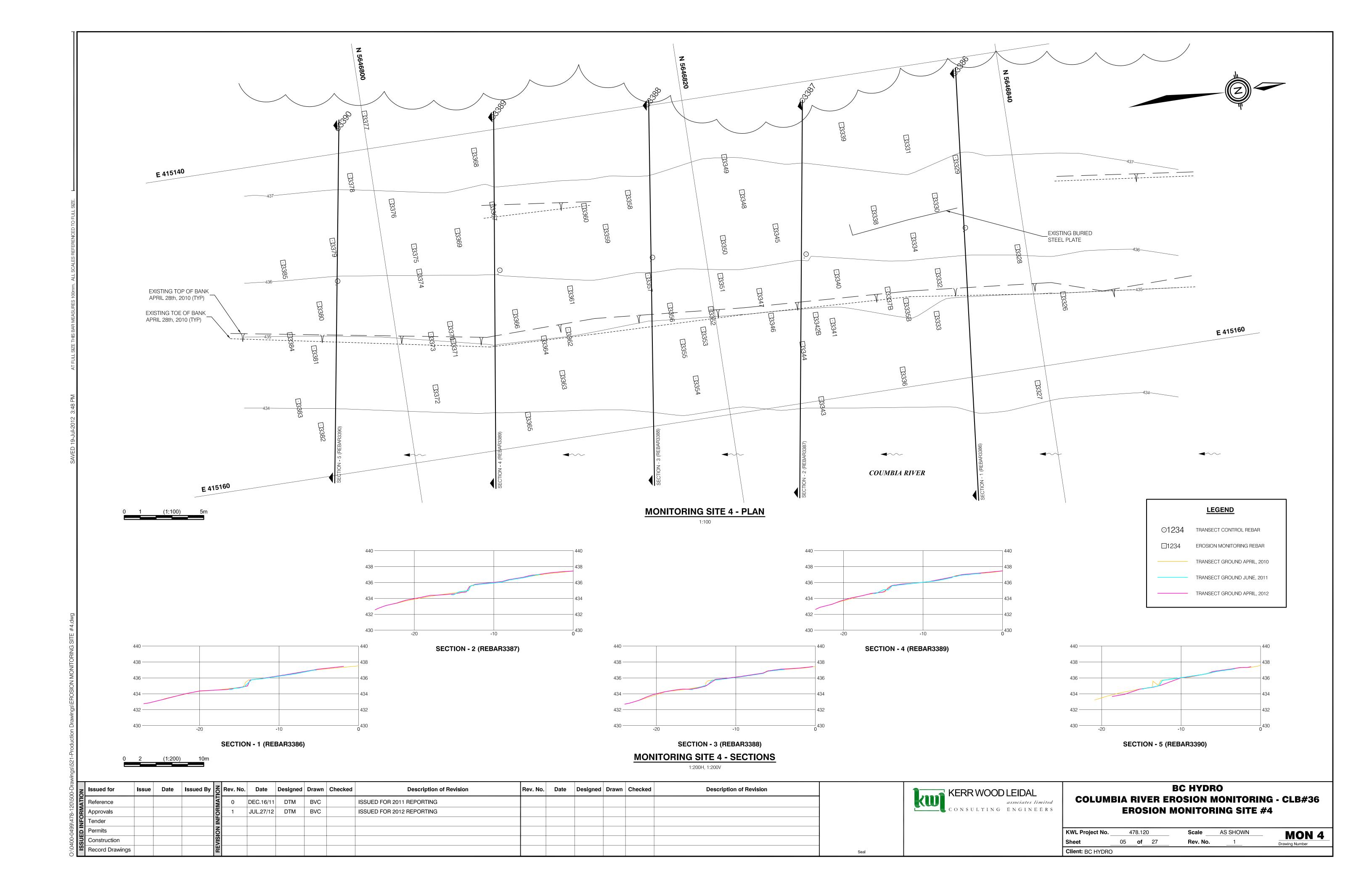


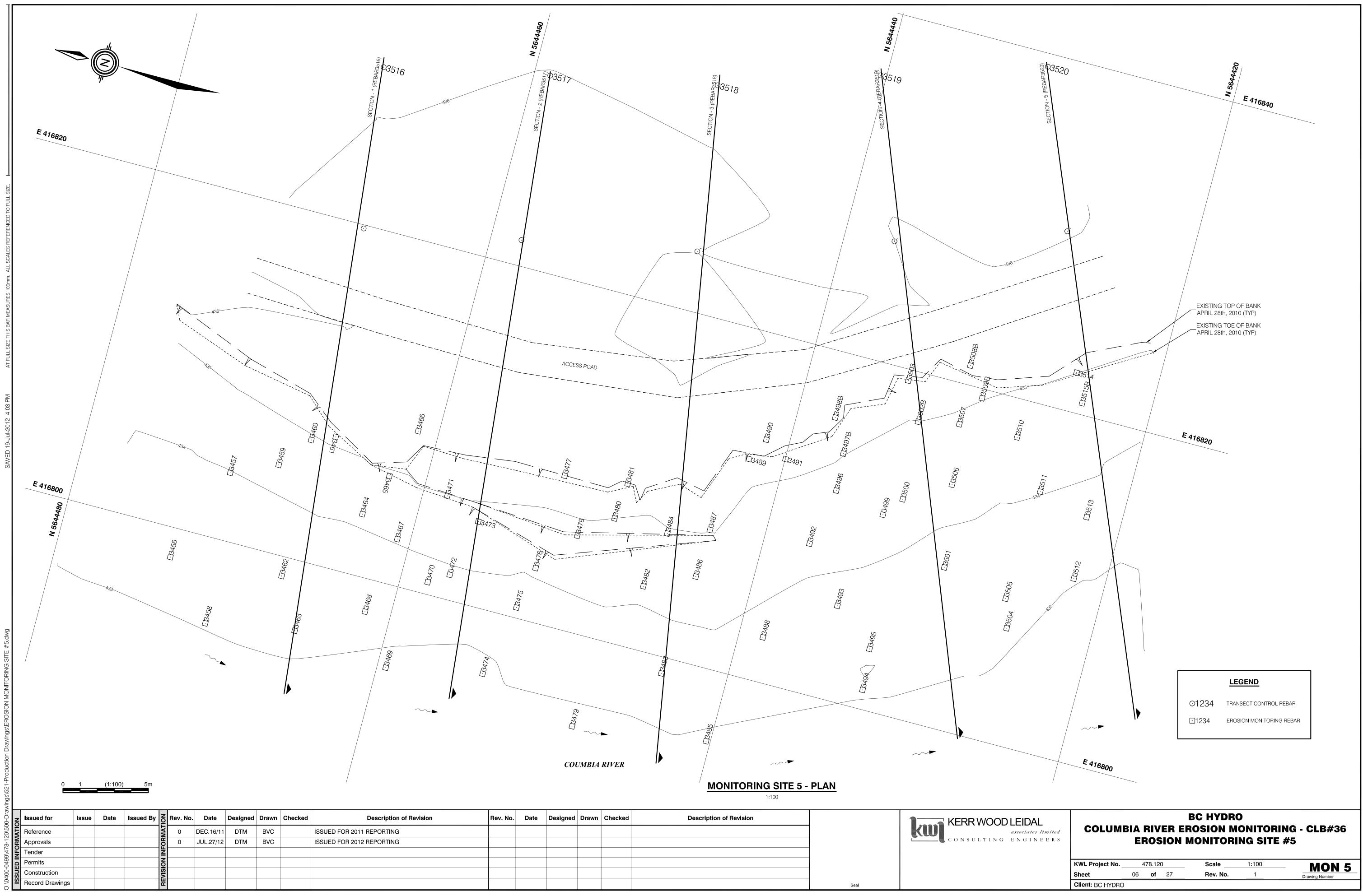

MONITORING SITE 3 - SECTIONS

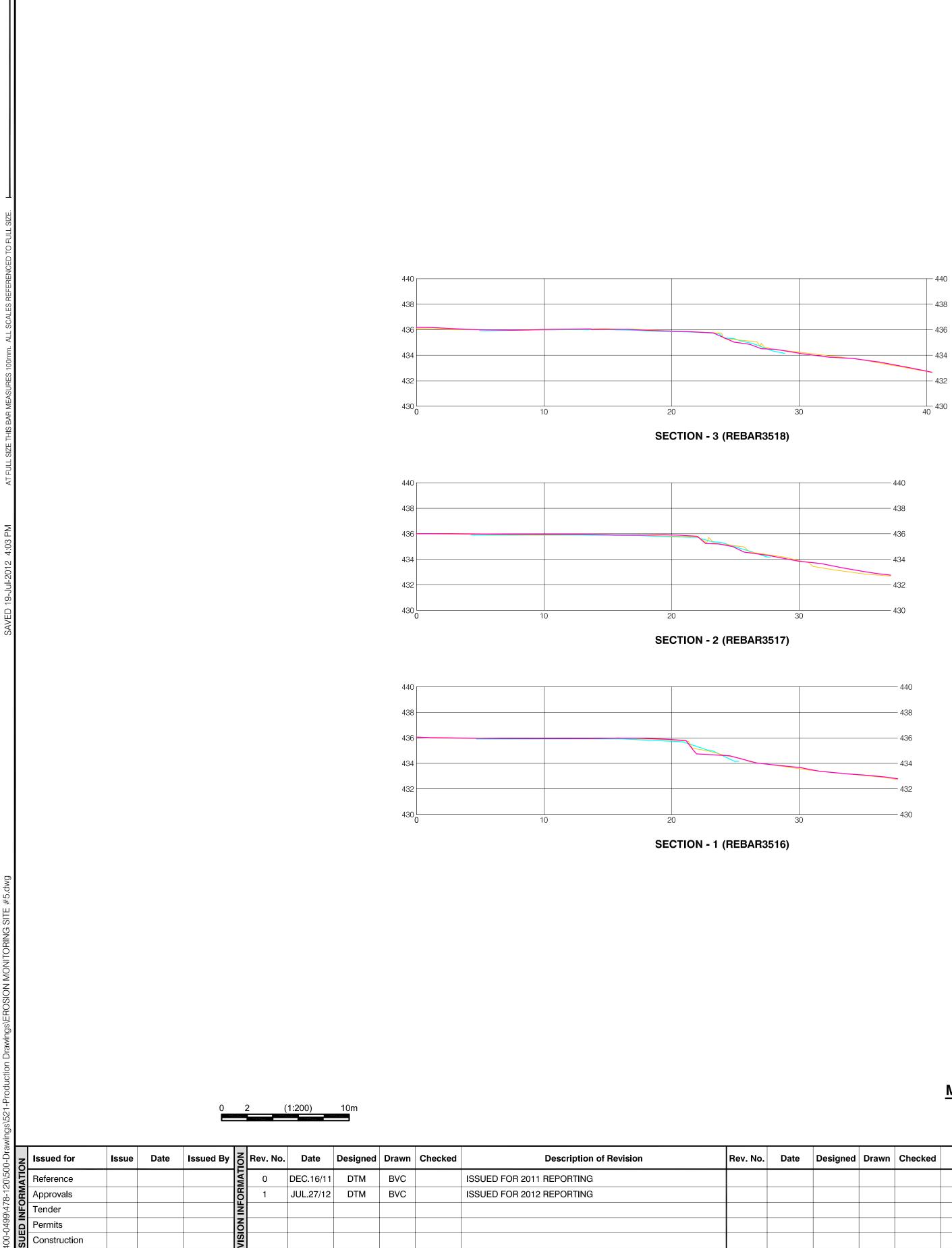
1:200H, 1:200V

Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		KERR WOOD LE
							KERR WOOD LE
							CONSULTING EN
						Seal	

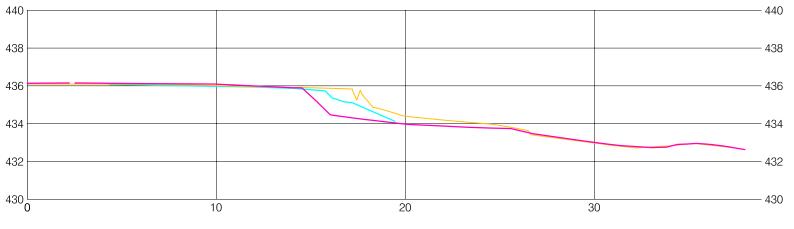
SECTION - 4 (REBAR3064)

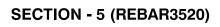


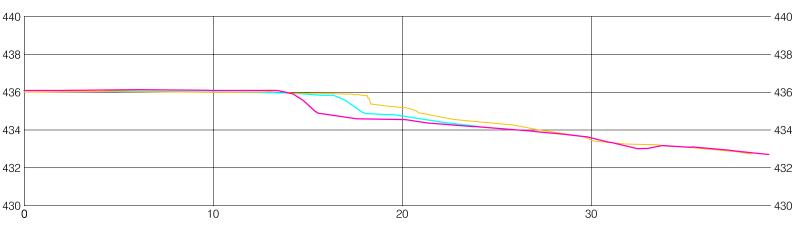

0	2	(1:2	10	m	


BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 **EROSION MONITORING SITE #3 - SECTIONS**

