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Executive Summary’

The CLBMON-18 Middle Columbia River Adult Fish Habitat Use Monitoring Program was
designedto assess the effects of variationsin discharge and reservoirelevations on habitat use
and daily activity of fish species downstream of Revelstoke Dam. A second objective was to
assess if their pattern of habitat use was influenced by minimum flow releases and the joint
entry in operations of Revelstoke Unit5 (REV5; both started in December, 2010).

In the firstthree years of the program (fall 2008 to fall 2010; pre-REV5), Bull Trout (Salvelinus
confluentus) and Mountain Whitefish (Prosopium williamsoni) were tracked through radio tags
and coded electromyogram (EMG) radio tags in Reaches 3 and 4 (the region from immediately
downstream of Revelstoke Dam to the confluence of the Illecillewaet River, approximately 7km
downstream as the crow flies, or 11 km of shoreline).

Radio tags. During the Fall 2009, 12 Mountain Whitefish were implanted with conventional
radio tags specially programmed to transmit intermittently over multiple seasons- fall 2009,
winter 2010 (February) and in spring 2010 (June). Duringthe fall 2010, 20 Bull Trout were also
implanted with similar, larger, radio tags. Bull Trout and Mountain Whitefish were tracked
every 12 hours along Reaches 3 and 4 of the MCR during the fall . Daily fishtracking occurred at
noon and midnight with the exception of surgery nights (cf. EMG section below).

Each session lasted approximately three hours to develop a time series of fish locations. The
two daily tracking times were chosen to represent the approximate time of daily discharge peak
and nightly low flows.

Fishtracking was conducted from shore usingvarious access pointsto cover the entire study
area. Fish locations (longitudinal positioninthe river) were used to determine patterns of
distribution and estimate movements across a range of operational flows. Bull Trout
movements were analyzed for trends amongst sex and sizes of fish. Bull Trout movements
patterns were also related to river hydrology parameters associated with hydropeakingat the
twelve-hourscale.

EMG tags. Adult Bull Trout and Mountain Whitefish were captured at night in late September
and October and surgicallyimplanted with coded electromyogram (EMG) radio tags (which
measure the frequency of tail beats in theirdorsal muscles) and tracked. The procedure
necessitated specialized surgical skillsand a lengthy recovery and tag calibrationtime (> 12 hrs
per fish). Overthe duration of three years (Fall 2008 to Fall 2010), a total of 88 Bull Trout and
33 Mountain Whitefish were implanted with coded EMG tags. Catching Mountain Whitefish

! The first part of this ES was written by BC Hydro to reflect the work doneinthefirstthreeyears of the program. It
is solely based on thereportfromthethirdyearof the program (Taylorand Lewis 2011), availableat
https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning requlatory/wup/southern interior/201
1g3/clbmon-18 yr3 2011-06-10.pdf



https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/wup/southern_interior/2011q3/clbmon-18_yr3_2011-06-10.pdf
https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/wup/southern_interior/2011q3/clbmon-18_yr3_2011-06-10.pdf
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large enough for EMG tagging was a challenge and Mountain Whitefish movementdatafrom
this project were scarce compared to Bull Trout movement data.

Hydrological variables tested were hourly discharge magnitude and within-hourdischarge
change (defined as the difference between the within-hour maximum and minimum
instantaneous discharges).

Small thermal loggers were attached to 18 large Bull Trout EMG tags to documentfine-scale
temperatures at fish locations and to compare these temperatures to the rivertemperature
recorded approximately 7km downstream of REV. The intent was to determine if these fish
showed behavioural thermoregulation (choosing positionsin the riverthat offerrefuge from
ambientriver temperatures).

Blood cortisol. Blood sampleswere also collected from Mountain Whitefish and analyzed for
the glucocorticoid hormone. Cortisol is the primary stresshormone in fish.

The electromyogram telemetry studies on fish populationsinthe area foundinconclusive
results for the biological significance of flow regimes changes. With the addition REV 5in 2010 a
minimum discharge of 142 cms was implemented, with flow velocities expected to be similarto
the pre-flow phase, but with maximum predicted discharges resultingin flow velocitiesrarely
experienced by the fishes during the pre-flow change phase. Concern over the energetic
consequences of increased maximum discharge magnitude lead to a literature review assessing
the feasibility of building fish bioenergetic models to predict these energeticconsequences. The
review suggested that currently available data should be sufficientto allow this modelling
exercise to proceed.

The study hereinfocuses on the development of empirically based bioenergetics models for
Bull Trout and the Mountain Whitefish. The goal of the bioenergetics models was to be able to
predict the respiration costs associated with a hydrology regime downstream of Revelstoke
Dam. Bioenergetics models provide atheoretical approach for estimating the energy budgetin
animals. Typically three main components may be considered: metabolism, waste, and growth.
The current study focuses on the two primary components of metabolism: standard and active
metabolicrates. These two components are often of interestto ecologists as they provide the
floorand ceiling foraerobic energy metabolism. Both components are also expected to be
directly affected by flow regime changes.

The afore-mentioned three-yeartelemetry tagging study conducted under CLBMON-18 was
used as a basisto predict fish behaviourunder varying environmental conditions of discharge
and temperature. Linear mixed effect models were fitto predict behavioural components such
as the propensity to swim, swim speed, and movements. These separate components were
combinedto make predictionsabout hourly activity of fish under novel flow regimes. Activity
estimates were then paired with estimates of standard metabolism, whichis largely driven by
temperature changes, to predict hourly respiration rates undera novel flow regime.
Uncertainty in these estimates was determined usinga Monte Carlo approach (i.e., computer
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experiment), which assessed the impact of individual and hourly stochasticity in fish behaviour
on calculated respiration rates.

A complete bioenergetics model was developed for Bull Trout; however, a lack of calibration
data for tagged Mountain Whitefish prevented completion of a similar model for this species.
Male and female Bull Trout appeared to behave quite differently to hydrological conditions,
which may have beenthe result of the spawning period overlapping withthe commencement
of the telemetry study. Male Bull Trout showed good swim performance, including similar
estimates of maximally sustained swim speeds. The performance of the bioenergetics model for
male Bull Trout was therefore assessed by comparing predicted respiration for two months in
2010; onerepresentingalowerflow, higher temperature regime and the other a higher flow,
lowertemperature regime. Comparisons of the two months indicated differing predicted swim
behaviours, but overall similarrespiration profiles across the month suggesting behavioural
changes can compensate for energeticdemands caused by temperature differences. This
emergent model behaviourwas unexpected and may representan adaptive mechanismfor
“economizing” respiration energetics undervariable environmental conditions.

The linearregression predictions associated with flow showed consistent responsesto river
discharge, suggestingthat extrapolations outside of the observed maximum discharge of 1,765
cms should be possible withinreason (e.g., 2,200 cms). When such flow conditions were tested,
the bioenergetics model produced plausible energetics estimates, suggesting thatit should be
possible to use the model to assess altered flow regimes expected underREV 5. Additional
observations during higher periods of flow are therefore not required.

Using the male Bull Trout energetics model as a surrogate for both sexes duringnon-
reproductive period, daily energy expenditures under REV 5 were compared to base conditions
across all seasons and withinreproductive and non-reproductive periods. Overall, daily
energeticexpenditures were found to be similarwith difference inthe uncertainty associated
with the calculation. Giventhat the range of energeticdemandsunder REV 5 flows were also
found to be well within the biological range we do not find evidence for a sustained impact on
Bull Trout energetics assuming water management practices remain similarto the practices
observed during the study period. While this assessmentincluded short-term behavioural
changes, long-term foraging trade-offs could not be considered because effectsare unknown
and difficultto estimateina field environment.

Finally, furtherfield work would be required to develop an equivalent Mountain Whitefish
bioenergetic model. For Mountain Whitefish, this could potentially be completedina single
year if a sufficientrange of hydrological conditions were available and a sample size of
approximately 98-150 individuals could be collected and equipped with accelerometertags.
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Objective

Management Question
(MQ)

Summary of Key Results?

Assess how movement
patterns and activities (and
hence habitat use) of Bull
Trout (Salvelinus confluentus)
and Mountain Whitefish
(Prosopium williamsoni) are
affected by flow releases from
Revelstoke Dam.

Whatarethe
movement patterns of
selected resident fish
speciesinthe Middle
ColumbiaRiver?

Bull Trout and Mountain Whitefish occupied similar
locationsinboth spring and fall: the Big Eddy, the area
immediatelyupstream of the Jordan River, thearea
downstream of Scales Creek anda two kilometre section
of the MCR downstream of REV.

Mountain Whitefish did exhibit somelocalized
movements, butthere were no clear pattern.

Large Bull Trout did not move morefrequentlythan
small ones; however, they did move greater distances
and had larger linearhomeranges.

Therewas no effect of flow magnitude on the
proportionof Bull Trout whichmoved between tracking
periods. (“It was assumed thatthe proportion of bull
trout that move between tracking periods may increase
with declining flows; however, we found no significant
effectthatsuggests this to betrue”; TaylorandLewis
2011, p.64).

Vi
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Howdo fishesinthe
Middle Columbia
respondtodiel
variationsinflowfrom
Revelstoke Dam?

Movements. The magnitude of discharge change had
no effect on the probability of movement, nor did the
minimum discharge during the same period.

Muscle activity. The correlation between hourly mean
discharge magnitude and Bull Trout muscle activity was
statistically significant (r=0.56). Bull Trout closer to REV
showed more muscle activity than fish | ocated at
stations further downstream. Hourly mean discharge
had a medium effect (r =.36) on Whitefish swimming
activity.

There were large variations inwithin-hour changesin
discharge (range=0-1045 m3/s), whichare
characteristic of hydropeaking systems. However,
activity in either species was not correlated with the
within-hour changesindischarge.

The diel effecton Bull Trout activity was very smalland
not a significant predictor of activity. Mountain
Whitefishwere moreactive duringtheday thanat
night. Mountain Whitefish blood cortisol
concentrations were higher during periods of high
discharge, butthe highest cortisol values were very low
and corresponded to values of unstressed fish.

The differences between Bull Trout body and ambient
temperatureweresmall and didnotshowany
evidence of these fish seeking a temperature refuge.
The largest heterogeneities were around the
Revelstoke golf course and Big Eddy, wheretheriver
depthis leasthomogenous.

vii
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Does the
implementation of the
142cms minimum flow
affecttheenergy
expenditure of resident
fishesfromthe Middle
Columbia,anddoes
this affect their growth
or survival?