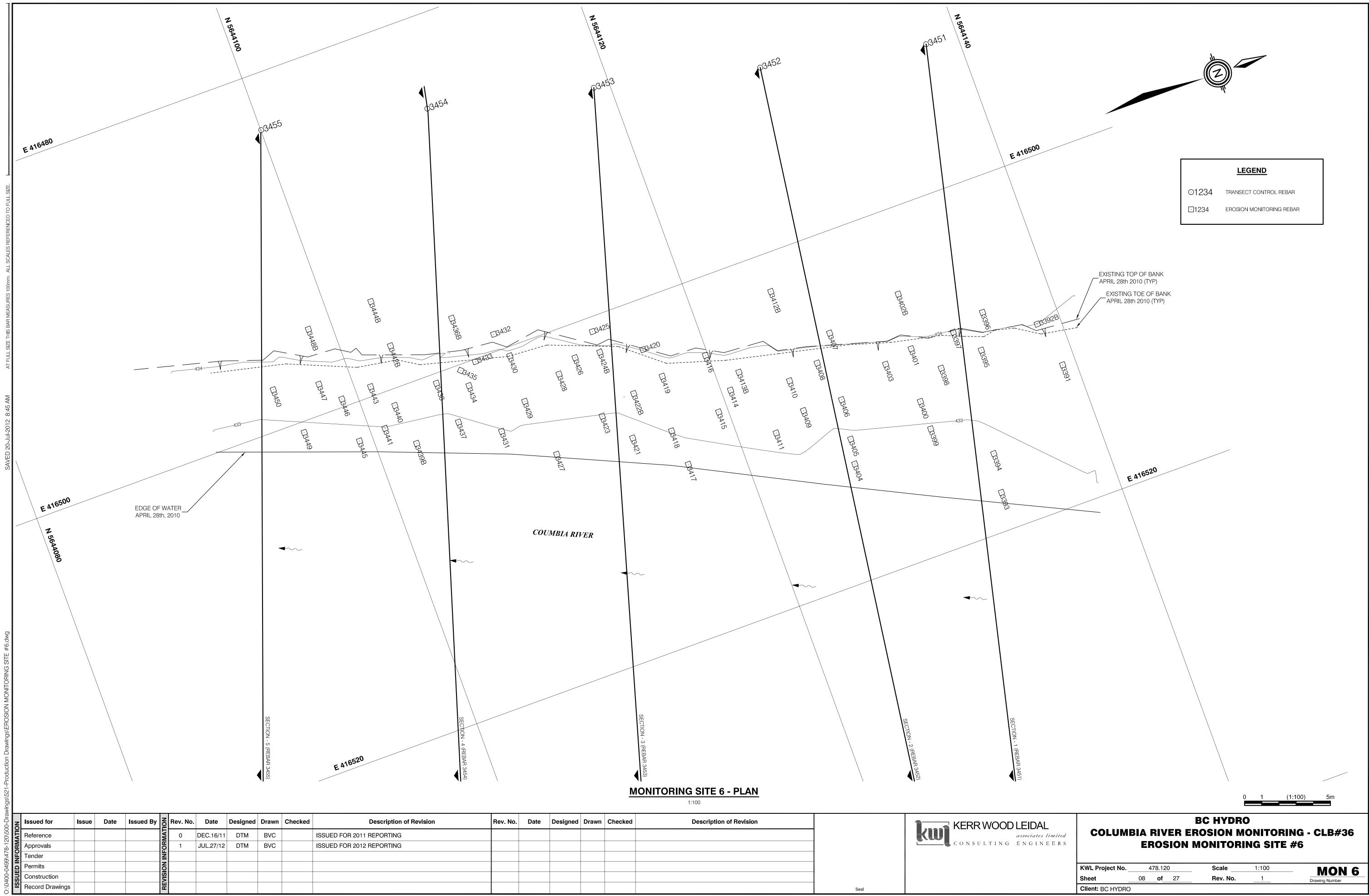
KWL Project No.	478.120			Scale	1:200 H 1:200 V	MON 3A
Sheet	04 of 27		Rev. No	1	Drawing Number	
Client: BC HYDRO						






Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		
							CONSULTING E
						-	
						Seal	

Record Drawings


SECTION -4 (REBAR3519)

MONITORING SITE 5 - SECTIONS

1:200H, 1:200V

Rev. No.	Date	Designed	Drawn Checked Description of Revision		KERR WOOD LEIDAL		BC HYDRO	
					KERR WOOD LEIDAL associates limited CONSULTING ENGINEERS			
					CONSULTING ENGINEERS	EROSION MONITO	DRING SITE #5 - SEC	
						KWL Project No. 478.120	Scale 1:200 H 1:200 V	MON 5A
						Sheet 07 of 27	Rev. No. 1	Drawing Number
				Seal		Client: BC HYDRO		

Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		kini kerr wood
							C O N S U L T I N G
						Seal	

 Issued for

 Reference

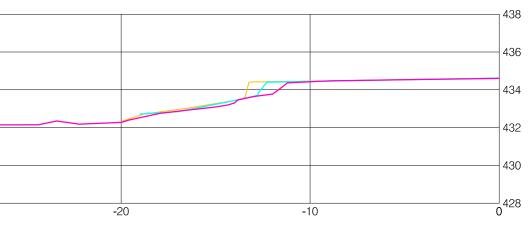
 Approvals

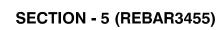
 Tender

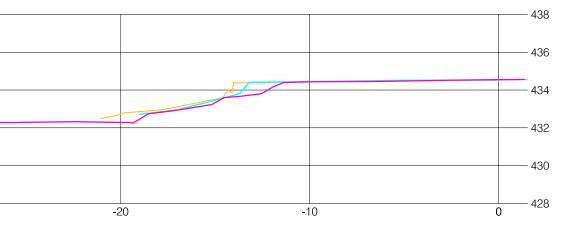
 Permits
 Construction Record Drawings

90 -{	30 -	70 - (60 -5	50 -4	40 -3	0
90 -8	30 - 7	70 -6	60 -5	50 -2	40 -3	0

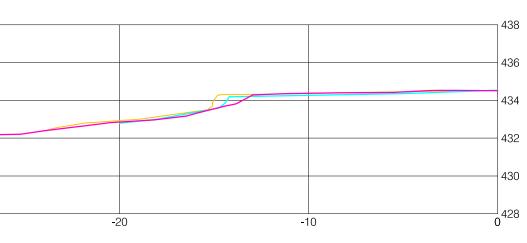
90	-8-	 70 -6	-50 -5	-4	40 -3	30

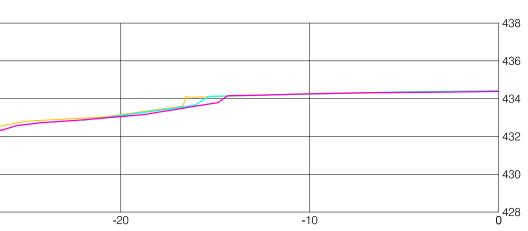

438						
400						
436 ———						
434						
432						
430						
428	-80	-70	-60	-50	-40	-30

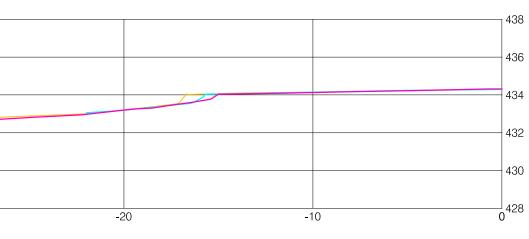

438						
400						
436						
434						
432						
430						
428						
	-80	-70	-60	-50	-40	-30


MONITORING SITE 6 - SECTIONS

		-
1:200	l, 1:200V	

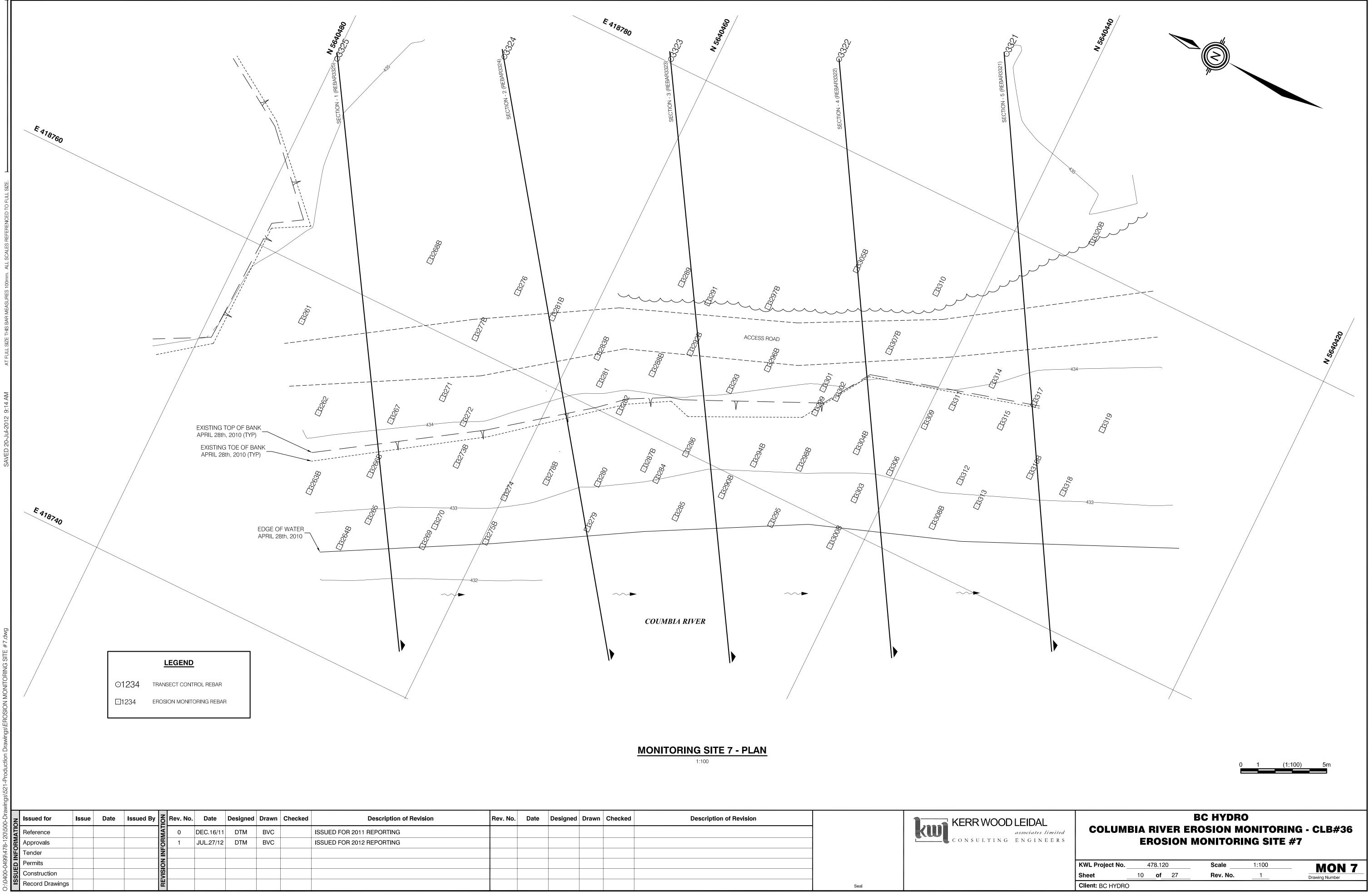

Rev. No.	Date	Designed D	Prawn Check	d Description of Revision		I KERR WOOD L
						KERR WOOD LE
 						CONSULTING E.
					Seal	



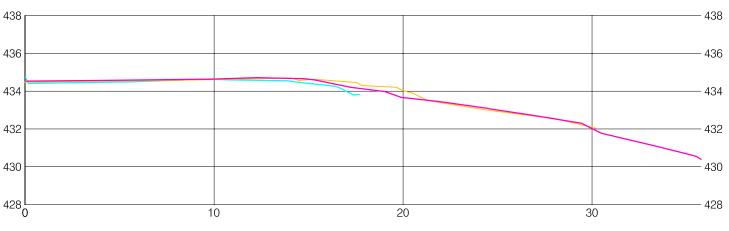


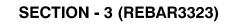
SECTION - 3 (REBAR3453)

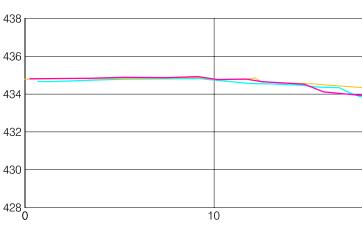
SECTION - 2 (REBAR3452)

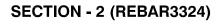


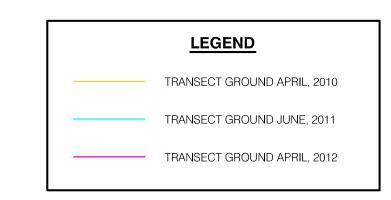
SECTION - 1 (REBAR3451)

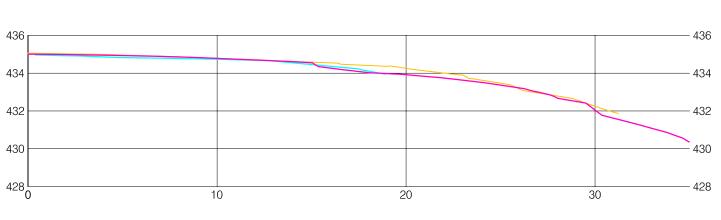

LEIDAL associates limited ENGINEERS

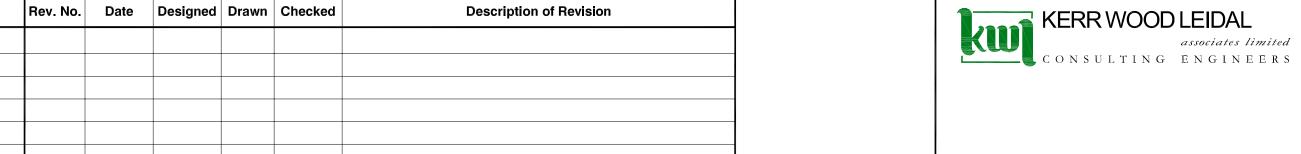

BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 **EROSION MONITORING SITE #6 - SECTIONS**


KWL Project No.	478	8.120		Scale	1:200 H 1:200 V	MON	61
Sheet	09	of	27	Rev. No.		Drawing Number	UA
Client: BC HYDRO							




Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		KERR WOOD LE
							KERR WOOD LE
							CONSULTING EN
						Seal	