The study endingin2010 included the minimum
discharge from REV duringthe 12 hours between
trackinglocations as a predictor in Bull Trout movement
models to test for potentialeffects of minimum flows on
movement parameters. The minimumdischarge
between tracking locations was never a significant effect
inany Bull Trout movement model of the five seasons
tested. Mountain W hitefish movement models were not
developed dueto thesmall samplesize.

An empiricallybased bioenergetics model was built for
Bull Trout to predict daily energy expenditures
associated with flow regimes. The model incorporated
behavioural components and produced plausible
energetics estimates, well within the biological range for
the species, across the range of flow rates under the 142
cms minimum flow regime. Comparisons of dailyenergy
expenditures before andafter the minimum flow regime
did not find significant changes to daily energetics
across theseasons, norduring the reproductive period.
Taken together, modelling results did not findevidence
for a sustained impact on daily energy expenditures.

Finally, long-term behavioural trade-offssuchas
foraging were not considered as part of theassessment
dueto their unknownnature.

1 The MQ tableformat originated after the original contractors (Golder and U. of Carleton) had completed the first
threeyears of the study. Theanswers to the firsttwo MQ above, and partof MQ 3 are based on thereportfromthe
third year of the program (Taylorand Lewis 2011).

viii
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Abbreviations and Acronyms

Abbreviation or Definition

Acronym

AlCc Akaike information criterion (AIC), that has a correction for small
sample sizes

AMR Active metabolicrate

BL Body lengths

CLB-MON CLBMON-18 Middle Columbia River Adult Fish Habitat Use Monitoring
Program

cms Measure of discharge volume, cubic meter per second or cms (m3/s)

CMR Capture-mark-recapture

DMR Digestion metabolicrate

HEC-RAS Hydrological model

EMG Electromyography or Electromyogram

FL Fork length

TBF Tail beat frequency

SEMG Standardized electromyography

SMR Standard metabolicRate

SS Swimspeed

EA3906
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1 Introduction

The CLBMON-18 Middle Columbia River Adult Fish Habitat Use Monitoring Program (CLBMON-
18 hereafter) was designed to assess the effects of variationsin discharge and reservoir
elevations (i.e., hydroelectricdam operations) on the habitat use and daily activity of selected
fishspeciesusingthe Middle Columbia River (MCR) downstream of Revelstoke Dam. Two
speciestargetedin CLBMON-18 are Bull Trout (Salvelinus confluentus) and Mountain Whitefish
(Prosopium williamsoni).

Studies on the Bull Trout and Mountain Whitefish populations downstream of Revelstoke Dam
were conducted using electromyogram (EMG) telemetry (Taylorand Lewis 2009, 2010, 2011,
Taylor et al. 2013, 2014). EMG techniquesallow fordirect measurement of axial swimming
muscle activity, and when combined with remote telemetry allow for the remote monitoring of
locomotor activity and activity related energetics (Cooke 2001, Cooke et al. 2004, Brown etal.
2007). Generally, fish activity levels are thought to be influenced by patterns of flow change by
eventssuch as pulse flows during hydroelectricoperations (Murchie and Smokorowski 2004,
Cocherelletal. 2011); although activity changes are not always the case (Geistand Brown
2005). Initial resultsfrom earlier CLBMON-18 EMG telemetry studies found associations
between activity and discharge, but the biological significance of these effects were
inconclusive.

In 2011, afifthturbine unit was installedin Revelstoke Dam (REV 5), followed by the
implementation of a minimum discharge of 142 cms. While, the range of discharges
experienced by the two species during the pre-flow change are expected to be similarto the
water velocities encountered underthe new flow regime, the maximum predicted discharges
resultingfrom REV 5 (i.e., 2124 cms and higher) would have rarely been experienced by the
fishes duringthe pre-flow change phase. Taylor et al. (2014) highlighted the needto focus on
the effects of maximum discharge magnitude when consideringthe energeticconsequences of
altered flow regimes on these species. A subsequentliterature review of energetics models by
Guénard and Boisclair (2015) suggested that, based on the available data, itwas feasible to
model the effects of the new flow regime on Bull Trout energetics, but that Mountain Whitefish
may be a more difficult task.

This study attempts to build bioenergeticmodels to assess novel flow regime effectson
respiration of Bull Trout and Mountain Whitefish downstream of Revelstoke Dam using data
from previous sampling programs (Taylor and Lewis 2009, 2010, 2011). Bioenergetics models
provide a theoretical approach for estimating the energy budget inanimals into three main
components: metabolism, waste, and growth (Winberg 1956; Chippsand Wahl 2008).
Dependingon the goal, these components can be regrouped or studied separately. The current
study focuses on predicting energy expenditure (i.e., respiration), rather predicting the full
energy budget. Fish energy expenditure isthe result of three components: the energy required
for basic functioningand maintenance (termed standard metabolicrate; SMR), the energy
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required for activity (active metabolicrate; AMR) and the energy required for digestion
(digestive metabolicrate; DMR). SMR and AMR are typically the two physiological parameters
of most interestto ecologists as they representthe floorand ceilingin aerobicenergy
metabolism (Norin and Malte 2011). These two components are also expectedto be directly
affected by changes to flow regimes resulting from REV 5. Because direct estimation of these
guantitiesinthe fieldis not currently practical, the current modelling exercise looks to build
empirical models for predicting SMR and AMR expenditures related to changesin flow regimes
based on data from the available EMG telemetry studies.
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2 Study Site

The current study relies on data collected during previous EMG telemetry studies (Taylorand
Lewis 2009, 2010, 2011). The study area was situated downstream of Revelstoke Dam, whichis
located inthe Middle Columbia Riverapproximately 8 km upstream from the Trans-Canada
Highway bridge just outside of the City of Revelstoke (Figure 1). As such, the study sites were
defined as Reaches 3 and 4 as the riverfrom Revelstoke Dam to the lllecillewaet River, whichis
the only permanently flowingriver habitat inthe Middle ColumbiaRiver (Taylor and Lewis
2010).

k Revelstoke Dam

® Receiver 1
Receiver 2
X
British Alberta
\ ' Columbia
Py
'
X
& Columbia R.
Q 1
\\\'& Oregon ', Idaho
Jordan (W
River \
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N Upper
0 05 1 P A Yok : \e\.‘-t\
— T TR 3? rrow (4 u\(’f‘\ )

Figure 1. Map of the study arealocated in the Middle Columbia River downstream of Revelstoke Dam,
Revelstoke, British Columbia, Canada. Circle with X represents the fixed receiverlocations:
Receiver 1 =Revelstoke Dam; Receiver 2 =Scales Creek; Receiver 3 =Skull Point. Figure from Taylor
etal.2014.
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3 Methods

An energetics model was developedto assess the effects of hydrological characteristics (i.e.,
temperature and flow) on standard and active metabolicrates of individual Bull Trout
(Salvelinus confluentus) and available information was assessed for Mountain Whitefish
(Prosopium williamsoni).

3.1 Energetics Simulator Overview

An individual-based energetics simulator was developed. The simulatoroperated on an hourly
timestep, was based on attributes observedin the tagged population, and featured three main
classes of predictors: environmental, temporal, and individual characteristics. The simulator
was used to predict individual behaviour, where the behaviours affected standard and active
metabolicrates withina given hour (Figure 2).

For the individual-based simulations, a population of fish was created at the initialization step,
and each individual inthe simulated population was tracked overthe duration of the simulation
period. Differentsimulation runs were conducted under a variety of hydrological conditions. At
each hourly time step, individuals were moved, and their hourly swim speed was determined
(as a combination of the time spent swimming within that hour and the predicted swimspeed
when actively swimming; Figure 2). The realized hourly swim speeds, along with environmental
(i.e., temperature) and individual characteristics (i.e., weight) were used to predict the standard
and active metabolicrates (thus we could measure energeticexpenditure)duringthat hour.
The simulatorthen repeated these steps (i.e., calculations of movement, realized swim speed,
and energy expenditure) foreach hour under a variety of hydrological conditions. The result
was a distribution of simulated energeticvalues, which could be summarized to derive
performance metrics on which to compare the hydrological scenarios.

The structure of the simulator model was based on patterns observed within field data. The
simulator’s parameter values were based on estimates from statistical models which were fitto
the observed field data. Linear mixed effects models were used to estimate general average
behaviourwith respectto predictors (Figure 2), and variance component estimates were used
for among-individual and hour-to-hourvariationsin the simulated individual’s response (i.e.,
residual error). An observation-weighting scheme was used in model fittingto account for the
differingnumber of detections perindividual, and the affected variance components estimates
(i.e., residual error) were adjusted to representvariability undera scenario of ‘complete data
collection’, which would betterreflect behavioural variability rather than variability associated
with data collection.
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Figure 2. Flow diagram illustrating simulator structure (blue) and environmental (teal), temporal (mauve)

and individual (orange) predictors of simulated fish behaviour.The bioenergetics simulator
operates on anhourly time step to assess respiration costs associated witha hydrology regime.

3.2 Field Data

Field observations were collectedin previous EMG telemetry (Taylorand Lewis 2009, 2010,
2011). Atotal of 5,208,838 receiverdetections (Bull Trout: 4,490,278; Mountain Whitefish:
718,560) were available overthree study years (i.e., 2008-2010) (Appendix A). The three fixed-
station receiverlocations were in areas where most of the tagged fish were found to
congregate, and the recorded detections should therefore be generally representative of
movements of fishinthe population at large (Taylor et al. 2014). A total of 88 Bull Trout and 33
Mountain Whitefish were surgicallyimplanted with a coded EMG transmitter (Lotek Wireless,
New Market, ON). Full details of surgeries can be found in Taylor et al. (2014) and Cooke et al.
(2004).
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3.3 Hydrological Data

Hourly averages of predicted hydrodynamic flow at each of the three fixed receiverlocations
were determined by averaging predicted flow from the BC Hydro HEC-RAS model (NHC 2016) of
the Middle Columbia River downstream of Revelstoke Dam (Figure 1). Generally, receivers were
believedtorecord fish within 400 m of their locations (Taylor et al. 2014). As such, predicted
flows at corresponding HEC-RAS river cross-sections were averaged togetheron an hourly basis
to determine the average hourly flow (Table 1). Water temperature at each of the three fixed
receiverswere assumed to be the same and was based on hourly-averaged temperature
readings from measurementstation 2 approximately 1 km downstream of the 2" fixed
telemetryreceiver.