SECTION - 1 (REBAR3325)

≧																
0-Dra	Issued for Reference Approvals Tender Permits Construction Record Drawing	Issue	Date	Issued By	Rev. N	lo. Date	Designe	Drawn	Checked	Description of Revision	Rev. No.	Date	Designed Drawn Checked	Description of Revision		
20\50	Reference				0 1	DEC.16/1	1 DTM	BVC	ISS	SUED FOR 2011 REPORTING						
8-12	Approvals			1		JUL.27/1	2 DTM	BVC	ISS	SUED FOR 2012 REPORTING						C O N
9\47	Tender															
049	Permits															
400	Construction															
0.0	Record Drawing	gs			RE										Seal	

MONITORING SITE 7 - SECTIONS

1:200H, 1:200V

438 🗆

436

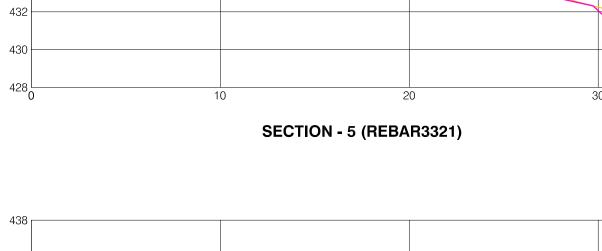
434

- 438

436

- 434

- 432


430

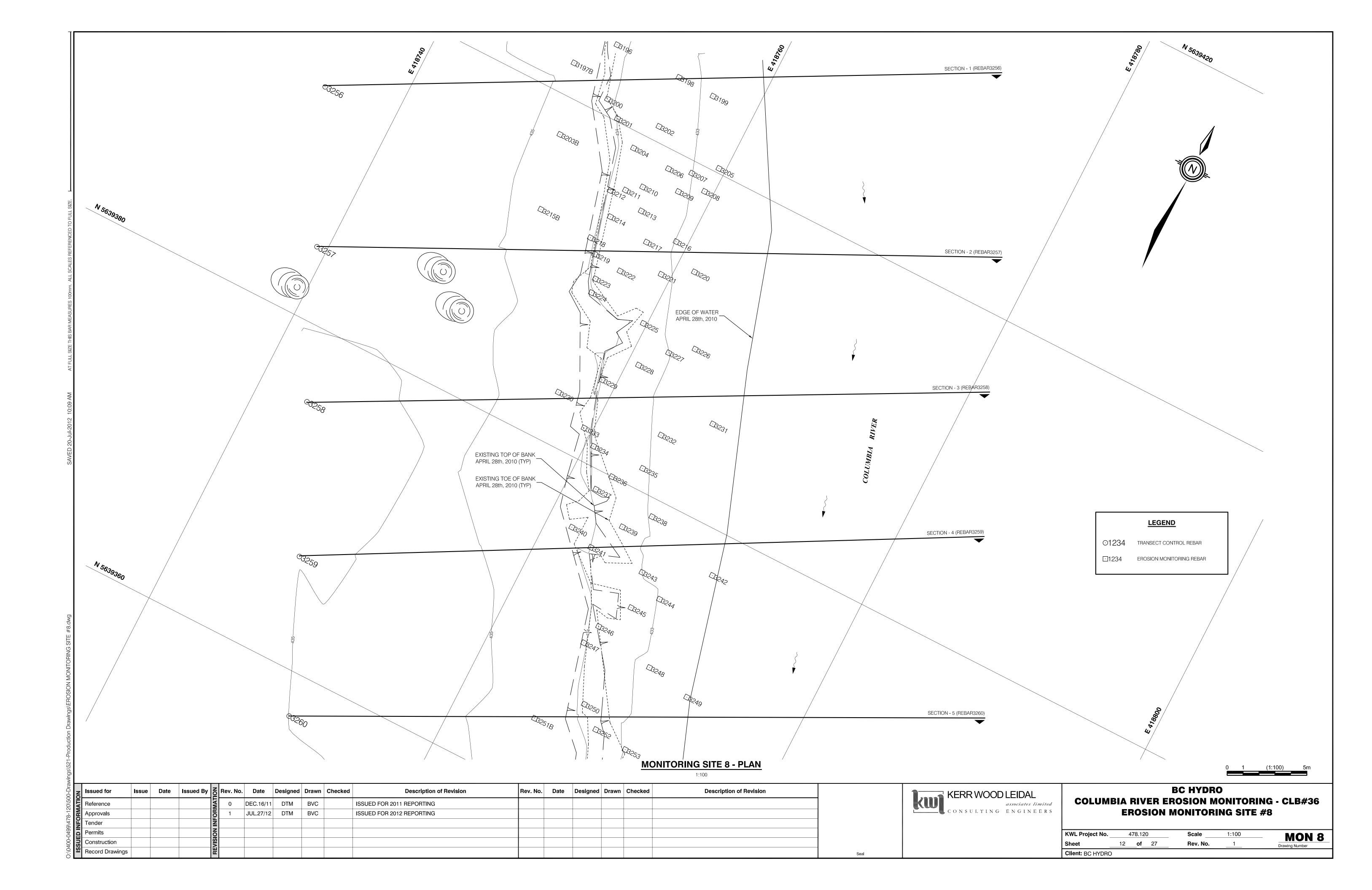
- 428

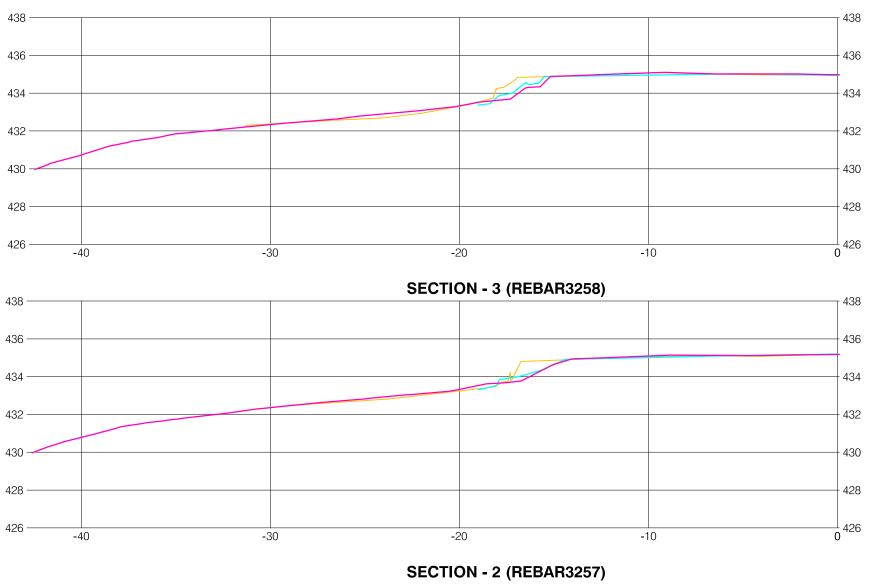
30

436 434 432 430 428 <u></u>0 30 20 10

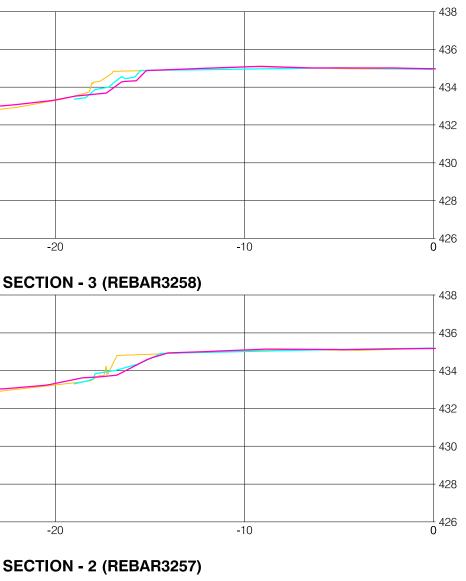
SECTION - 4 (REBAR3322)

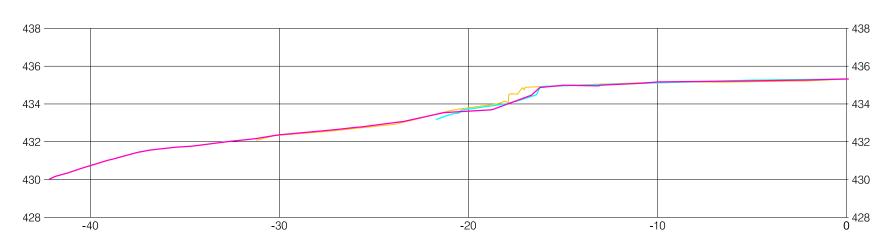
20

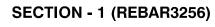

 438
 436
 434
 432
430
428
 438
 436
 434
 432
430
 428

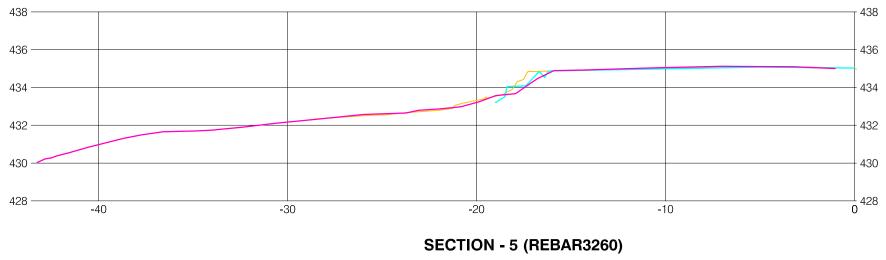

0	2	(1:2	200)	10r	n

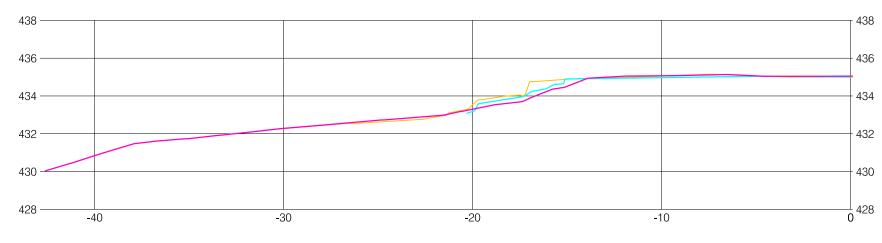
associates limited


BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 **EROSION MONITORING SITE #7 - SECTIONS**


KWL Project No. 478.120 Scale 1:200 H 1:200 V MON 7A Sheet 11 **of** 27 **Rev. No.** 1 Client: BC HYDRO







Issued for
Issued for Reference
Reference
Reference Approvals

≦ _					_				1				-						
00-Dra	Z Issued for	Issue	Date	Issued B	y <mark>Z</mark> F	lev. No.	Date	Designed	Drawn	Checked	Description of Revision	Rev. No.	Date	Desig	ned Draw	n Checke	Description of Revision		KERR WOOD LEI
20\50	Reference Approvals Tender Permits				MAT	0	DEC.16/11	DTM	BVC		ISSUED FOR 2011 REPORTING								KERR WOOD LEI
8-12	Approvals				Ю.	1	JUL.27/12	DTM	BVC		ISSUED FOR 2012 REPORTING								CONSULTING EN
9\47	Tender				I														
049	Permits				NO														
ġ	Construction				VISI														
⁷ 0	Record Drawings	5			RE													Seal	

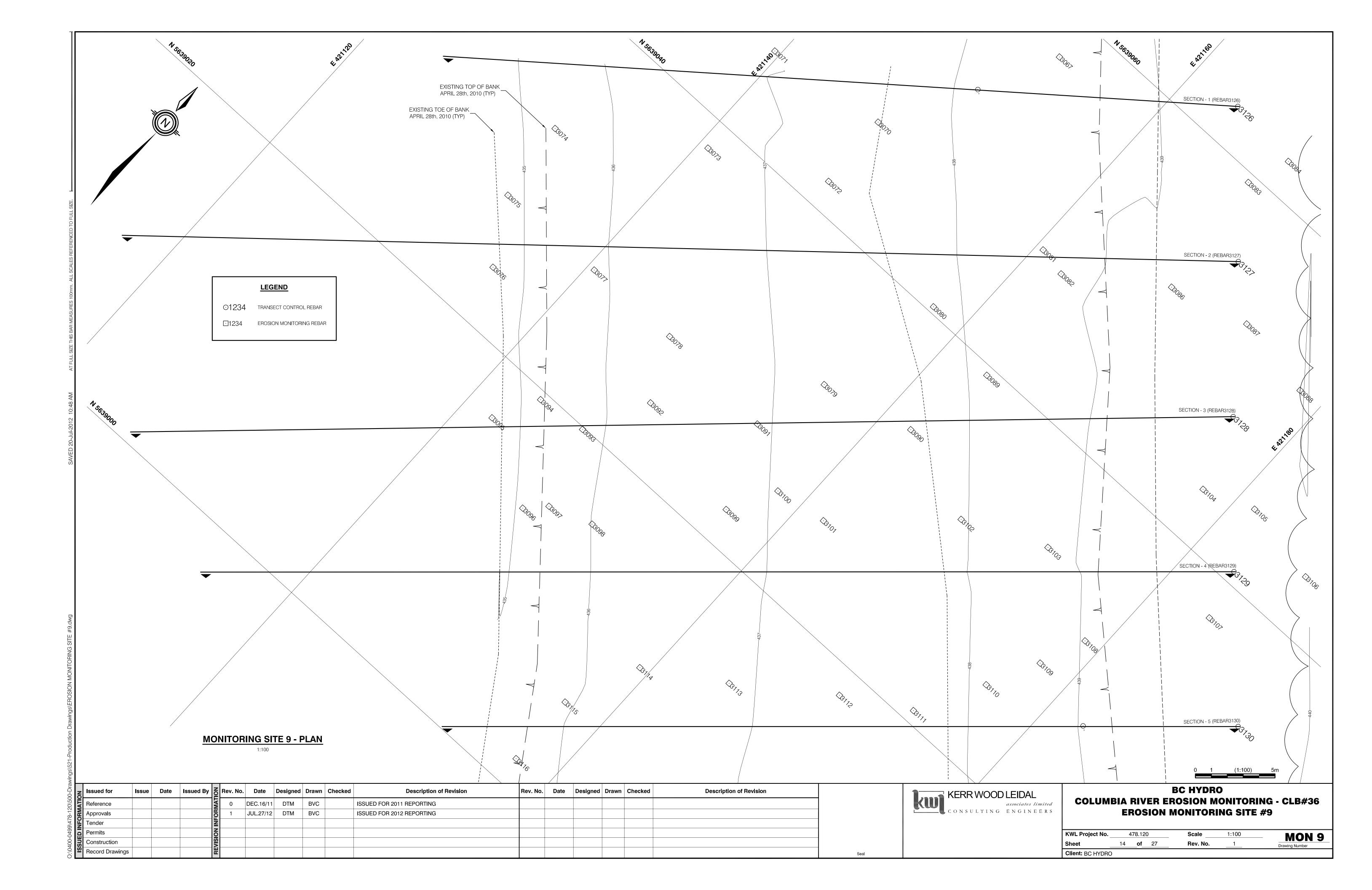
SECTION - 4 (REBAR3259)