Table 1. Model cross-sections from NHC (2016) HEC-RASmodel used when deriving the average hourly flow
conditions for each fixed receiver location (Figure 1).
Cross Section Data
Receiver Name Start End Summary
1 Revelstoke Dam 242 225 Hour Average
2 Scales Creek 218 212 Hour Average
3 Skull Point 182 175 Hour Average

3.4 Standardized Length to Weight Relationships

Estimates of weight were required as part of the AMR calculations. Existing standardized -
weight equations for Bull Trout (see Hyatt and Hubert 2000) were foundto under-predict
weights (as compared to those observedin the our Bull Trout field data), and did not distinguish
between sexes. Standardized-weight equations for Mountain Whitefish were not available. As
such, standardized-weight equations were derived foreach species based on the available field
data (a subset of our sampled fish were weighed, including 28 Bull Trout and 12 Mountain
Whitefish) usinga linearregression. Log-transformed weight was the response variable and fork
length and sex (Bull Trout only) were used as potential predictors, with AICc model selection
used to choose among potential prediction models (Appendix B). Sex-specificstandardized-
weight equations were not possible for Mountain Whitefish due to the lack of samplessize.

3.5 Standardizing EMG values based on field observations

Electromyogram (EMG) acoustic tags provided real time estimates of axial swimming muscle
activity. The EMG (muscle activation) data could then be converted into tail beat frequency
(TBF), and, by extension, into swim speeds (SS) if the body length was known (see Section 3.7).
However, raw EMG values had to first be standardized by subtracting off a baseline value (to
produce standardized EMG readings, SEMG). Importantly, EMG readings recorded from fish at
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rest varied among individuals due to individual differences in tag responses (Brown et al. 2007),
thus it was important to determine baseline EMG readings under no visible activity foreach
fish. In previousfield studies, the SEMG values were calibrated to observed TBF for a subset of
individual Bull Trout’s using swim tunnel tests (Taylor et al. 2014).

Unfortunately, while the SEMG to TBF relationships were readily available from previous work,
the baselines EMG values usedto derive the SEMG observations were not retained, making
field-based TBF predictions problematic. Withouta baseline EMG value, only the raw EMG
values (i.e., whatis transmitted by the inserted tag) was available for field based observations
in the Columbia River. Directly using EMG valuesin place of SEMG values would resultin bias
for predictedfield-based TBF and swim-speed predictions.

To deal with the loss of baseline EMG values, a work-around was developed to derive baseline
EMG valuesbased on field observations. Receiverrecords were queried for observations under
low river discharge conditions (i.e., less than 100 cms). Where sufficient records were available
(i.e., morethan 100 records), the lower1 % quartiles were used as an estimate of the baseline
EMG (Appendix A). The absolute minimum was not chosen to avoid using anomalous tag
readings as the baseline EMG value, which could positively bias swim speed predictions. Field-
derived baseline EMG values were then used to produce field-based SEMG values, which could
then be used in the predictive models of Bull Trout TBF and swim speed.

3.6 Predicting Tail Beat Frequency from SEMG

Tail beat frequency (TBF) was predicted from SEMG values based on swim tunnel trials of Bull
Trout performed by Taylor et al. (2014). The relationship between SEMG and TBF were
determined usinglinear mixed effect models based on the results from the calibration
experiments, usingthe nmle package (Pinheiro etal. 2018) in the R computing environment (R
Core Team, 2018). All modelsused log transformed SEMG readings, with random effectsto
describe among-tag differences. Because our data included repeat observations, an auto-
regressive structure withlag 1, (i.e., AR(1)) was used to describe model errors for each
individual (i.e., individual observations thatwere closer together intime were expected to be
more similarto each otherthan observations separated widelyintime). This structure was
determined by preliminary inspection of the SEMG to TBF calibration results using
autocorrelational and partial-autocorrelational plots, as well as by inspecting autocorrelation of
residuals from initial model fitting.

Two sets of TBF calibration equations were created: 1) one set applied to all tagged Bull Trout
based on the subset of individuals that were calibrated; and 2) anotherset was used to infer
TBF for only those individuals that were calibrated (which fita separate slope for each
individual; Appendix C). This was done because only 14 out of the 88 tagged Bull Trout had
been calibrated, and only 13 could be used because we could not derive a field-based EMG
baselines forthe 14t fish (see Table A1). The second calibration set was usedto confirm results
from swim speed predictive models.
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No SEMG to TBF calibration experiments were available for Mountain Whitefish, so TBF could
not be determined. By extension, instantaneous swim speeds (see Section 3.7) and proportions
of time spent swimming (see Section 3.8) could not be determined forthis species.

3.7 Predicted Instantaneous Swim Speeds

Each individual EMG reading was first converted to TBF, then the instantaneous swim speeds
were predicted based on the ‘TBF to swimspeed’ relationship that was published by Brett
(1995), who demonstrated a strong linear relationship between swim speedsin body lengths
per second (BL) and TBF: BL = 0.023(TBF) - 1.286 (P<0.001, r2=0.97). This conversion
equation has also been used by Taylor et al. (2014) to model Bull Trout swim speed, and is used
herein. Fork lengths (FL) were converted to body length (BL) based on the conversion factor
provided by Hyatt and Hubert (2000) for Bull Trout (BL = 1.049 - FL). Therefore, the final TBF
to swim speed (SS) conversion used was

S§S =1.049 X FL x (0.023 x TBF — 1.286).

This equation was used to predict instantaneous swim speeds that corresponded to a given
EMG reading recorded during a receiverdetection (based on the EMG to TBF conversion;
Section 3.6). Instantaneous swim speeds were then used to compute hourly averages of swim
speeds (Section 3.9) after adjusting for the periods of time in which fish were not actively
swimming (Section 3.8).

3.7.1 Validating Instantaneous Swim Speed Predictions

The predictedinstantaneous swim speeds derived from the instantaneous EMG readings (see
Section 3.6) provided an estimate of the individual swim speed at a single momentin time (i.e.,
at the moment the acoustic tag transmitted the EMG reading). With a large number of
observations for some individuals (i.e., greaterthan 100) under varying conditions, we were
able to approximate theircritical swim speed (U;) by determining theirmaximum observed
instantaneous swim speeds; and these approximations were compared to the known species-
specificvaluesthat were determined by Mesa et al. (2004).

3.8 Proportion of the Hour Spent Swimming

In the Bull Trout critical swim speed experiments (i.e., Ui tests) performed by Mesa et al.
(2004), itwas noted that a high proportion of fish would hold position by using pectoral fins as
hydrofoils (i.e., 77.5% of tested Bull Trout held positionin higherflows, making U,
determination problematic). Therefore, we assumed that Bull Trout (and potentially Mountain
Whitefish) inthe natural environment could also be expected to hold stationary without
beatingtheir tail fins using a similartechnique. The propensity to hold without tail beats could
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therefore affect our predictions of average hourly swim speeds, and by extension our estimates
of associated energeticcost.

The propensity of Bull Trout to hold positioninthe natural environmentwas determined by
estimatingthe proportion of receiverdetections (i.e., the proportion of instantaneous swim
speed measurements) that indicated an individual was swimming under differing
environmental conditions. Whether or not an individual was swimming was based on a
predicted TBF threshold of 58, which was observed as the cut-off for active swimmingin
Sockeye (Oncorhynchus nerka)(Hinch and Rand 1998) and has been used as the thresholdin
previous Columbia River Bull Trout work (Tayloret al. 2014). The proportion of the hour spent
swimming was determinedin a hierarchical manner similarto swim speed (see Section 3.8),
where averages of the proportion of the signalsindicatingactive swimmingwere first
determinedat the minute, followed by the quarter hour and thenfinally at the hour level. Only
hourly observations that were based on more than 50 receiver detections were retained.

A predictive model for the proportion of the hour spentswimming (p; ,) was then determined
by modellingthe logit of the response usinglinear mixed effects models. The linear mixed
effect models where of the general form:

K

logit(pi,h) = Z Predictor, + Tag(R)
k=1

where Tag(R) was an random variable representingindividual based differences in active swim
speeds and one or more predictors were included as fixed effects. The set of predictors used to
predict logit transformed proportion was the same as the active swim speed analysis (see
Section 3.8). Sample size corrected Akaike information criterion (AlCc) was used to rank
competing models (Burnham and Anderson 2002). A hierarchical approach was used where
primary predictors were first determined, followed by the inclusion of additional predictors.

Linear models were fit usingthe nmle package (Pinheiroetal.2018) inthe R computing
environment (R Core Team 2018) with a weighting scheme based on the number of minute
observations used to derive the individual hourly observation. Residual errors were modeled as
having an AR(1) (i.e., autoregressive lag 1) process to account for autocorrelation between
observations (i.e., observations of the same individual that were closerin time were expected
to be more highly correlated than hourly observations farther apart in time). This step was
deemed necessary after inspecting of the hourly proportions using autocorrelational and
partial-autocorrelational plots, which indicated that an autoregressive componentwas present.

Finally, because TBF calibration experiments were not performed on Mountain Whitefish, it
was not possible to associate EMG readings with whether or not Mountain Whitefish were
actively swimming and as such this analysis could not be performed.
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3.9 Computing Average Hourly Active Swim Speeds

Computingthe average hourly active swim speeds was complicated by three sources of
potential noise and bias:

1. Proportion of time spent swimming;
2. Unevendistribution of samplesacross an hour; and
3. Differingnumberof observations.

The first source of potential variation was the frequency with which an individual chosesto
actively swim withinthe hour. This may or may not be activelyrelated to the swim speeds
chosen when actively swimming. As such, hourly swim speed averages were based on
instantaneous observations where the individual was assumed to be swimming(i.e., see
Section 3.8), hereinreferredto as instantaneous “active” swim speeds.

The second and third source of variation related to the passive nature of data collection. EMG
and derived SEMG readings were recorded multiple times perhour wheneveratagged fish was
within proximity (i.e., roughly 400 m) of a receiver (Tayloret al. 2014). This represented a
passive data collection method, which may have been subject to random processes such as the
portion of time a tagged fish remained within proximity of the receiver withinan hour. As such,
raw hourly averages of instantaneous swim speeds (or EMG readings) could misrepresentthe
true response of an individual to the current environmental conditions. For example, if the
environmental condition changed over the course of an hour, and the fish was detected
frequently at the start of the hour and less so at the end, a raw average EMG reading for the
hour would be biased toward the behaviours that are associated with the first environmental
condition. Given that flow conditions can undergo non-trivial changes over the course of an
hour, this could add noise whentrying to predict how Bull Trout respond to environmental
conditions.

To counter these potential issues with passive data collection, average hourly swim speeds
were determinedina hierarchical manner based on predicted instantaneous swim speeds
(Section 3.7) usingthe followingsteps:

1. Compute within-minute averages of instantaneous active swim speeds;

2. Compute quarter hour averages for each individual, based on within-minute averages,
using a weighted average with a weighting scheme based on the total number minutes
observed withinthe quarter hour.

3. Compute an hourly average for each individual, based on quarter-hour averages, using a
weighted average with a weighting scheme based on the total number of available
minutes within each quarter hour.

Within-minute active swim speed averages were computed for each individual, based onthe

proportion of receiver detections that indicated the individual was swimming. Formally, this
was computed as:

10
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¥}, SSjm x I(TBF; 2 58)
SSim = 7
' - 1(TBF; = 58)

where ] isthe total number of receiver detections within minute m forindividual i, and
I(TBF; = 58) is an indicator function that returns 1 if the TBF is greater than 58 and 0
otherwise. Quarter-hourly averages were calculated as:

Migq =omin
55 0.25hr _ m=1%im X Wim
iq - ZMi'q ,
j:]_ Wl,m

where M; , isthe total number of minute averages available for individual i and quarter hour q,
E{n,;{‘ is the average swim speed for minute m and w; ,,, is the corresponding weightbased on
the total number of receiver detections within a given minute. The hour average is then
computed as

forindividual i and on hour h, where gg&zsm are the available quarterhour averages (with Q; ,

total quarter hours estimates) and w; , are the corresponding weights based on the total
number of available minutesfora quarter hour.

This hierarchical approach was developedto provide a temporally balanced estimate of the
average hourly active swim speed under variable environmental conditions and passive data
collection.

3.10 Predicting Hourly Active Swim Speed

Linear mixed effect models were used to predict the average hourly active swimspeeds (i.e.,
ﬁlh,rl, see Section 3.9) based on a suite of predictor variables that cover environmental,
temporal and individual specificvariables (Table 2). The linear mixed effect models were of the

general form:

P
log (SSr) = Z Predictor, + Tag(R),
p=1

where Tag(R) was a random effects term representingindividual based differencesin active
swimspeeds and one or more predictors were included as fixed effects. Linear models were fit
using the nmle package (Pinheiroetal. 2018) in the R computing environment (R Core Team
2018) with a weightingscheme based on the number of minute observations used to derive the

11
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hour swim speed average and an auto-regressive processwithlag 1 (i.e., AR(1)) onthe errors.
Residual errors were modeled as having an AR(1) process to avoid autocorrelation
(observations (i.e., S_S?,rl) of the same individual that were closer in time were expected to be
more highly correlated than observations that were farther apart in time). This step was
deemed necessary after inspecting preliminary hourly active swim speed averages using
autocorrelational and partial-autocorrelational plots, as well as the autocorrelation of residuals
from initial model fitting.

Support for the pool of proposed predictors were compared using AlICc model ranking ina step-
wise fashion. In the first step, support for a single predictors was determined, with subsequent
steps looking at combination of predictors. Early visualizations revealed clear differencesinthe
distribution of swim speeds by receiverlocation (Figure 1), so all models estimated predictor
related parameters separately for each location.

Table 2. List of covariates investigated as potential predictors of average hourly active swim speed.
Predictor Type Scope Values Notes
Revelstoke
D Scal
Location Factor Environmental am, >cales Receiver locations areindicated in Figure 1.
Creek, and Skull
Point
Location-specificaverage hourly discharge
Flow Continuous | Environmental | 0- 1,765 cms fromriver positions within the expected
rangeofeachreceiver(seeTable1).
Water Location-specificaverage hourly temperature
Continuous | Environmental | 6.7-12.4°C fromriver positions within the expected
Temperature .
rangeof each receiver (see Table 1).
Dawn and dusk periods were determined
. using maptools package (Bivand and Lewin-
D D
TimeofDay | Factor Temporal awn, aytl.me, Koh 2018) based on the nautical definition of
Dusk, and Night o .
twilight period (i.e.,a sunangle of 12 degrees
belowthe horizon).
DayofYear | Continuous | Temporal 270-343 gz:jrto predict systematic changes thatmay
Year Continuous | Temporal 2008-2010 See TableAl foryearlyBull Trout tag
releases.
Sex Factor Individual Female, Male See Table Al for moredetails.
Female (455 —
Fork Length | Continuous | Individual 674mm); Male | See TableAl for moredetails.
(435-830mm)
Female (931 - Predicted weights based on measured fork
Weight Continuous | Individual 3415¢g);Male lengths, see Section 3.4 for methodologies
(972-10,134g) | and Table Al for specificvalues.

12
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3.11 Estimating Markov Movements among Areas

Movements of tagged individuals amongthe three modeled areas (Figure 1) were assumed to
occur in a Markovian manner, with the probability of any transition occurring being
independent of any previous transitions. Estimates for the Markov transition probabilities were
generated using multi-state capture-mark-recapture (CMR) models available in Program MARK
(White and Burnham 1999). Preliminary inspection of the data revealed that most fish
remained at one location throughout the day. As such, multi-state CMR models were fit using
individual capture histories based on a daily time step, with strata corresponding to the three
fixedreceiverlocations (i.e., Figure 1). Fishwere assigned daily to a location based on the
receiverat which 75% or more of its detections were recorded. In situations where no receiver
met the 75% threshold for a givenfishina givenday, a zero (i.e., nodetection) was assigned for
that day.

3.12 Metabolic Costs

A general model for daily metabolism (R ;) for salmonids was developed by Stewartet al.
(1980), which considered contributionsfrom the standard active metaboliccomponents:

Ry=a-wk.ePT.evU

where Ry istotal daily metabolism (i.e., g-Oz-d'l), and w representsthe body weightin grams,
T representsthe water temperature (°C) and U is the swimspeed (cm/sec). Parameters a, 3,
p, and v represent empirical constants that can be estimated from observed experiments. The
standard metabolicrate (SMR) is therefore represented by the terms a - w# - eT while the
active metabolicrate (AMR) is represented by the term eYV. The impact of changes to
digestion metabolicrate (DMR) were not considered.

Differentsized fish can be expected to have differing absolute metabolicrates due to
differencesinsize. Thiscan be normalized by revising parameter values to return mass-specific
units (i.e., g-Ozg'l-d'l). Parameter estimates forthe SMR component were derived from Mesa
et al. (2013), while Lake Trout (Salvelinus namaycush) was used as a surrogate for the AMR
component (Table 3). Models developed for Lake Trout have previously beenusedas a
surrogate for Bull Trout (Beauchamp and Van Tessell 2001).

Metabolic parameters of Mountain Whitefish were based on estimatesfrom Brook Trout
(Salvelinus fontinalis), a fluvial salmonidae with similardiet (Tang etal. 2000) and AMR
parameters based on Lake Trout as a surrogate (Table 3). Valuesfrom Tang et al. (2000) were
converted to gram-specificvalues based on an approach suggested by Stewart et al. (1983).
Mountain Whitefish respirationrates were not assessed due to the inability to predict swim
speeds (see Section 3.7).

13
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Table 3. Parametervalues for standard and active metabolicrate components.
Lake Trout Brook Trout Bull Trout Mountain Whitefish
(Salvelinus namaycush) (Salvelinus fontinalis) (Salvelinus confluentus) (Prosopium williamsoni)
Stewartet al. Tangetal. Mesa etal. Current Current
Parameter (1983) (2000) (2013) Study Study
a 0.0100 0.0766 0.0009 0.0009 0.0766
15 -0.295 -0.250 -0.1266 -0.1266 -0.250
p 0.059 0.0173 0.0833 0.0833 0.0173
v 0.0232 0.0232 0.0232
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4 Results

4.1 Standardized Weights

A subsample of sampled Bull Trout (Table A1) and Mountain Whitefish (Table A2) had wet mass
measured at the time of tagging. In general, log-transformed weightsincreased as a linear
function of length (Figure 3) as expected. The published standardized weightformulafor Bull
Trout (Hyatt and Hubert 2000) did not adequately predictthe mass of malesin the Middle
ColumbiaRiver (Figure 3), and there was no available standardized-weight function for
Mountain Whitefish. Assuch, for this study we derived our own standardized weight formulae
based on the observed ‘logweight to length’ relationshipsin our sampled data.

A) Bull Trout B) Mountain Whitefish
Famale == Male b Famale * Unknown
E " L 000
2 000 e
@ 3,000 / <
= N
2 74
3 7 __
E I‘ ;/ ’ F & hl.'_l -
m Jf
2 ./,
O o
1,000 # o
'-u:l:l'i Z-u:l:-"- -'flll': . . .!L:: ;IZrIIZ
Fork Length (mm)
Figure 3. Observed mass to fork length relationship in A) Bull Trout and B) Mountain Whitefish. Dashed

linein A) Bull Trout plotindicate the weight predicted by Hyatt and Hubert (2000). The y-axis scaling
uses logbase 10. Shadedregion indicates the 95% confidence regionfor the regression.

For our Bull Trout standardized weightformula, simple linearregressions were fitto log
transformed wet weights, and support was compared using AICc model ranking (Table B1).
Four possible models were considered that eitherforced the intercept through zero, or fita
sex-specificintercept, and either estimated a common slope or separate slopesfor each sex.
The model that fita sex-specificintercept, but with a shared slope (i.e., perunit change inlog
weightas a function of fork length) had the most support (i.e., lowest AAICcscore). Estimates
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from the top supported model resulted inthe following standardized weight equation for
female and male Bull Trout:
- {exp (4.146 + 0.00593 x FL) if female,
7 (exp(4.298 + 0.00593 X FL) otherwise’

Insufficientinformation was available to estimate separate male and female Mountain
Whitefish weight equations (in fact, we had no available weight measurements for males;
Appendix A, Table A2). As such onlytwo linearregression models were considered, with top
support for the model that fita non-zerointercept(Table B2). Estimates from the top
supported model gave a single standardized weight equation for Mountain Whitefish:

W; = exp(2.774 + 0.00999 x FL).

4.2 Predicting Instantaneous Active Swim Speed

The maximum instantaneous swim speeds (across the whole study area) were determinedfor
each individual that had 1000 or more observations (Figure 4) by queryingtheir instantaneous
active swimspeeds (see Appendix C). These provided an empirical estimate of critical swim
speed (U-crit), where a strong linearrelationship was observed between body length and
observed maximum swim speeds, especially forobservations using the universal calibration
equation.