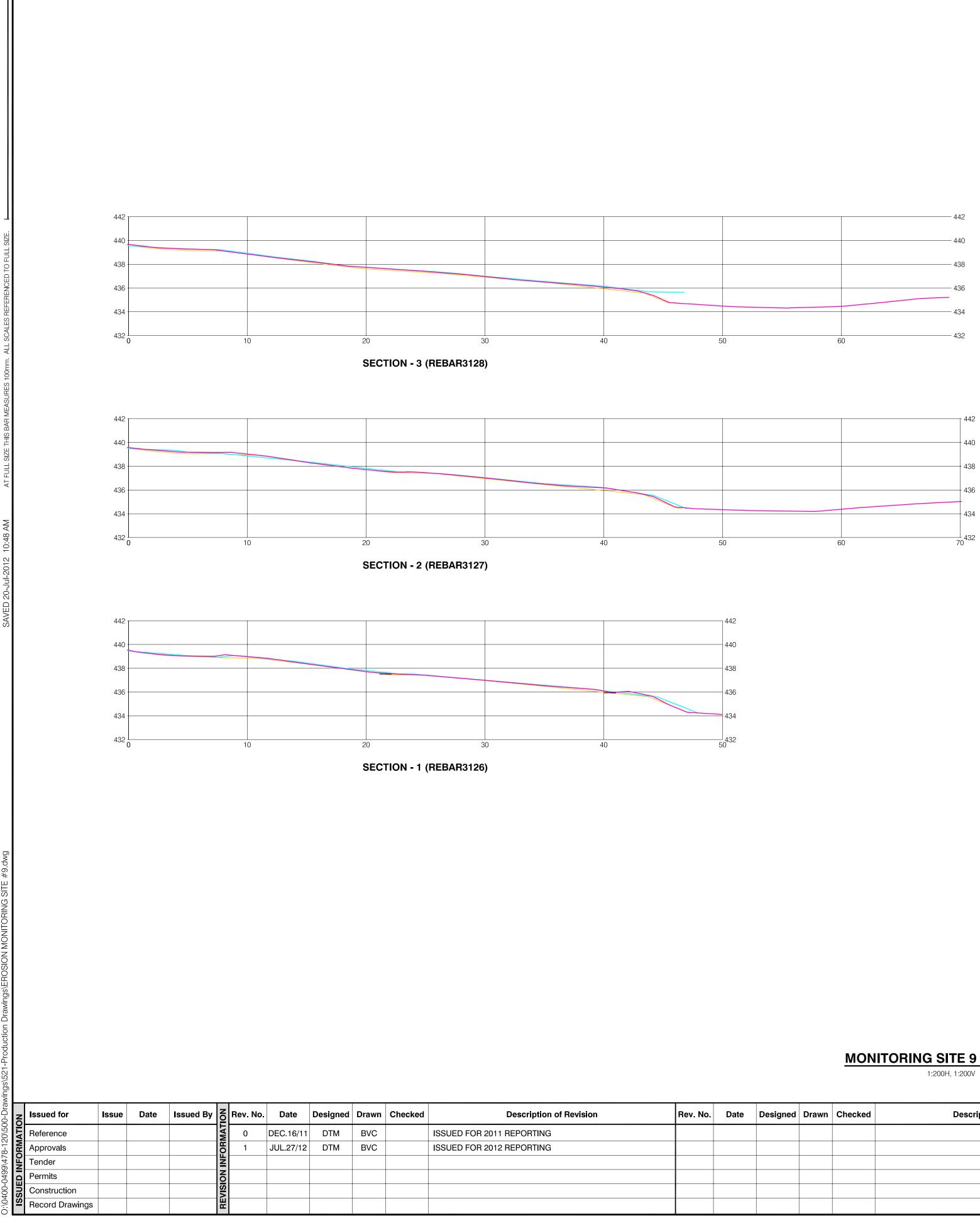
MONITORING SITE 8 - SECTIONS

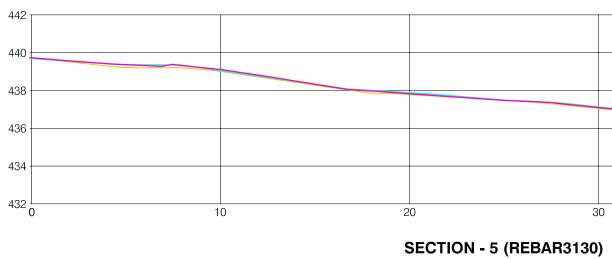
1:100

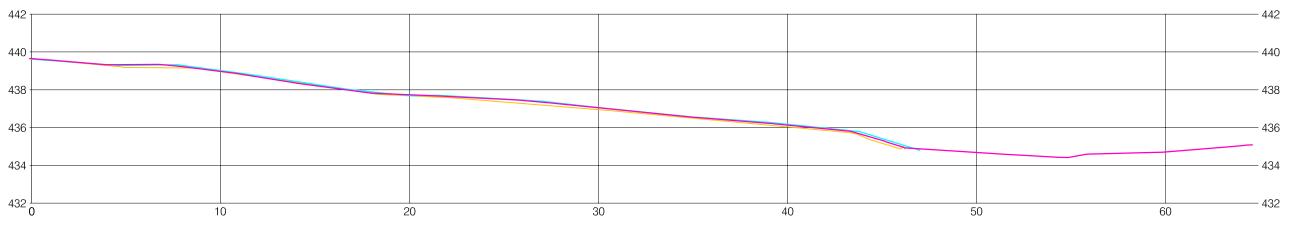
TRANSECT GROUND APRIL, 2010

TRANSECT GROUND JUNE, 2011


TRANSECT GROUND APRIL, 2012


0 2	2	(1:200)	10m




BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 **EROSION MONITORING SITE #8 - SECTIONS**

KWL Project No.	4	478.12	0	Scale	1:200 H 1:200 V	MON 8A		
Sheet	13	of	27	Rev. No.		Drawing Number		
Client: BC HYDRO								

SECTION - 4 (REBAR3129)

MONITORING SITE 9 - SECTIONS

Rev. No.	Date	Designed Drawn	Checked	Description of Revision		1
						KERR WOOD LEIDAL associates limited CONSULTING ENGINEERS
						CONSULTING ENGINEERS
					Seal	

BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 **EROSION MONITORING SITE #9 - SECTIONS**

Rev. No.