Sex-specificdifferences were observedin the ‘length to maximum swim speed’ relationships
(Table 4), eitherwhen determined from directly calibrated individuals (Figure 4a), or when
using the universal calibration approach (Figure 4b). Males showed a consistent positive
association between maximal swim speed and fork length, while females showed a neutral or
potentially negative association. Underthe universal calibration approach (Figure 4b) there was
little variation among locations in the ‘length to maximum swim speed’ relationship, though the
fitwas tightest at the Revelstoke Dam receiverlocation (Figure 1), suggesting that conditions
there may be more challenging.

Slope estimates for the forklength to maximum swim speed relationships from the two
calibration approaches were also comparable, with higherlevels of uncertainty for the
individual based calibration approach due to smaller sample sizes (Table 4). This suggests that
when appliedto natural conditions both approaches were producing similarestimates of swim
speed performance.

When the estimated regression relationships were extended outside the range of our observed
fork lengths the maximum observed instantaneous swim speeds overlapped with forced critical
swimspeed experiments by Mesa et al. (2004) on Bull Trout (see Figure 4, star symbols). This
was especially true of universally calibrated males nearthe Revelstoke Dam receiver, which
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showed the strongest positive association between length and maximum swim speed
relationship (P< 0.001; r? =0.96) and the closest agreement with Mesa et al. (Figure 4b).

A) Individuals Calibration Equations
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Figure 4. Maximum observed swim speeds of Bull Trout in the Middle Columbia Riverusing A)individual
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specific calibration equation and B) a universal TBF calibration equation (Appendix C). Star
symbol indicates independently derived U-crit estimate by Mesa et al. (2004). Shadedregion
indicates 95% confidence region for the regression line (which excludes the Mesa et al. data).
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Table 4. Slope estimates for the fork length to maximum observed swim speed (i.e., U-crit) relationship
based on the individual based and universal calibration approaches. 95% confidenceinterval is
indicated inparentheses.

Sample Size Slope Estimate

Individual Universal Individual Universal

Location Sex Calibration Calibration Calibration Calibration
Revelstoke Dam Female 5 20 -0.16(-0.47,0.15) -0.04 (-0.15,0.06)
Scales Creek Female 5 21 -0.16(-0.47,0.15) -0.05(-0.15,0.05)
Skull Point Female 5 21 -0.17(-0.48,0.14)  -0.05(-0.15,0.05)
Revelstoke Dam Male 6 26 0.30(0.00,0.59) 0.30(0.25,0.36)
Scales Creek Male 8 32 0.23(0.04,0.41) 0.24(0.19,0.28)
Skull Point Male 7 29 0.23(0.04,0.41) 0.33(0.28,0.37)

The smallerfish tested by Mesa et al. showed the biggest deviation from the extrapolated
regression line, which could indicate: 1) a potential bias caused eitherby the calibration
methodology, and/or the use of observed maximum speed as an estimate of critical swim
speed; or 2) a potential breakdown of the straight line association between body size and
critical swim speed relationshipinsmalleror younger Bull Trout.

Regardless of calibration technique employed, female Bull Trout displayed a non-significant (P
= 0.42) negative association with length and significantly lower maximal swim speeds (P<
0.001). This finding was unexpected and may be related to the fact this populationis likely to
have spawned prior to or during the Septembercommencement of the EMG tracking period
(McPhail and Baxter 1996).

Due to the comparable maximum swim speed relationships and the larger sample sizes, results
from universal calibration approach were used for the remainder of the analyses.

4.3 Proportion of Time Spent Swimming

Allinstantaneous EMG records were summarized on an hourly basisto determine the
proportion of the records where Bull Trout were assumed to be swimming (i.e., aTBF value of
58 or greater). Thiswas used as an estimate of the proportion of time spent swimmingas
previous studies found no association between flow conditions and signal reception (Taylor et
al. 2014). The observed proportion of the hour spent actively swimming showed strong
associations with flow conditions, sex and length (Figure 5). Box plots showingthe distribution
of individual responses (forindividuals with a total of 100 hours or more of observations) are
also available in Appendix D (Figure D1).

Male and female Bull Trout displayed different behaviours underdiffering flow conditions.
Smallerfemale Bull Trout appear to spend, on average, a larger proportion of time swimming
compared to larger females (Figure 5). Across flow conditions, females tended tospend a larger
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proportion of time swimming as compared to males, although this did not occur for all
individuals and locations.
Length 45-50cm -+ 55-60cm -+ 65-70cm -+ 75-80cm -+ 85-90cm
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Percentage of hour spent swimming for female (left) and male (right) Bull Trout under varying

river discharge conditions, by receiverlocation (rows). Individual responses are connected by
lines, andthe color indicates length category. Bars indicate 95% confidence interval for the mean
response of individual observations. The same datais shownwith logit scaling on the Y-axis in Figure

D1.
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Compared to female Bull Trout, males showed the inverse body size relationship, with smaller
individuals tending to swim less at lower flow conditions than larger individuals ( Figure 5).
Larger individuals (i.e., those with total body length of 75 cm or larger), tended to spend most
of theirtime swimming regardless of the underlying flow conditions. Compared to larger males,
smaller males (i.e., those with a total body length less than 60 cm) tendedto swimlessunder
low flow conditions, but spent proportionally more time swimming as discharges increased,
especially underhigherdischarge conditions (i.e., 1,000 cms or greater) at the Revelstoke Dam
receiverlocation (Figure 5). Comparedto smallerand larger males, intermediate sized males
showed a diversity of responses, with most demonstrating a higher propensity to swim as river
discharges increased (Figure 5).

Linear mixed effect models were developedto predictthe percentage of time spent swimming.
Models used a logit transformation of the hourly proportions as a response variable (see Figure
D1) and used a multi-step approach. In the first step, there was strong support for river
discharge as a primary explanatory factor (Table D1). Because of this, and due to observed
differencesinbehaviourbysex (e.g., Figure D1), the second model ranking stepincluded sex as
an additional predictor, along with the environmental factors that we consideredin the first
step. Two versions of each of seven models were considered during step two: one version
pooled across sex, and the othersincluded sex-specific parameterizations (Table D2). Of the
seven models considered, two models had the majority of support (i.e., AAICc< 2) when
poolingacross sex, while only one model had virtually all the support (i.e., AICc weight of one)
in the sex-specificformulation. The top sex-specificmodel also had much more support (i.e.,
AlCc score that was 76 AlCc units lower) than the top model that pooled across sex, indicating
virtually all support is for a sex-specificapproach. As such, the top sex-specificmodel (one that
included sex, flow and temperature) was used as a baseline model inthe final model ranking
step.

In the final step, additional predictors were considered alongside the sex-specificflow and
temperature model selectedinthe previous step (Table D3). Of the nine models considered,
one model had the majority of support (i.e., AICc weight of one) and included location-specific
size responses with a size and temperature interaction on top of the factors from step two. The
predicted mean responsesfrom the top model, withoutindividual variation, were visualized as
a function of discharge and fish size under three temperatures (Figure 6; this can also be viewed
on the original logitscale in Figure D3). Extrapolations for river discharges up to 2,200 cms were
also included and showed a small increase in the predicted value relative to predictionsunder
the maximum observed discharge of 1,765 cms.

Compared to raw responses (Figure 5), the mean response showed much lessvariability,
indicating that there is a large degree of individual variability in behavioural responsesto
environmental conditions. Estimates of individual variability(&tsa"gim=1.35; 95% Cl: 1.10, 1.67)
were roughly equivalent to the residual variation (63%™=0.91; 95% CI: 0.89, 0.93), which
represented how variable the response was on an hourly basis within individuals (assuming 60
minutes of observations). Both estimates of variability represent the response on the logit

scale. Finally, the estimated autoregressive correlation coefficient (5fmm= 0.71, 95% Cl: 0.70,
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0.72) indicated a strong correlation among the observed individual responses (i.e., logit-
transformed hourly proportion spent swimming) after controlling for environmental predictors
and individual specificeffects. The autoregressive component of the model assumed a time-
step lag of one.
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Figure 6. Predicted mean percentage of an hour spent swimming by temperature (panel columns),

location (panel rows), and size (line colour) for A) female and B) male Bull Trout, based on the
top supported model (Table D3). Vertical dashed lineindicates highest observed river discharge
conditions (i.e., 1765 cms), with predictions to the right representing extrapolations.

4.3.1 Simulator Formulation

As part of the pre-computation step (see Section 4.6), the energetics simulatorused the top-
supported model (Table D3) to predict logit-transformed mean response values

(i.e., Iogit(pf",’l”im)) under a variety of simulation scenarios. Individual and temporal variabilityin

the proportion of an hour spent swimmingwas added at each time step (Figure 2) based on the

estimate ow™ for individual variation, and on estimates of o;oyq" and ®;""™ (individual-

specifictemporal variability based on an AR(1) process). For individual i in hour h, the
proportion of the hour spentswimmingwas determined as:

—

pinm = expit (logit(pIi™) + @} + 87 + ¢y

Prediction uncertainty associated with the linear mixed effect model were represented by the

swim

wy""™error term (i.e., wipm~N (O, SE [Iogit(pf_‘,"l’im D) Individual differences were
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represented by the random variable 5?"‘”’“, which was a normally distributed random variable
(i.e., 6?‘”‘"‘ ~N(0, 6tsa"‘g’im)). Temporal variationin time spent swimming was represented by the
random variable {l-s,‘,’l"im which followed an AR(1) process, where the size of an individual’s hourly
deviation depended on the deviation inthe previous hour (i.e,, JEim = wim. (l.sfief +eipm
and ei%im represents white noise inthe logit-transformed response onthe hourly time scale

i,h resid

space to anti-logitspace (i.e., expit(u) = (1/e# + 1)~ 1).

(i.e., ewim N(O,&S""im ) The expitfunction converts logit-transformed values from logit

4.4 Active Hourly Swim Speeds

Active hourly swim speeds were calculated based on nested hourly averages of instantaneous
swim speeds when Bull Trout were actively swimming (see Section 3.9). Average hourly swim
speeds were log transformed in order to stabilize variability and skew ( Figure E1). Observed
average hourly active swim speeds showed a positive association with river discharge for both
female and male Bull Trout and potentially area-specificresponses to discharge (Figure 7).
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Figure 7. Average female (left) and male (right) Bull Trout swim speeds by river discharge, receiver

location (rows) (Figure 1) and body length category. Individual responses are connected by lines.
Error barsindicate 95% confidenceintervals.

Active hourly swim speeds also appeared to show some signs of a second order polynomial
response to discharge in some locations that was shared between female and male Bull Trout
(Figure E2). Differing study years generally followed the same trends with potentially some
differences by size category.