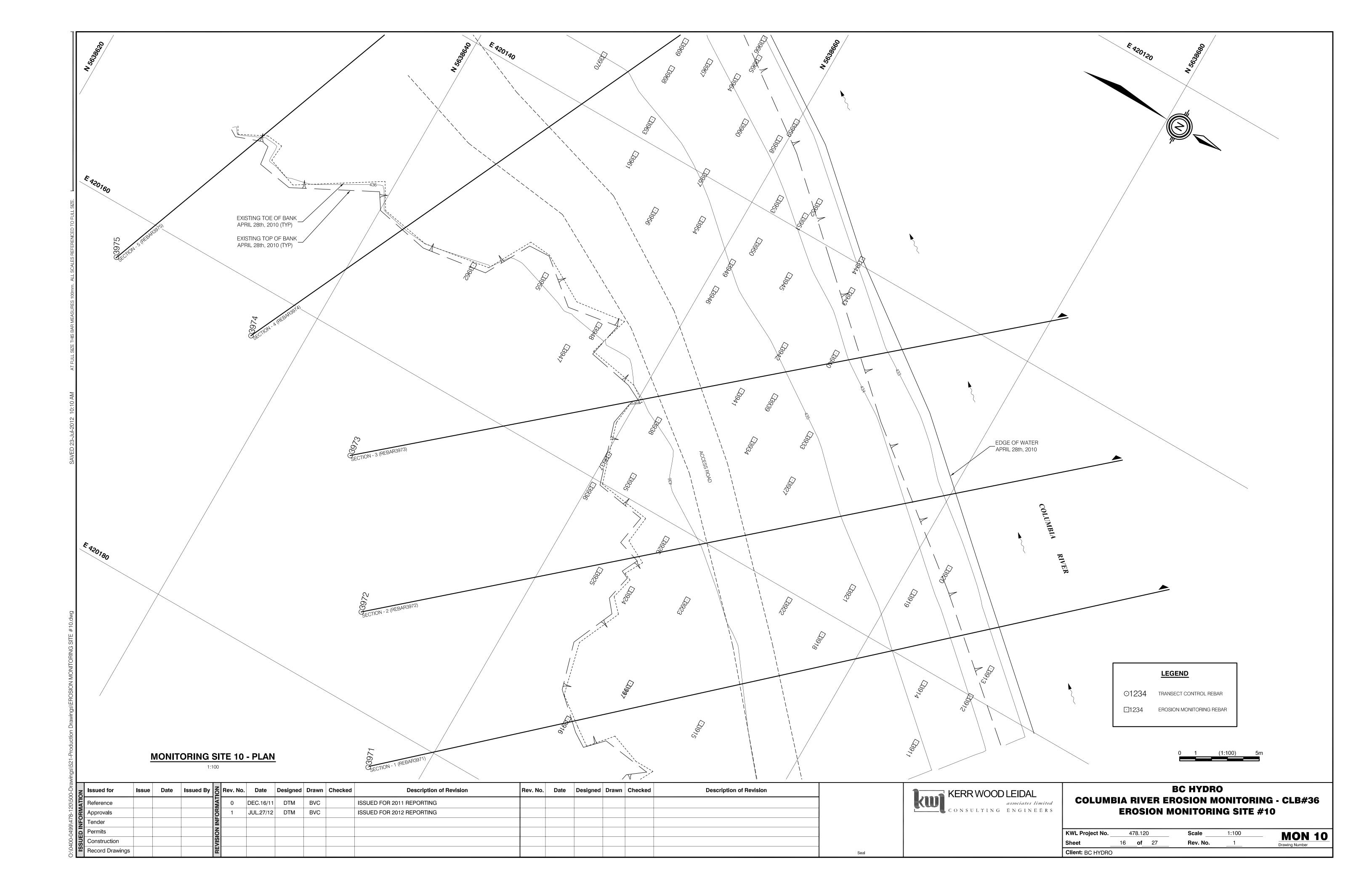
Scale 1:200 H 1:200 V

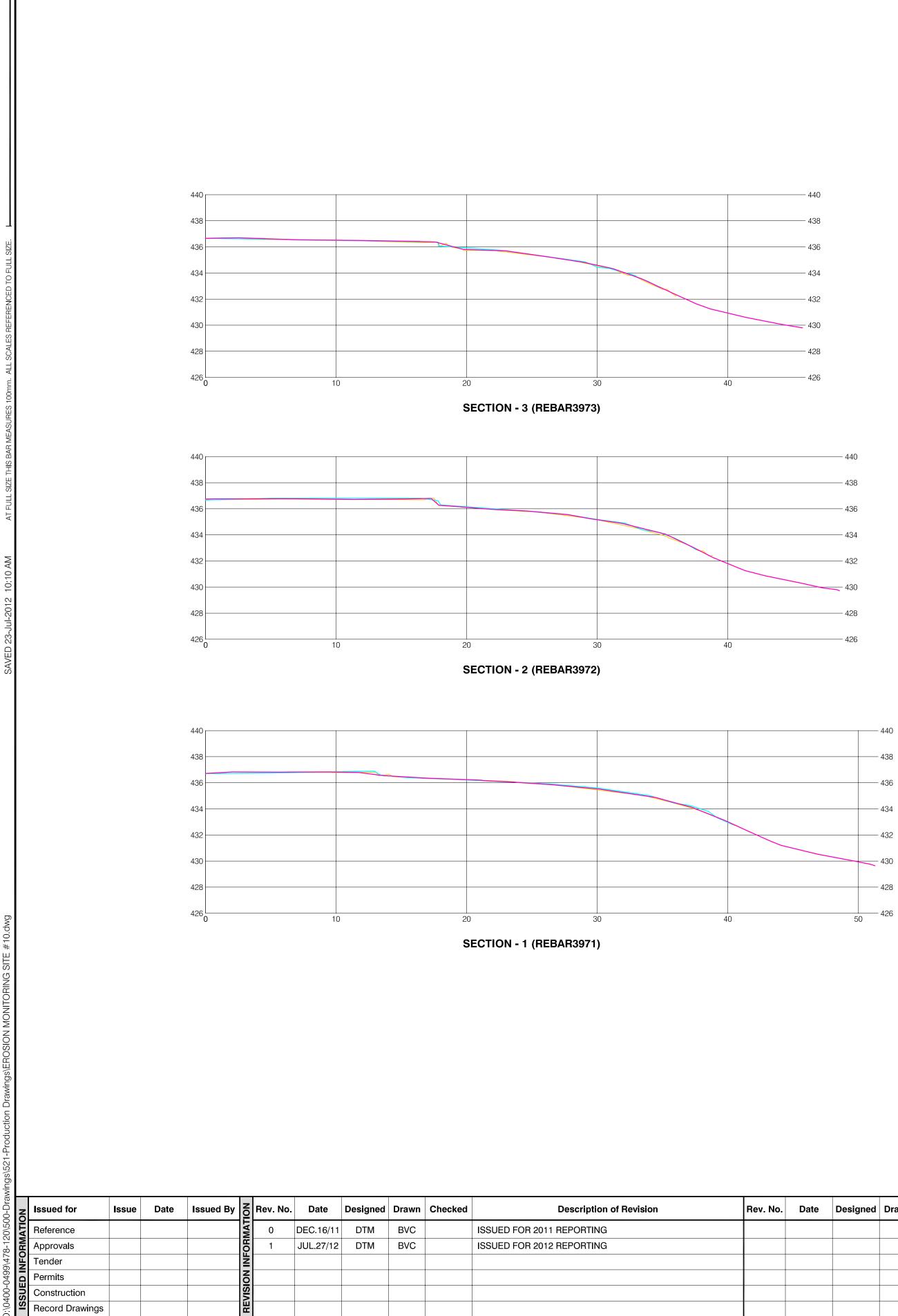
1

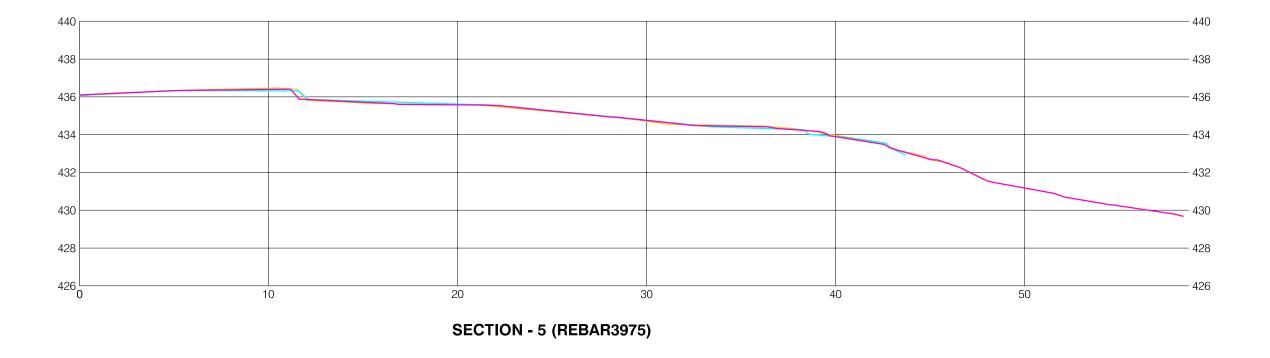
478.120

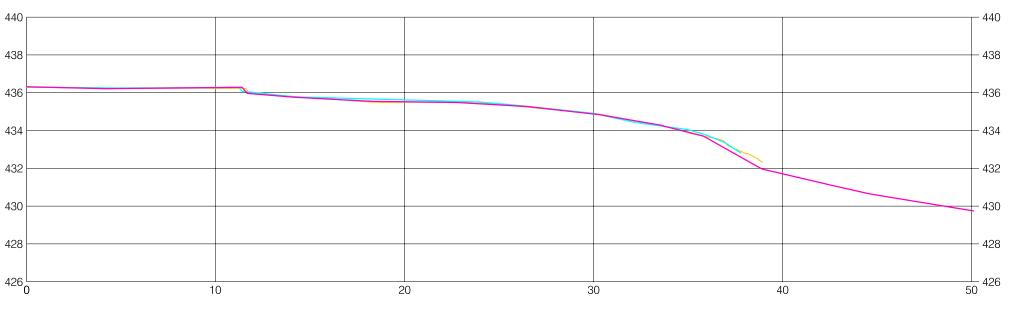
15 **of** 27

KWL Project No.

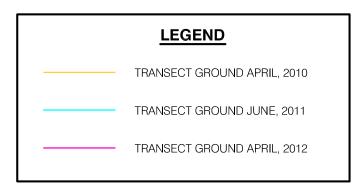

Client: BC HYDRO


Sheet


MON 9A Drawing Number



			440
			438
			436
			434
	30 40	50	432)
3	40	50	J

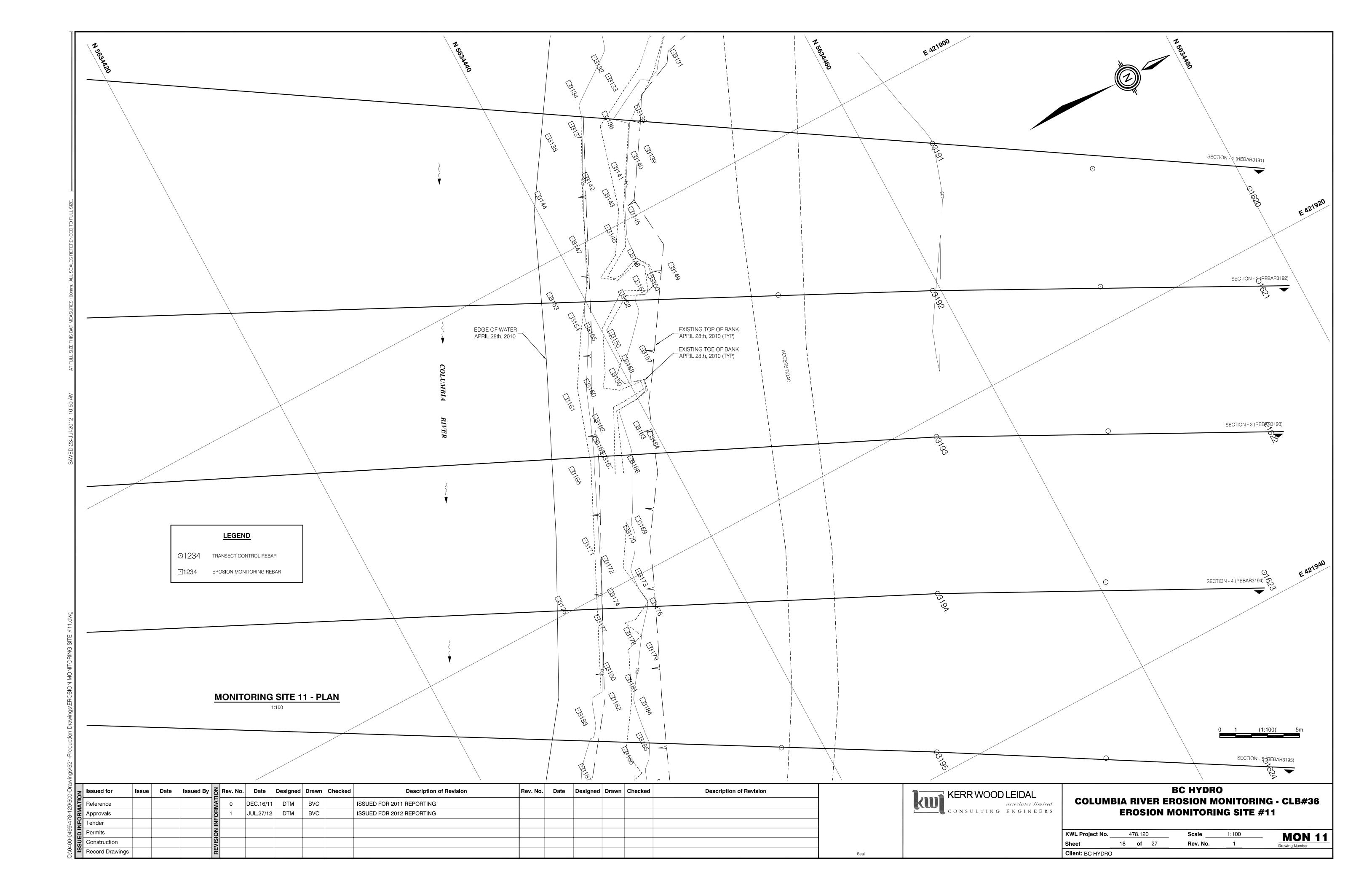


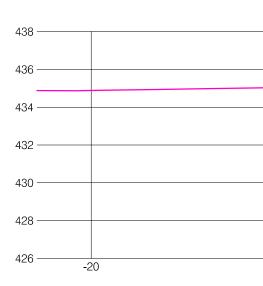
SECTION - 4 (REBAR3974)

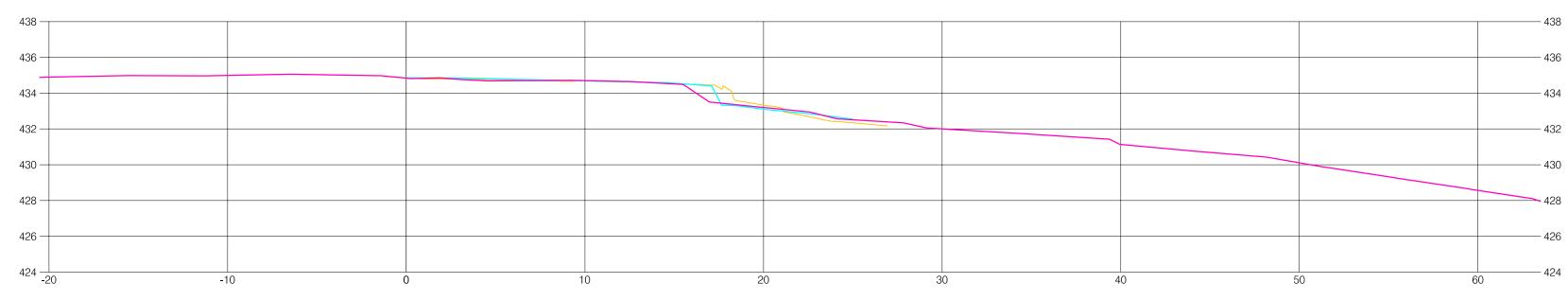
MONITORING SITE 10 - SECTIONS

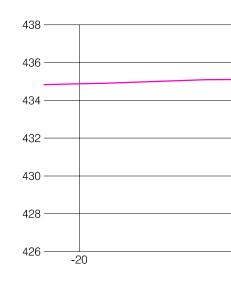
1:200H, 1:200V

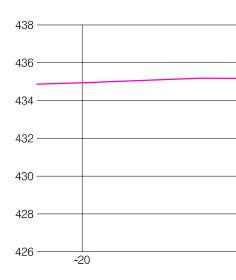
Rev. No.	Date	Designed	Drawn	Checked	Description of Revision		1 KERR WOOD LE
							KERR WOOD LE
							CONSULTING EN
						Seal	






LEIDAL associates limited ENGINEERS


BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 EROSION MONITORING SITE #10 - SECTIONS

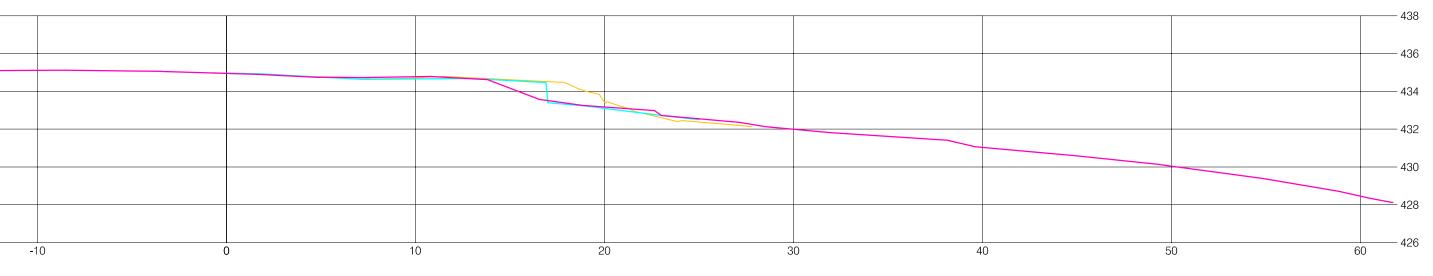

KWL Project No.	478.120	Scale 1:200 H 1:200 V	MON 10A
Sheet	17 of 27	Rev. No. 1	Drawing Number
Client: BC HYDRO)		

R WOOD LE
asso
SULTING EN

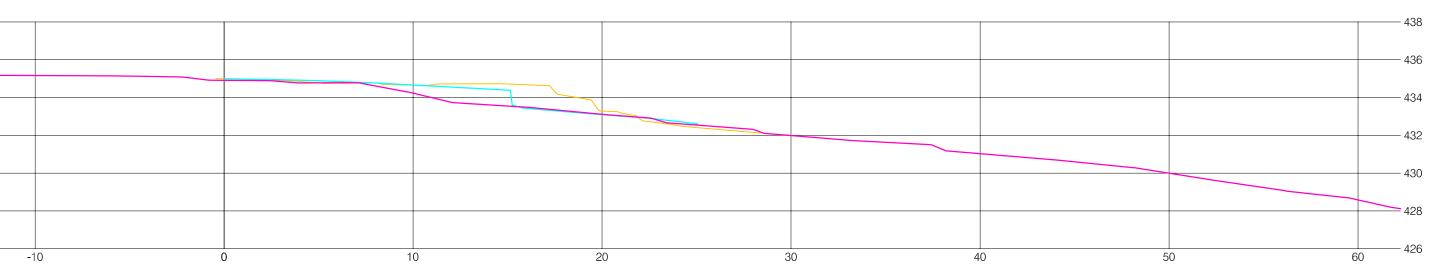
0-0499\478-120\500-Drawings\521-Production Drawings\EBOSION MONITOBING SITE #1