Due to the differing observed relationships between average hourly active swim speeds and
discharge by location and sex, a baseline linear mixed effect model was fit with the following
fixed effect structure:

log(SS) = Location: Sex + Location: Sex: Flow + Location: Flow?
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where the Location: Sex + Location: Sex: Flow term represented a separate linear
regression of log-transformed hourly swim speed against river discharges for each combination
of sexand location. The Location: Flow? term represented a second order polynomial that
was independently estimated by area (i.e., allowing for different 2" order curvatures by
location) but shared across sex. Sex was not includedinthe second order polynomial effects
because these effects are typically difficult to estimate, and the raw data plots showed similar
2nd order curvatures by area for both sexes.

Support for additional predictors not in the baseline model were assessed using AICc model
ranking (Table E1). Similarto the baseline, each additional predictor was modeled as havinga
location-specificeffect. The model that included a location-specificlight effect(i.e., dawn,
daytime, dusk, and night; see Table 2) had virtually all the support (i.e., AICcweight of one), so
it was added to the baseline model and support for the remaining predictors was assessedin
the final model ranking step (Table E2).

Similarly to the first model ranking step, a single model, which considered day of year and
temperature (along with the interaction), held the vast majority of support. The mean
response, withoutindividual variation, was visualized as a function of discharge, temperature,
location and sex (Figure 8). Swim speedsin both Revelstoke Dam and Skull Point increased
under the observed discharged conditions (i.e.,0to 1,765 cms), but an inverted “U” shape was
indicated for Scales Creek. Mean active hourly swim speeds were well below critical swim
speeds (Figure 4), indicating capacity for increased speeds. Estimated mean active swim speeds
were also slightly lowerfor female Bull Trout as compared to males. Extrapolations for mean
active swimspeeds up to 2,200 cms were also included (Figure 8) and showed predicted values
well below the maximum observed swim speeds, which were typically close to or greater than
100 cm/sec (Figure 4).
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Figure 8. Predicted Bull Trout mean active hourly swim speedresponse as a function of river discharge, by

sex (color), temperature (panel columns), and fixed receiverlocation (panel rows). Shaded region
indicates 95% confidence region for the mean response. Vertical dashed line indicates highest
observed river discharge conditions (i.e., 1765 cms), with predictionsto the right representing
extrapolations.

The top model was also used to estimate an autoregressive correlation coefficient onthe

residual error (33fpeed = 0.68, 95% Cl: 0.67, 0.69), which indicated a strong correlation among
observed log-transformed hourly individual swim speeds after controlling for environmental

predictors and individual specificeffects. Variance component e stimates from the top model

also indicated that the among individual variation in swim speeds (i.e., 6tsangEd =0.48; 95% Cl:

0.39, 0.58) was similar, but higher than the hour-to-hourindividual variation (6:62??: 0.196;
95% Cl: 0.193, 0.200), which we assumed was the variation associated with 60 minutes of
observations. Fewerobservations withina minute would be expected to have greater residual

variation, giventhat an observation weighting scheme was used.

4.4.1 Simulator Formulation

As part of the pre-computation step (see Section 4.6), the Bull Trout energetics simulator used
the top supported model (Table E2) to predict the mean log-transformed active hourly swim
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speeds (i.e., log(S"Ei,h)) under novel hydrological scenarios. Individual and temporal variability

in hourly active swim speeds was added at each time step (Figure 2) based on the estimates of

atigeed and individual- specifictemporal variability (based on an AR(1) process using the

estimates for ®; and Ures.d ) For individual i the swim speedin hour h was determined as,

SSactlve — eXp(log(SSlh)+a)Speed + Sspeed (speed ’

where a);lpeEd represented prediction uncertainty associated with the linear mixed effect model

(I e., wSpeed N(O SE[log(SSlh)D) and 5Sp ed represented inter-individual variation was a

normaIIy distributed random variable representing average differences inlogtransformed

~ speed

active hourly swim speeds betweenindividuals (| e., SSpeed N(O, Otag ) Temporal variation

in log transformed active swim speeds was represented by the random variable C speed | hich
followed an AR(1) process, where the size of an individual hourly swim speed deV|at|on

speed __ q)speed . (speed

dependedonthe deviationinthe previous hour (1 e, Cin ih-1 T ei,h), and €;,

speed A~ speed
represented white noise in hourly swim speeds (| e, €p N(O, 0 \osid )

The final realized hourly swim speedis then the product of the proportion of the hour spent
swmmmg(psw'm) and the active hourly swim speed (SS{’}‘;l“"e), that is

SSrealized — pSWIm X SSaCt“’e
i,h i,h

forindividual i in hour h.

4.5 Site Selection and Movements

The simulator handledsite selectionand movementsin two steps:

1. Individuals were randomly assignedto a starting location based on predictedsite
preference probabilities; and

2. Individuals were moved at the start of each day based on the estimated movement
probabilities.

Each was estimated separately for Bull Trout and Mountain Whitefish based on receiver
detectionrecords.

4.5.1 Site Selection

Movements between locations were determined by analyzingthe number of receiver
detectionsthat occurred at a single location over differing time scales for both species (Figure
9). At shorter time scales (i.e., hourly or daily) most individuals, regardless of species or sex,
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spent the vast majority of time at a single location. As time scales were extended (i.e., weekly
or monthly), a large proportion of time was still spentat a single location, but to a lesserdegree
than the shorter time scales.

Site selection, as measured by proportion of time spent at a site, appearedto be related to
body size for male Bull Trout but lessso for female Bull Trout (Figure 10a). Smaller male Bull
Trout appearedto spend proportionately more time at Revelstoke Dam, while larger male Bull
Trout spent more time at Skull Point. Preference for Scales Creek appeared to be largely neutral
across the range of tagged male body sizes. By contrast, female Bull Trout appearedto show
neutral preferencesfor all three sites across all of the tagged body sizes (Figure 10a). Mountain
whitefish also showed some indication that site preference was related to body size, but sex-
specificresponses were unclear due incomplete sexing of tagged fish, and to a lack of
confirmed males among the tagged fish (Figure 10b).

The proportion of time spentat each location by Bull Trout and Mountain Whitefish wasalso
assessed under differingriverdischarge conditions (i.e., low discharge: <500 cms, medium
discharge: 500-1000; high discharge:> 1000 cms for Bull Trout (Figure F1) and Mountain
Whitefish (Figure F2). Both speciesshowed similarsite selection preferences as they did when
discharge was ignored (Figure 10). Female Bull Trout again showed a fairly equal preference for
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Figure 9. Percentage of receiver detections occurringat one location within a day for Bull Trout and
Mountain Whitefish.

the three sites across body sizes and discharge conditions (Figure Fl1a), while male Bull Trout
exhibited asimilarsize-based preference, with smaller-sized fish preferring Revelstoke Dam and
larger-sized individuals preferring Skull Point, and with no discernable differencesamong
discharge condition (Figure F1b). Finally, for Mountain Whitefish there was insufficient datato
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draw any conclusions about sex-specificlocation preferences, but there were potentially some
body-sized preferences under lower discharge conditions (Figure F2).
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4.5.1.1 Simulator Formulation

Predictions of site preference inthe simulator were therefore based on patterns observedin
proportion of time spentat each location (p%) for Bull Trout. A separate linear mixed effect
model was fit for male (length by location) and female (length only) Bull Trout, using logit
transformation of the observed proportion of time spent at each location (p*) as the response
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variable. The fixed effect portion of the modelincluded a full factorial length by location
relationship formales, that is,

logit(p{*) = Location x Length + Tag (R)
while forfemales onlylength was considered:
logit(p{*) = Location + Tag(R).

In these models Location and Length represented fixed effects, while Tag (R) was a random
effect. The Location * Length fixed effectterm represented a full factorial design where a
separate interceptand slope was fit for each location.

Predictions from these linear mixed effect models (i.e., Iogit(f)'l‘\l)) were used estimate

multinomial selection probabilities at the start of the simulation experiment, by normalizingthe
predicted valuesto ensure they summed to unity, that is

expit (logit(f)?))
3 _, expit (logit(ﬁf‘ )

pa —
I'IJO -

Here @‘g representedthe probability of individual i selectinglocation a at the start of the

experiment(i.e., Zzzl‘ljgl =1)and Iogit(//)lﬁ) was the predicted average from the linear mixed
effect models. Initial locations at the start of the experiment(L;) were then selected from a

multinomial distribution (i.e., Li~MuItinomiaI(‘ﬁF)).

4.5.2 Movements

Once individuals were assigned to an initial location, the energetics simulator would also need
to consider how and whenindividuals transition between the three receiverlocations (Figure
1). First-order Markovian transitions were assumed and estimated using the multi-strata model
in Program MARK (White and Burnham 1999). Estimating hourly transitions was not
computationally feasible due to the size of the hourly capture historiesand the number of
transitions modeled. Instead, daily transition probabilities were estimated, furtherjustified
based on the similarity in movement behaviours compared to longerdurations such as weekly
or monthly movement patterns (Figure 9). First order Markov transition probabilities were
estimated based on a multi-strata CMR model using daily transitions (Table 5).
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Table 5. Estimated daily Markov transition probabilities for Bull Trout and Mountain Whitefish. Rows
represent currentlocation and columns represent transition probabilities for the threereceiver
locations (Figure 1). RD =Revelstoke Dam; SC =Scales Creek; SP = Skull Point.

Bull Trout Mountain Whitefish

Female Male Pooled Across Sex

RD SC SP RD SC SP RD SC SP
RD | 0.88 0.05 0.08 0.85 0.08 0.07
SC | 0.12 0.77 0.11 0.10 0.83 0.07
SP | 0.03 0.05 0.91 0.03 0.03 0.94

4.5.2 1 Simulator Formulation

Transition probabilities were based on estimated transition probabilities from Table 5. For
example, male Bull Trout have the following daily transition probabilities,

0.85 0.08 0.07
WYyae =10.10 0.83 0.07|,
0.03 0.03 0.94

where rows represented the current location (a = {1,2,3}) and columns represented the
transition probabilities forthe nexttime step. Movements betweenhour h — 1 and hour h
were restricted to the start of each day, ifavailableinthe test hydrology scenario, based on the
following multinomial draw,

Multinomial (Wyex, (Lip—1)) if his midnight

)

Lip~

Lip—1 otherwise

where W, (Li,h—l) representedthe transition probabilities associated with beingin location
L; n—1 in the previous hour, otherwise individuals remained at their previous hourly location
(i.e.,Li,h_l).