LEGEND

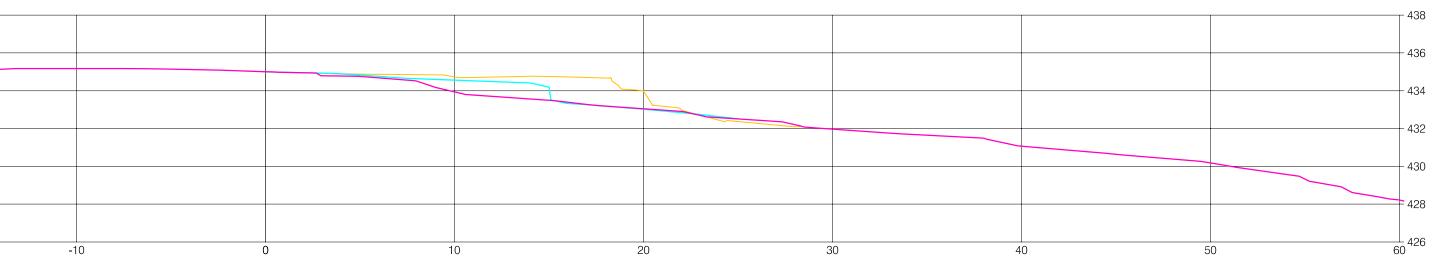
TRANSECT GROUND JUNE, 2011


TRANSECT GROUND APRIL, 2010

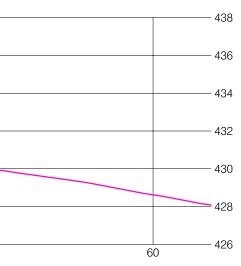
TRANSECT GROUND APRIL, 2012


-1	0 () 10	0 2	20	30	40 5	50

SECTION - 5 (REBAR3195)


SECTION - 4 (REBAR3194)

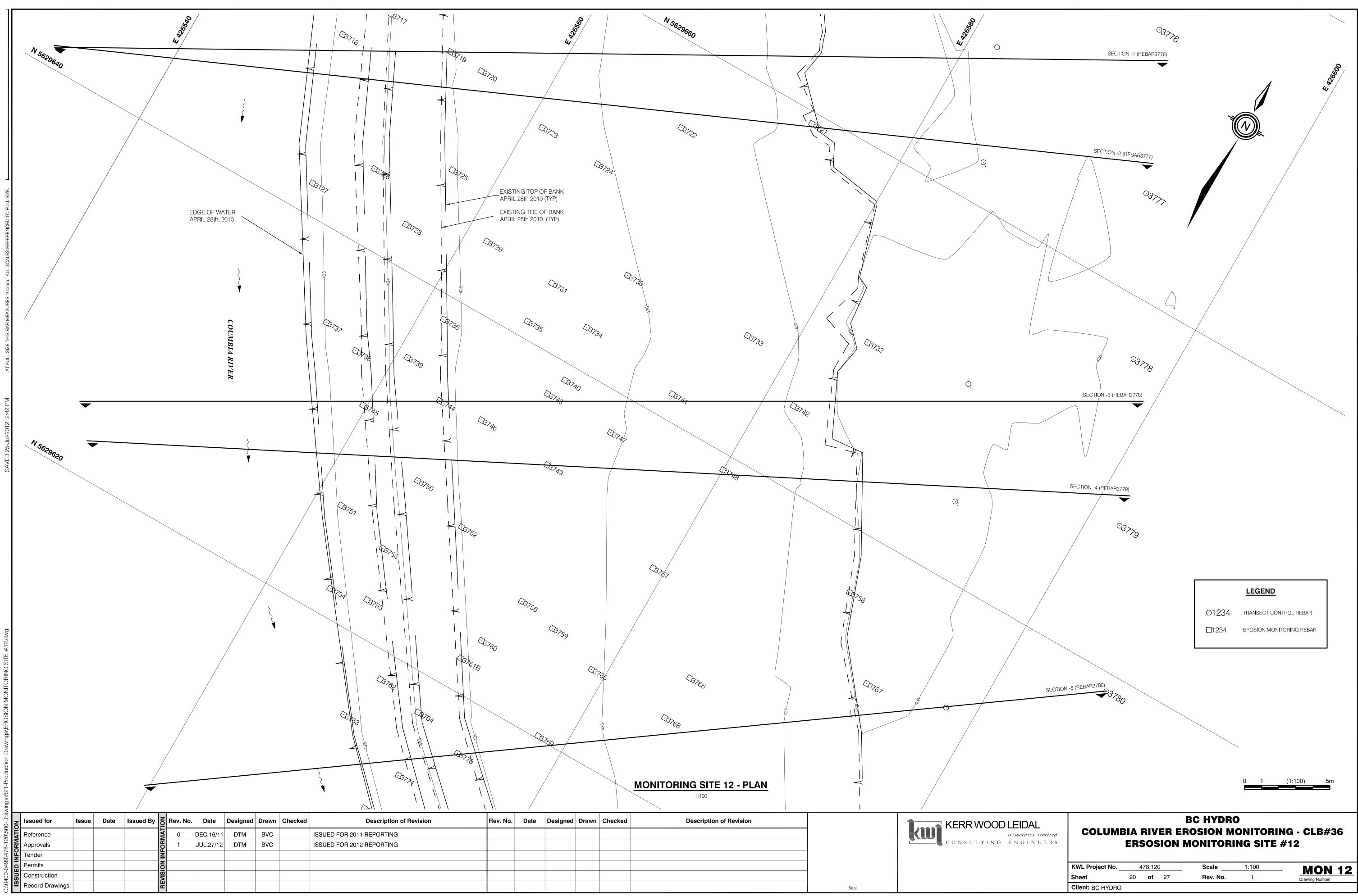
SECTION - 3 (REBAR3193)

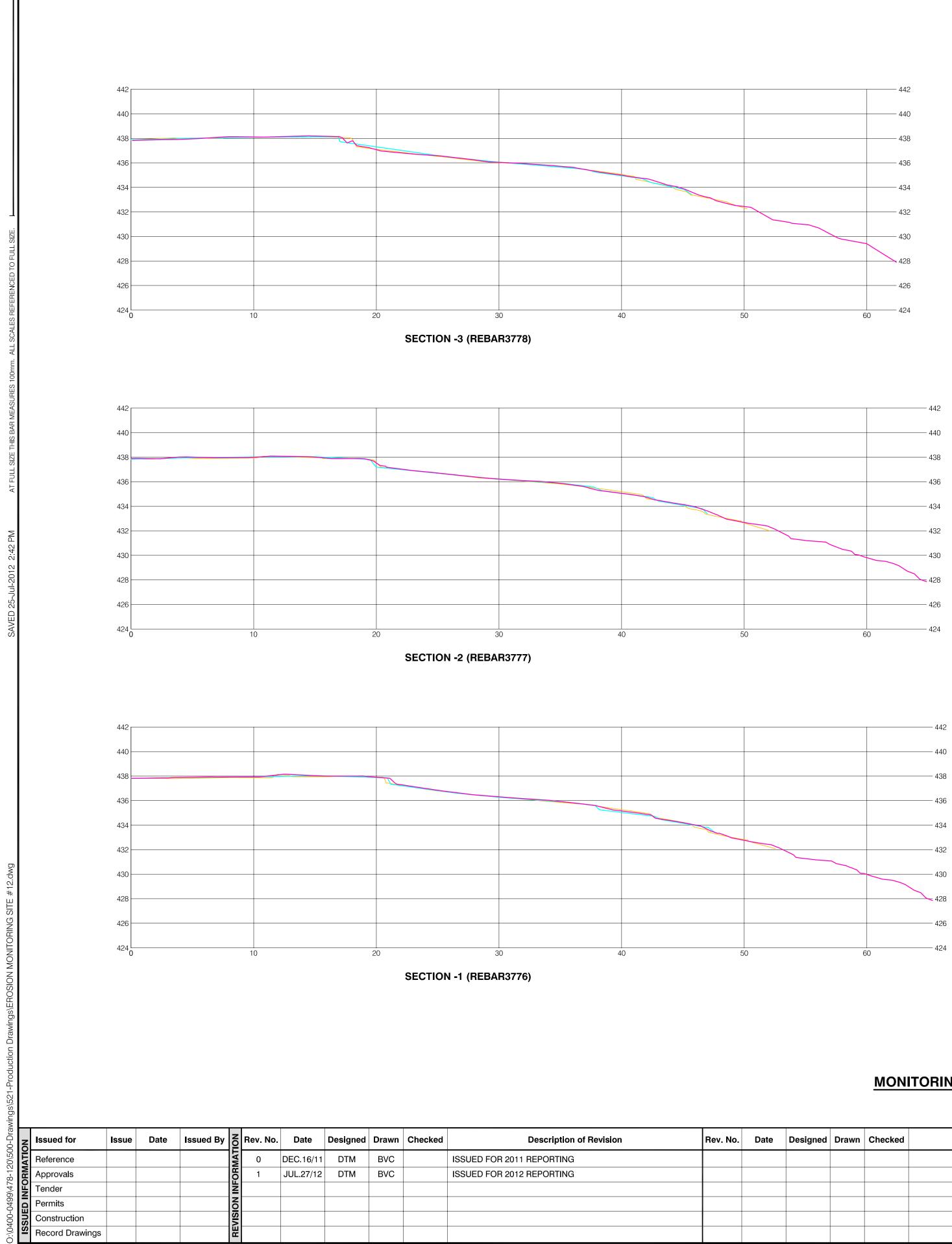


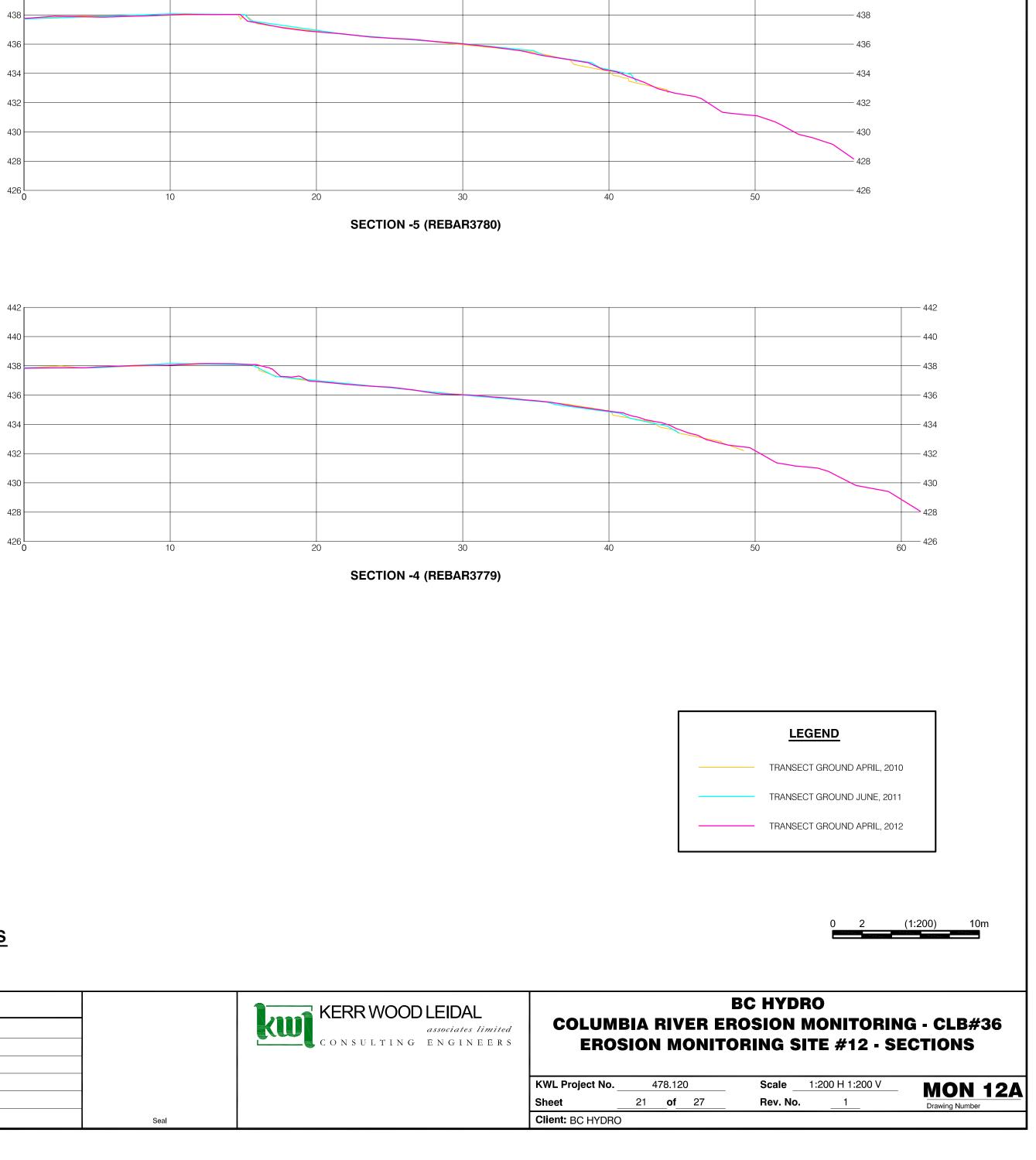
SECTION - 2 (REBAR3192)

SECTION - 1 (REBAR3191)