4.6 Example Energetics Comparison

An energetics simulator could only be builtfor Bull Trout due to a lack of EMG calibration
experiments available fortagged Mountain Whitefish. While both female and male Bull Trout
EMG signals could be calibrated for swim speed estimates, femalesattimesalso showed
different swimming behaviours, especially with regards to critical swim speeds (Section 4.2) and
the proportion of time spent swimming (Section 4.3). Because there were concerns that female
swim behaviourwas affected by the proximity to spawning, the simulatorexample analysis has
focused on male Bull Trout.
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The simulated male Bull Trout respiration energetics were compared under months with low
and high discharge as a demonstration of the simulator (Figure 11). These two months contrast
a low discharge, hightemperature hydrology regime with a higherflow, lowertemperature
regime. September 2010 had aloweraverage hourly discharge rate of 429 cms, but a higher
average hourly temperature of 11.8 °C. In comparison, November 2010 had an average hourly
discharge rate of 968 cms and average hourly temperature of 9.4 °C.
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Figure 11. Hourly river discharge and water temperature at the Revelstoke Dam receiverin A) September

and B) November 2010. The two regimes were used to represent a lower discharge, higher
temperature and a higher discharge, lower temperature scenarios.

The respiration energetics of 500 male Bull Trout were simulated over 719 hours using the two
example hydrology regimes (Figure 11). Estimates of the average daily respiration load was
determined by first averaging daily respiration energetics for each individual, then averaging for
the population each day. Simulations were repeated 1,000 timesto determine the variabilityin
the average daily population respiration rate for each hydrology regime.
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Within a giveniteration simulated male Bull Trout showed both hourly variability withinan
individual as well as betweenindividual variation, with simulated individuals showing adiversity
of emergentbehaviors (i.e., active metabolism row; Figure 12). The two main components of
respiration are standard and active metabolism (see Section 3.12) which are broken out for
each example individual. The active metabolicrate component reflects average daily swim
speeds, whichis the combination of behaviour decisionsinresponse to environmental
conditions (e.g., discharge, temperature, time of day), individual variation, and stochasticity.
The standard metabolicrate is the minimum metabolicrate neededtosustain life at a given
temperature, whereas the active metabolicrate acts as a multiplieragainst the standard
metabolicrate to determine the respiration rate (see Section 3.12).

A) September 2010 B) November 2010
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Figure 12. Daily respiration rates for five randomly selected individuals with arange of body sizes from the

simulated populationbased on the September (A) and November (B) hydrological regimes (see

Figure 11). Respiration has been broken down into the two primary component pieces (first two
rows) as well asfinal respiration values (bottom row). Lineindicates the daily average and shading
indicatethe 2.5 and 97.5 percentiles of the simulated hourly values from a single simulationrun. Size
of the simulated male Bull Troutis indicated inthe panel strip text.

Individual variability in active metabolicrate relatesto differing activity levels, which can be
seenas a shiftingup or down of the active metabolism multipliervalue insimilarsized
individuals (active metabolism row; Figure 12). Individuals with higher activity levels also
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showed highervariation in hourly metabolicrates than less active individuals (range indicated
by shading; Figure 12).

Estimates of average daily respiration for the population was determined from the simulated
hourly individual energeticsin a hierarchical manner:

1. Estimates of daily individual energeticrates by averaging individual hourly energetic
rates for each day and simulationiterations; and

2. Estimates of population daily averages for each simulationiteration, by averagingthe
individual daily averages.

This provided a distribution of daily population averages, which can be directly (Figure 13), or
estimates of a cumulative metabolism undereach hydrology regime (Figure 14). Average daily
respiration estimates (i.e., Figure 13a) are presented on a gram specificbasis (i.e., pergram of
fish) and provide a way to determine which days produced significant differencesin either
standard metabolicrate (i.e., firstrow; Figure 13a), active metabolicrate (i.e., second row;
Figure 13a) orrespiration (i.e., combination of standard and active, third row; Figure 13a).
Shading indicatesthe 2.5 and 97.5 percentiles fromthe 1,000 simulationruns. This indicates the
range of daily values a simulated population of 500 Bull Trout can be expectedto exhibit(i.e.,
95% of simulated population realizations). A confidence band was not includedin the standard
metabolism estimates as temperature was only known at a single location, and all individuals
were assumed to experience the same hourly temperature, and as such uncertaintyin standard
metabolicrate could not be included. In contrast, active metabolicrate showed a high degree
of day-to-day variability within a regime and between regimes with November 2010 tending
towards higher rates (i.e., second row; Figure 13a). Differencesin average daily active
metabolism between regimes was largely the result of differencesinthe proportion of each
hour spent swimming (i.e., top row; Figure G1), rather than substantive differencesinthe
average hourly swim speed (i.e., middle row; Figure G1).

The percent differences in metaboliccomponents were also compared (Figure 13b). These
showed a much smallerdegree of uncertainty as prediction errors will cancel on any given
simulationiteration when making a comparison between two hydrology scenarios. Aswith the
daily values, shadingindicates the 2.5 and 97.5 percentiles forthe 1,000 simulationruns. Days
where the confidence band does not overlap zero (i.e., noaverage difference) can be
interpretedas a “significant” differences. While there were significant daily differencesin
standard and metabolicrates (i.e., firsttwo rows; Figure 13b), total respirationtendedto over
closeto zero (i.e., bottomrow; Figure 13a). This indicates that male Bull Trout may be makinga
potential trade-off between standard and active metabolicrates, where conditions that result
in a higher standard metabolism may be offset with a reductionin active metabolism, through
less time spent active swimming.

Finally, the total respiration load of the two hydrology regimes can be determined by
comparing the cumulative respiration (Figure 14). As before shadingindicatesthe 2.5 and 97.5
percentilesfromthe 1,000 simulation runs. Percentdifference comparison (Figure 14b) again
indicated that both regimes produced similarrespiration demands, despite large differencesin
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flow and temperature, with the November 2010 regime showing marginally significant
difference by the end of the 30 day period (Figure 14b; mean: 9.7% reduction; 95% Cl: -0.9%,

19.6% reduction).
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Figure 13. Comparison of the population daily respiration rates for the September and November 2010
hydrological regimes (A) and the percent differences (B). Respiration has been broken down into
the two primary component pieces (firsttwo rows) as well as final respirationvalues (bottom row).
Solid lines indicates the daily average and the shadingindicates the 2.5 and 97.5 percentiles from

1,000 simulations.
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Figure 14. Per capita cumulative metabolism per gram of fish over the September and November 2010
hydrological scenarios (A) and the percent differences (B). Solid lines indicates the daily average
andtheshadingindicatesthe 2.5 and 97.5 percentiles from 1,000 simulations.

4.7 High Discharge Extrapolations

The current EMG telemetry component of the study encountered a maximum river discharge of
1,765 cms, but there is concern over energeticconsequences of potentially higher maximum
discharge magnitudes. Predicted average daily energeticvalues were calculated for a range of
temperatures and river discharges up to 2,200 cms (Figure 15). As expected, standard
metabolicrate was a function of temperature, and was not sensitive toriverdischarge values.
Active metabolicrates indicated a curvilinearincrease and higher variability with higher
discharge. Predicted active metabolicrates were also quite similarunderdifferenttemperature
conditions, largely due to differencesin percentage of time spent swimmingbalancing
differencesinactive swimspeeds (Figure H1). Explorations beyond 1,765 cms showed averages
within the range of daily activity rates observedin the example hydrology comparison (Figure
13, middle row), but with higher extreme values (Figure 15, middle row). These values were
also well within biologically plausible values, which can be as high as seven (7) times SMR under
routine activities (Tang and Boisclair 1995). Extrapolations also showed uncertainty range
(shading, Figure 15), which was the result of higher prediction errors. Finally, total respiration
showed a similarcurvilinearincrease as active metabolism (bottom row, Figure 15) with the
average value within example hydrology (middle row, Figure 13), but with higher extreme
values. Overall, the tested discharge extrapolations that wentup to 2,200 cms appearedto
produce plausible results.
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4.8 Pre/Post Rev5 Comparison

Average daily energeticsin a population of 500 Bull Trout were compared across four seasons
and under base and peak flow conditions based on 14 days randomly chosen from the median
conditions or days with peak flow conditions (Appendix ).

Overall, the energetics resultsindicated a larger inter-season difference in respiration than
across REV 5 periods withina season for both baseline conditions and peak flow conditions
(Figure 16). The uncertainty ranges, which capture individual variationin behaviouras well as
estimate uncertainty, showed a range comparable to the inter-seasonal differences. Average
gram specific per capita respiration between the pre- and post REV 5 periods was very similar
with the post period showing similaror slightly highervalues for most seasons, except for
summer and fall under base conditions. These differences were small compared to theinter-
seasonal differencesand instances of loweraverage per capita respiration under REV 5 may be
related to large variation in hour-to-hour flow often observed within a day (Figure 11). That is,
peak energy expenditure associated with short-term peak flows under REV 5 conditions may by
offset by other parts of the day that may exhibitlower flow conditions.

Male energetics were considered to be representative of female energetics forall seasons
exceptfall, when spawningoccurs. In this case the female-specificenergetics model was used,
as empirical data usedin this modelislikely reflective of the spawning period and female-
specificbehaviordiffered duringthis period. Female specificrespiration estimatesin fall
showed a similar pattern to male-specific patterns exceptat a slightly lowerrate, which is not
surprising given that femalestended to exhibit sloweraverage hourly active swim speeds
during this period, especially largerfemales (Figure 8).
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Figure 16. Comparison of the per capita average daily metabolism per gram of male Bull Trout between pre
and post REV 5 conditions. Error barsindicates the 2.5 and 97.5 percentiles from 1,000 simulations.

5 Discussion

The primary focus of the study was the development of a model to assess Bull Trout and
Mountain Whitefish energetics under altered Middle Columbia hydrological flow regimes. A
further goal of these models was to assess the energetics requirements under maximum
discharge magnitudes greater than what has been explicitly studied to date. An energetics
model predicting respiration metabolism associated with novel hydrological regimes was
successfully built for Bull Trout, but currently could not be builtfor Mountain Whitefish due to
lack of data. Furthermore, when the Bull Trout energetics model was tested under discharge
conditions, greater than the maximum observedriver discharge of 1,765 cms predictions were
found to be biological plausible suggesting that the developed model will be useful in assessing
the energeticimpacts of higher maximum predicted discharges resulting from REV 5.
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The bioenergetics model considered the effect of hydrology regimes on metabolism (i.e.,
respiration) by consideringthe impact on standard and active metaboliccomponents, rather
predictingthe full energy budget. Fish energy expenditure is the result of three components:
the energyrequired for basic functioningand maintenance (termed standard metabolicrate),
the energyrequired for activity (active metabolicrate) and the energy required for digestion
(digestive metabolicrate). The effects of digestion were not directly considered as standard
and active metabolicrates were the two components most likely to be affected by altered
hydrological regime (Guénard and Boisclair 2015). Furthermore, these two physiological
parameters are typically of most interestto ecologists as they represe ntthe floor and ceilingin
aerobic energy metabolism (Norinand Malte 2011).