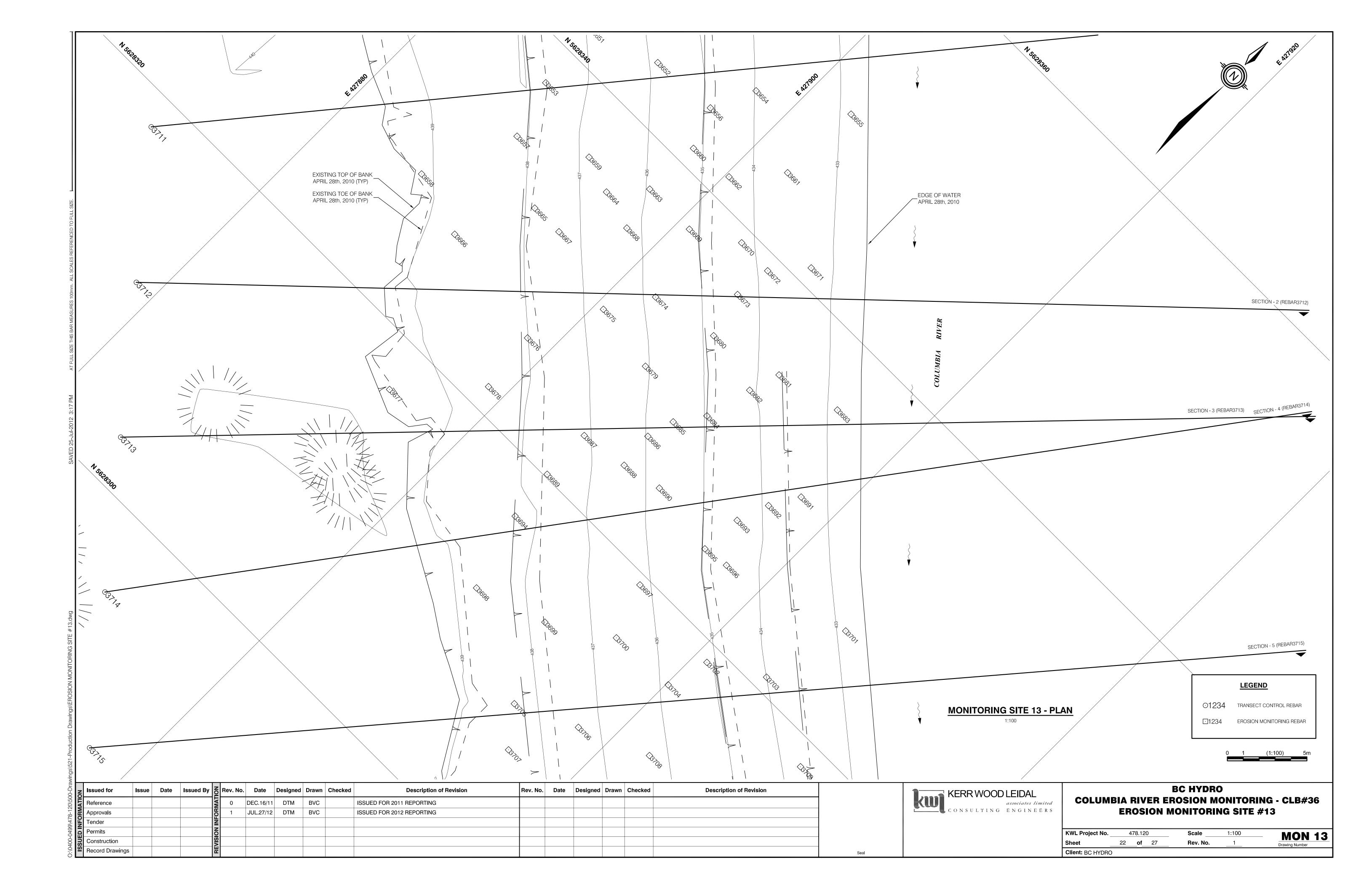
MONITORING SITE 11 - SECTIONS

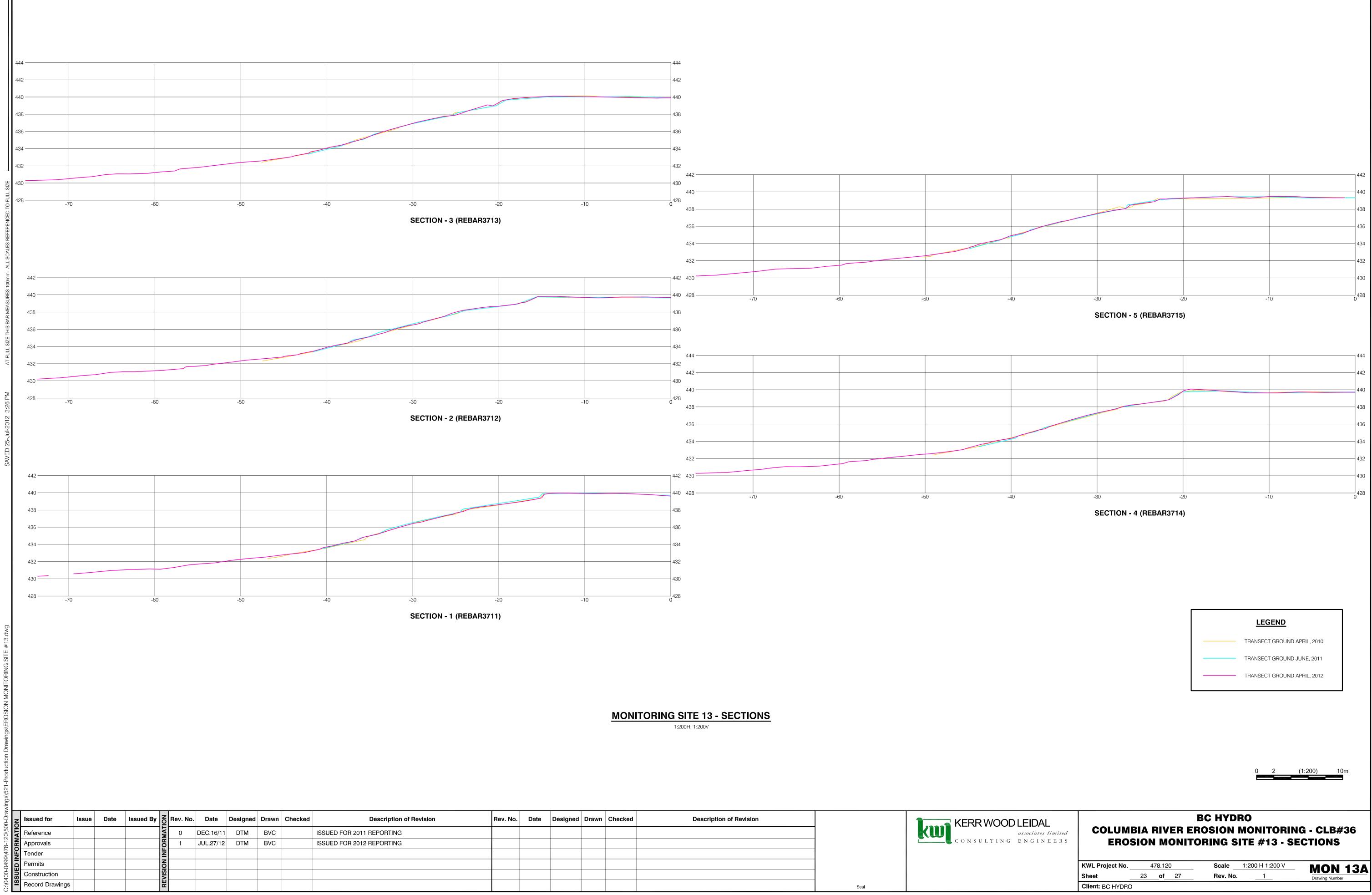



0 2 (1:200) 10m

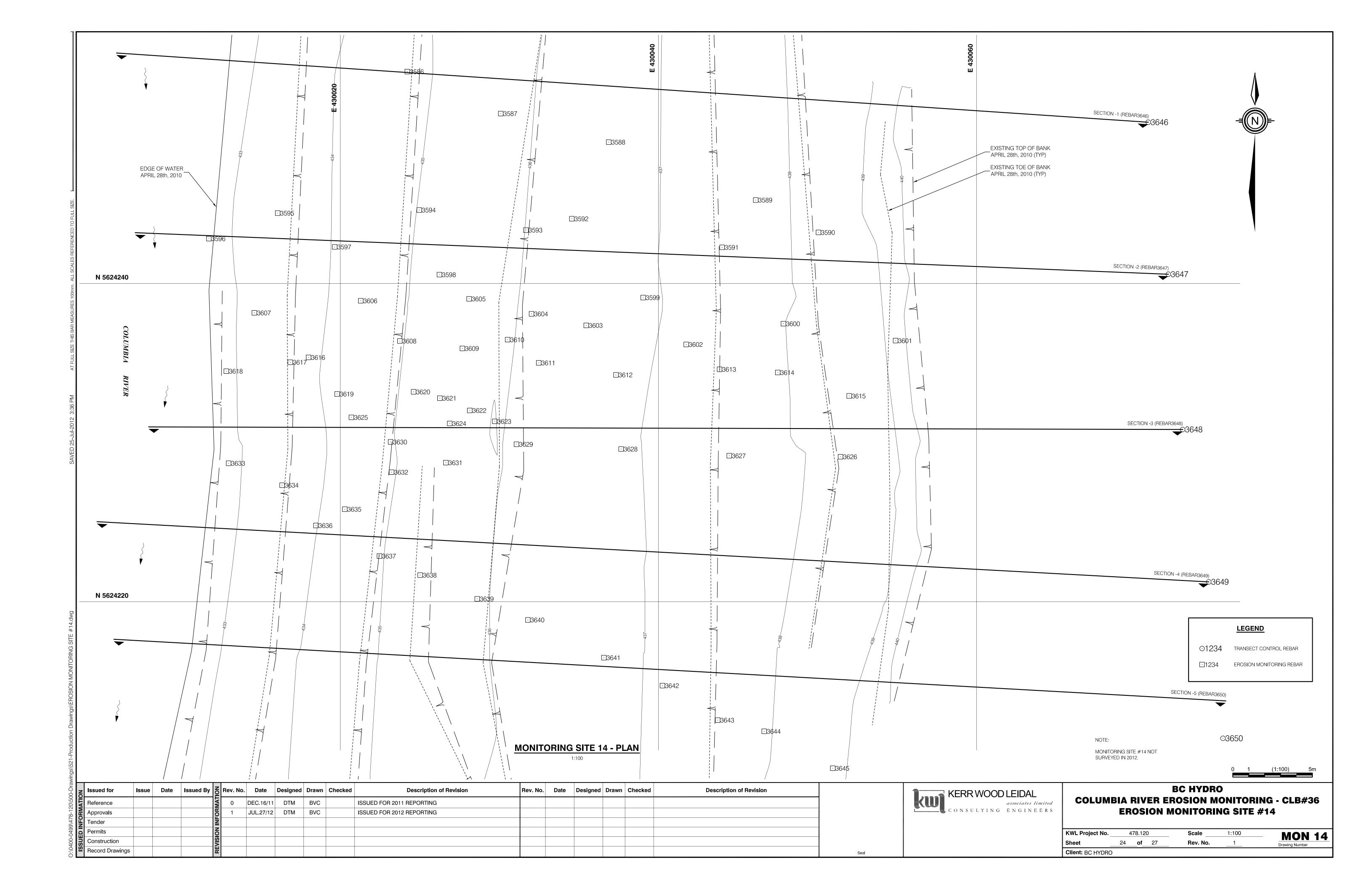

BC HYDRO COLUMBIA RIVER EROSION MONITORING - CLB#36 EROSION MONITORING SITE #11 - SECTIONS

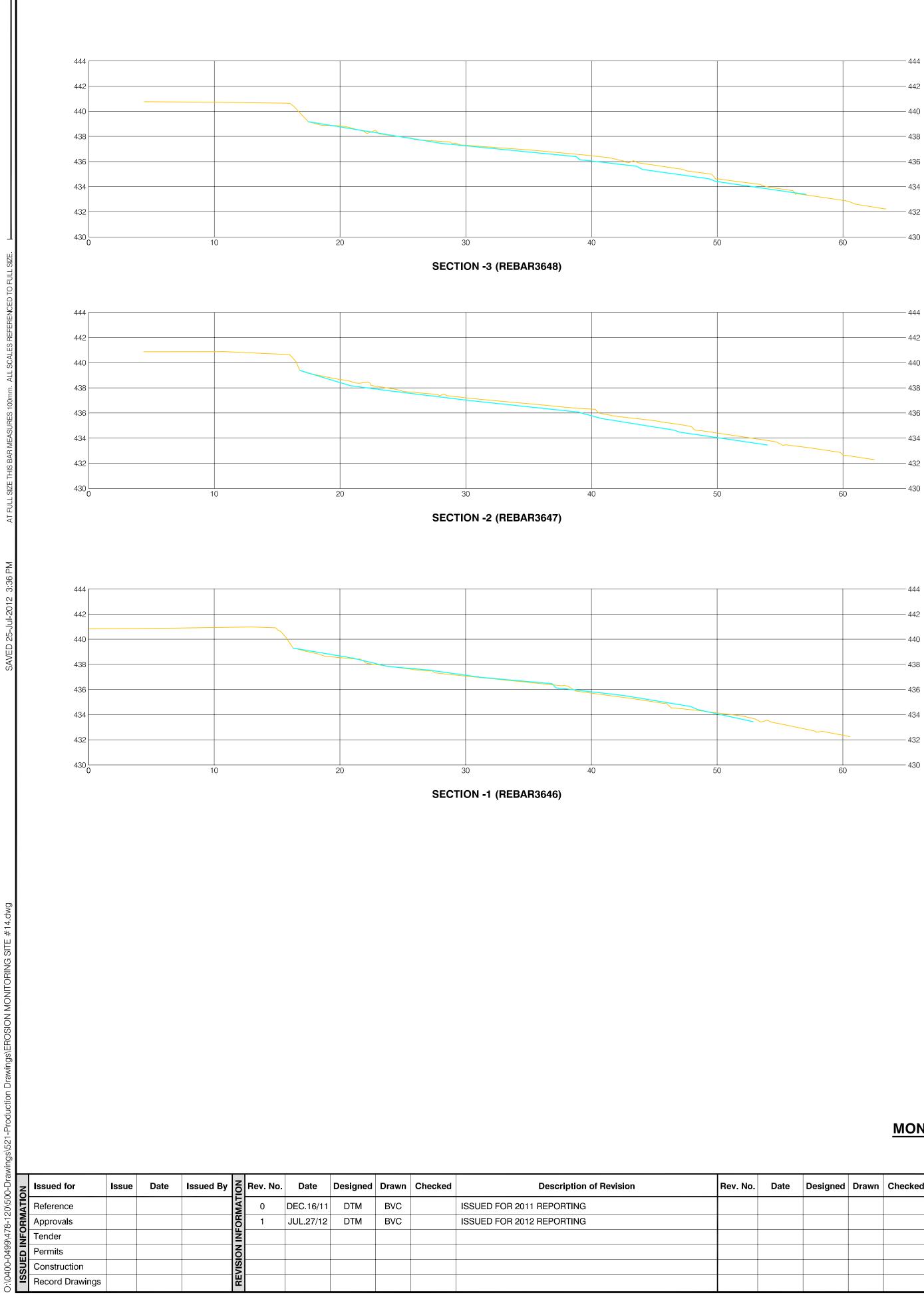
KWL Project No.	2	478.12	0	Scale 1	:200 H 1:200 V	MON 11A
Sheet	19	of	27	Rev. No.	1	Drawing Number
Client: BC HYDRO						

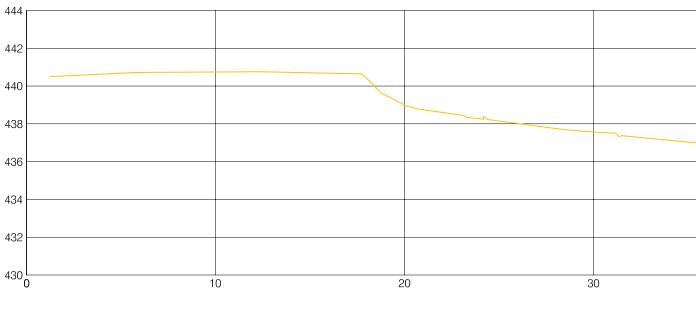

20

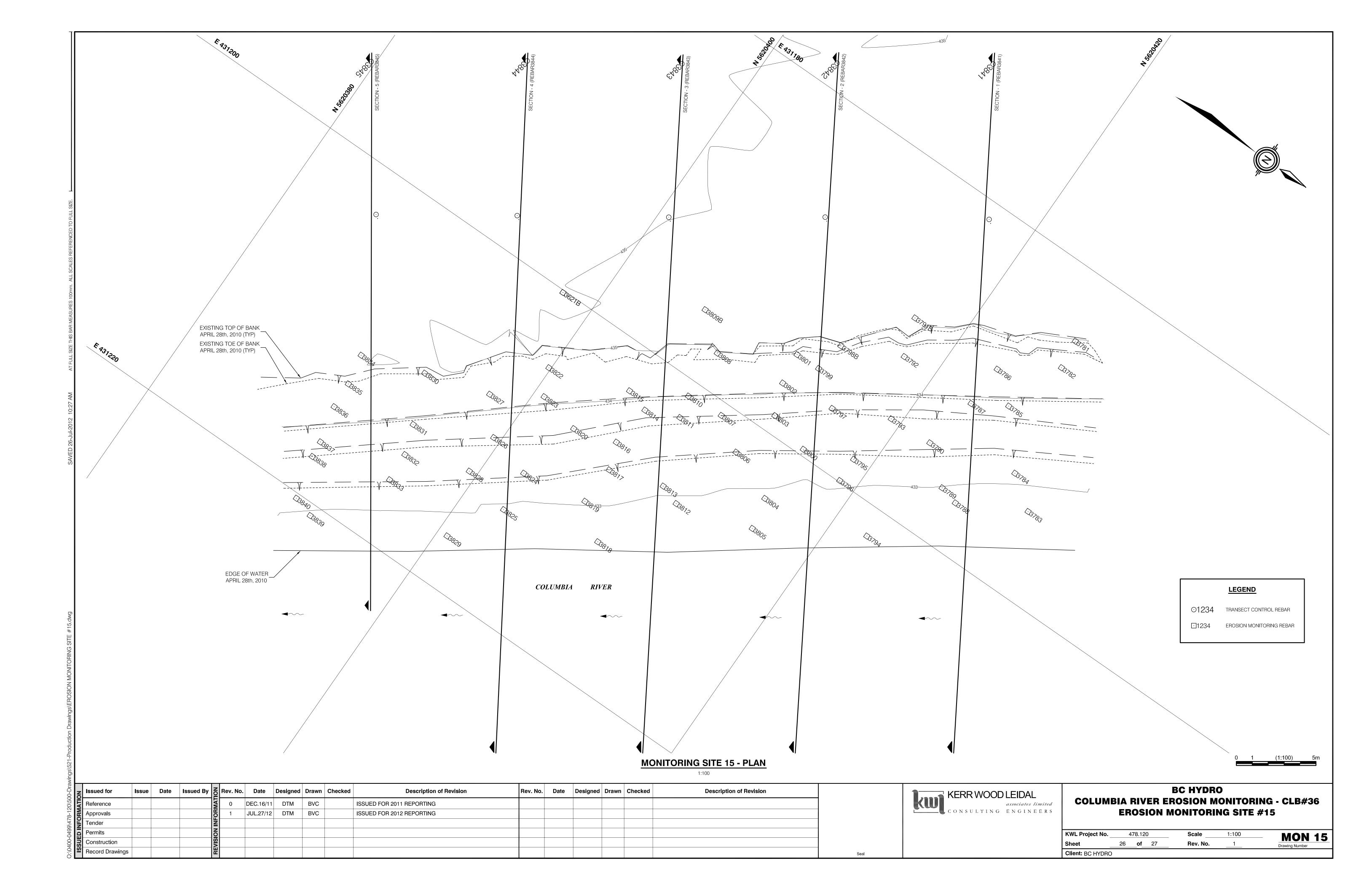


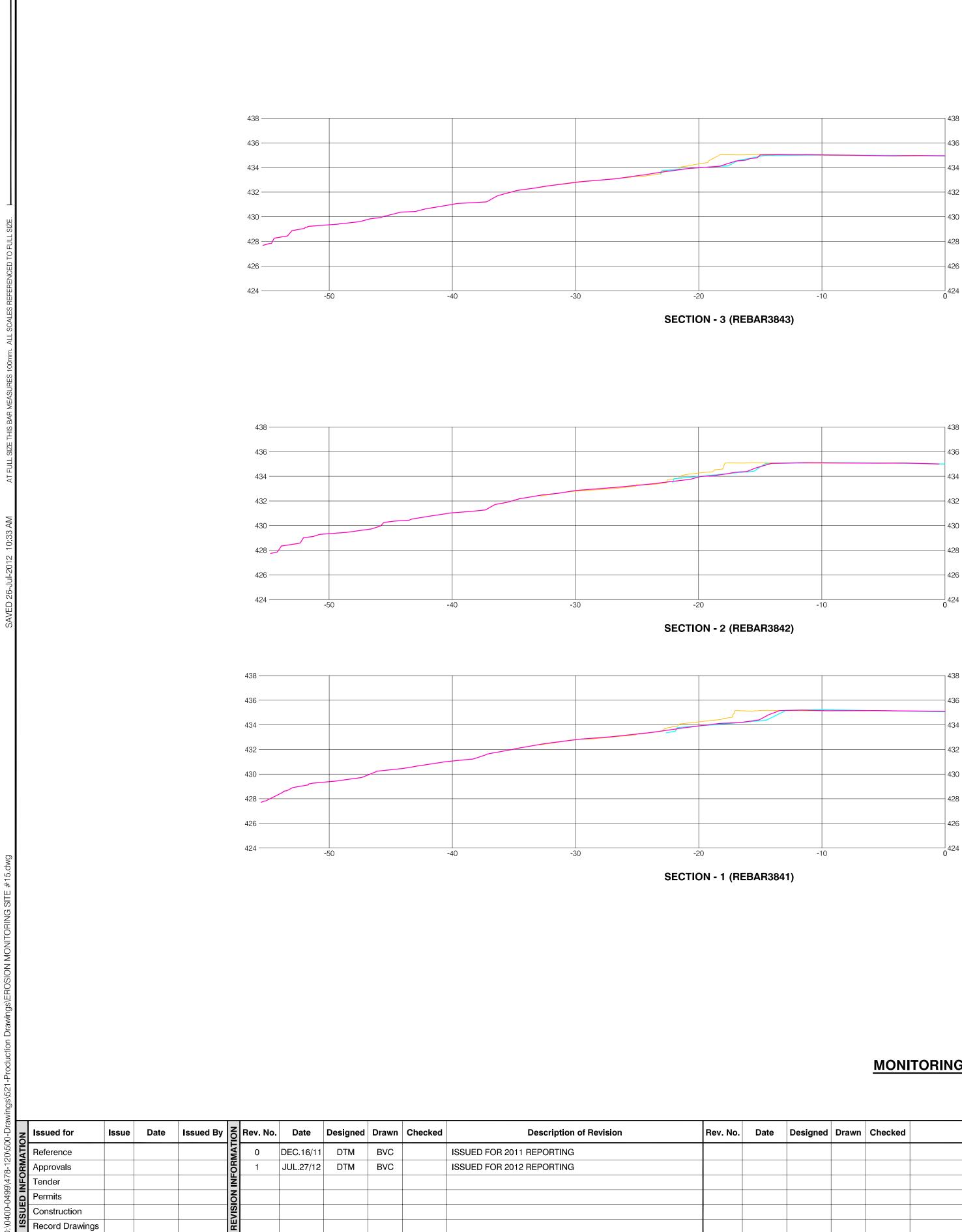
MONITORING SITE 12 - SECTIONS


1:200H, 1:200V


 Rev. No.	Date	Designed Drawn	Checked	Description of Revision		
						KERR WOOD LE
						CONSULTING EN
					- Seal	

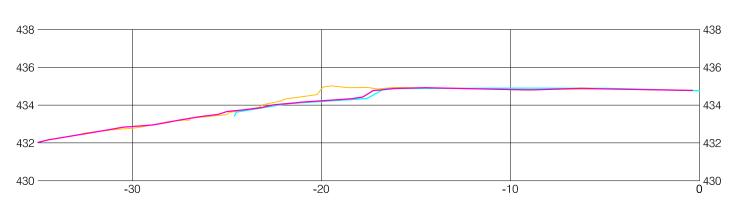

Date	Designed	Drawn Checked Description of Revision			BC HYDRO						
				KUI associates limited	COLUMBIA RIVER EROSION MONITORING - CLB#36						
			-	CONSULTING ENGINEERS	EROSION MONITORING SITE #13 - SECTIONS						
			-		KWL Project No. 478.120 Scale 1:200 H 1:200 V MON 1:200 V						
			_		Sheet 23 of 27 Rev. No. 1 Drawing Number						
			Seal		Client: BC HYDRO						
	Date	Date Designed	DateDesignedDrawnCheckedDescription of RevisionImage: Image: Imag		Image: Construction of the second						



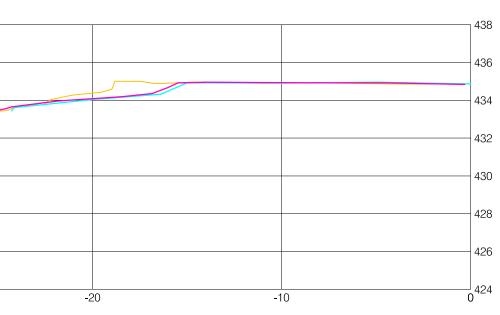

444							444
442							442
440							440
438							438
436							436
434							434
432							432
4300	10 2	0 3	 004	 10 5	50 6) 7	430 70

SECTION -5 (REBAR3650)

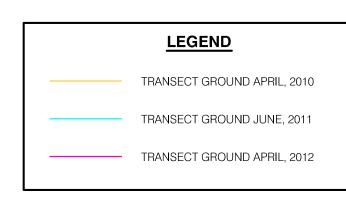
				444	444						444
				442	442						442
				440	440						440
				438	438						438
				436	436						436
				434	434						434
				432	432						432
50			60	430	430 L0	10	20	30 40	50 6	60	430
								SECTION -4 (REBAR3649)			
									TRAN		
				MON	TORING SITE 14 - SECTIONS 1:200H, 1:200V					0 2 (1:	200) 10m
	Rev. No. D	Date [Designed Drawn	Checked	Description of Revision			KERR WOOD LEIDAL associates limited consulting engineers	BC HY COLUMBIA RIVER EROSIO		- CI B#26
								CONSULTING ENGINEERS			
								CONSULTING ENGINEERS	EROSION MONITORING		
								CONSULTING ENGINEERS		SITE #14 - SEC	


436 —— 434 ——— 432 ——— 430 — 428 🗾 426 — 424 — -40 -30 -50

MONITORING SITE 15 - SECTIONS


438 ——

1:200H, 1:200V


Rev. No.	Date Designed Drawn	Checked Description of Revision		KERR WOOD LEIDAL	BC HYDRO
				KUN <i>Associates limited</i> CONSULTING ENGINEERS	COLUMBIA RIVER EROSION MONITORING - CLB#36
 			-	CONSULTING ENGINEERS	EROSION MONITORING SITE #15 - SECTIONS
					KWL Project No. 478.120 Scale 1:200 H 1:200 V MON 15A
			4		Sheet 27 of 27 Rev. No. 1 Drawing Number
			Seal		Client: BC HYDRO

SECTION - 5 (REBAR3845)

SECTION - 4 (REBAR3844)

0 2 (1:200) 10m