Temperature alterations undernew hydrology regimes affected the standard metabolic
component of the developed model, while temperature and discharge impacted predicted
behavioural traits, which was then used to model changes in active metabolism. For the active
metaboliccomponent of the model, a key partitioning was the division between swim behavior
(i.e., periods of inactivity) and active swim speed, which was estimated from the EMG telemetry
data. Predictions of active swimspeed generallyincreased with river discharge (Figure 8), but
swim behaviour (i.e., the decision to actively swim) arguably showed a stronger response to
discharge especially when considering extremes of body size and temperature (Figure 6).
Within the Bull Trout energetics model these two components were combinedto produce
estimates of realized hourly swim speeds, which was then used to determine active energetic
costs.

Of these two activity components there was less uncertainty associated with predictions of how
often an individual will be swimming, as opposed to the swim speed which had higher
uncertainty (Figure G1). The strength of the propensity to swim model component, may
indicate the importance of this behaviourin the natural environment, atrait that is known to
show a large degree of individual variability even underroutine swimming conditions (Tang et
al. 2000). Bull Trout also have an innate ability to hold position at the bottom of channels using
pectoral fins as hydrofoils under elevated flow conditions (Mesa et al. 2004). Other behaviours
that may be associated with this component include potentially adaptive behaviours such as
hidingin the velocity refuges downstream of rocks where eddies and slowervelocities existed
(Gido et al.2012) or deeperpools (Bunt et al. 1999). Taken together, these behaviours likely
representa suite of adaptations for minimizing energy expenditure duringunfavourable
swimming conditions. As such, these representan important behavioural componentto include
in an energetics model designed to assess water management strategies.

To date, investigating activity costs associated with hydroelectricriver flow have tended to look
at EMG or swim speedresponses as a whole, rather than partitioning activity into different
categories (Murchie and Smokorowski 2004, Cocherell et al. 2011, Taylor et al. 2012). Some
have even noted that there was a high degree of muscle activity unexplained by discharge, and
proposed behaviourtraits such as ‘flow refuging’ could be used to economize energy
expenditures (Tayloretal. 2012). Other species, such as juvenile White Sturgeon (Acipenser
transmontanus), did not exhibit swim speed responsesto altered discharge, but rather opt to

39



CLBMON-18 Bioenergetics Model EA3906

hold station at the cost of feeding opportunities (Geistand Brown 2005). As such, to our best
knowledge thisisthe first study using EMG to first predict whenan individual will be swimming,
rather than simply predictingthe average swim speed. We believe thisrepresentsamore
realisticbehavioural model than using aggregate measures of swim speed.

Interestingly, when we combined the separate model components, and assessed the example
hydrology regimes, an emergent behaviour of the model was one of a potential energetic
trade-off, where the lower discharge, highertemperature regime resulted in similarrespiration
rates as the higher discharge, lowertemperature hydrology regime. Under the colder hydrology
regime the standard metabolicrate was predictedto be lower, but active metabolism was
predictedto be higher. Combined, this produced a total respiration value similarto the higher
temperature hydrology regime, which had a higher predicted standard metabolismrate, but a
lower predicted active metabolism rates. The fact that these two differing hydrology regimes
resultedinsimilartotal respirationrates is suggestive of a trade-off. Furthermore, the majority
of thistrade-off can be attributed to differencesinthe predicted propensity to swim, as the
active swimspeed predictions were very similarfor the two hydrology regimes. This emergent
property of the model suggeststhat Bull Trout may have the behavioural capacity to economize
energy expenditure undera variety of environmental conditions by altering the frequency of
swimming bouts, as has been suggested as a possible coping mechanism for other fluvial
species such as Mountain Whitefish (Tayloret al. 2012). This potential activity trade-off would
also seem appropriate for Bull Trout, which are a cold water specialistand are seldom foundin
systems above 15°C (McPhail and Baxter 1996). The propensity to hold position without
actively swimming could also have important consequences for important life history
behaviours such as foraging, a componentnot consideredinthe current modellingexercise. For
example, predictions assume that the lengths of unfavourable hydrology conditions will be
similarto the lengths observed during the EMG study. Extended periods of unfavourable
hydrological conditions could leave fishin a food deficit, which may eventually force individuals
to increase activity levelsin energetically unfavourable conditions in orderto forage for food.
Higher order behavioural trade-offs, such as foraging, were not consideredinthe proposed
model.

We also found that it should be possible to determine energeticrequirements underaltered
flow regimes with higher maximum flows like those expected under REV 5. While the maximum
observeddischarge duringthe study period was 1,765 cms extrapolations outside this range
(e.g., 2,200 cms) produced biologically plausible results, suggesting that the extrapolations may
be valid. This was largely due to predictions beingwell behaved and within biological ranges
under observed discharge rates, such that prediction under higherdischarge rates (greater than
1,765 cms) still remained biologically plausible. That said, as with all extrapolations the farther
the extrapolationisoutside the observed range, the lessreliable the predictions are likely to be.
Some of this was captured with higher prediction uncertaintiesincludedinthe model, but
predictionsalso relied onthe assumption that the underlying Bull Trout behaviours (e.g.,
propensity to swim) will continue to respond in a similarfashion as has occurred in the
observed hydrology conditions.
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Given that extrapolations to higherflow conditions appeared to be plausible, the average
respiration was compared between base conditionsand under REV 5. Only small differences
were found in average daily energetics across the four seasons with male energetics model
beingused as a surrogate for female energetics during non-reproductive periods. The
comparison was careful not to compare all available days as environmental and water
management responses may have differedinthis period, which would have confounded the
comparison. Rather, base conditionswere compared by selecting days representative of
“median conditions” of discharge and reservoirlevel shared across both periods, while peak
conditions represented the upper end of discharge within each period. In both cases, energetics
were largely similar with a difference that was much smallerthan the uncertainty related to
variationin individual behaviourand uncertainty in parameter estimates. This is likely the result
of higherpeak energeticdemands under REV 5 being offsetin other parts of the day where
lowerflow occurs. Giventhat extrapolated energeticdemands underpeak REV 5 flows appear
to be well withinthe biological range, we do not find evidence fora sustained impact on Bull
Trout energeticsunderREV 5 if overall water management practices remain similarto the
practices during the study period (e.g., the duration of peak flows).

Further refinements of the male Bull Trout bioenergetics model couldinclude se nsitivity
analyses of the regression relationships. Of prime interestis the sensitivity of the emergent
energetictrade-offsto analysis model structure. This could be assessed by consideringa suite
of potential linearmodel structures for predicting the propensity to swim and active swim
speeds. The structure of the proposed model could be expanded furtherby considering other
swimmingbehavioral traits such as sustained bursts of speed or the energetics of cost of non-
swimmingbehaviour. The proposed energetics model also used a hard threshold for
determiningactive swimmingbehaviourand therefore a contribution to the active metabolism
component. Higher order behavioural trade-offs, such as foraging trade-offs, could also affect
when active swimmingoccurs and could be includedinthe model, however, these costs are
unknown, would are likely difficult to estimate in a field environment.

Where possible we tried to ground truth components of the analysis. A number of
extrapolations were requiredto inferswim speeds from EMG readings for the study population.
Some of these include: 1) using field based observations to standardized EMG readings; 2)
basing tail beat frequency predictions for the study population of 88 tagged fish on the results
of 13 calibrated individuals, which exhibited EMG readings about one third the range observed
under natural conditions; 3) using models developed forsockeye (Oncorhynchus nerka)(Brett
1995) to predictrelative swimspeeds; and 4) body length scaling conversions from a study that
was found to under predict the weight of the study population (Hyatt and Hubert 2000).
Despite these potential draw backs, empirical estimates of male Bull Trout critical swim speed
(i.e., observed maximal instantaneous swim speed) were regressed against body length and
predictions for smallersizesroughly match critical swim speedsindependently measured by
Mesa et al. (2004), who also found a significant positive associations between critical swim
speedand body size.
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We also found that our universal calibration approach provided good performance when
compared to the subset of Bull Trout that were individually calibrated. Slope estimates of the
‘length to maximum swim speed’ relationship were statistically indistinguishablewhen
estimated using the 13 fish that were individually calibrated, versus the 88 fish that used a
universal calibration equation to predict tail beat frequency. The relationship between size and
observed maximal swim speed for male Bull Trout was also strongest near the Revelstoke Dam
fixed receiverlocation, an area in closest proximity to the dam tailrace and one that likely
contained the most challenging swim conditions. Here body size accounted for roughly 96% of
the variation in observed maximal swimspeed, an incredibly strong association for a field study.
Our findings also contradicts the generally accepted perspective that EMG transmitters are
expectedto behave differently in differentindividuals, requiring approaches that focus on
calibrating each individual separately (Brown et al. 2007), which can be difficultin practice due
to the difficulties and stressin transporting live fish (Cooke et al. 2004).

The largest deviations between the extrapolated ‘length to maximum swim speed’ regression
line were for the smallestsizestested by Mesa et al.(2004), which were nearly half the size of
the study population. These differences could be caused by a number of factors such as a
breakdown of a straight line relationship between body size and critical swim speed, bias in the
methods, or the fact that critical swim speedis often considered to be a measure of maximum
aerobic capacity during steady state swimming (Hammer 1995, Gregory and Wood 1998).
Maximum observed swim speeds may relate to unsteady swim performance which can differ
from steady state performance (Fu et al. 2013).

While male Bull Trout showed a strong linearrelationship between maximal swim speedand
body size, female Bull Trout showed non-significant negative relationship and significantly
lower maximal swim speeds. This result was unexpected and may suggest compromised swim
performance inthe female study population. One possible explanationis that spawning would
have occurred just prior to or during the Septembercommencement of the tracking period for
this study (McPhail and Baxter 1996) and post-spawnfemalesare known to behave different
from males (Fraley and Shepard 1989). Swim behavioralso differed between the two sexes.
While the propensity to swim generally increased as a function of discharge, size-and
temperature-specificresponses differed greatly between sex, with largerfemalestendingto
swim less frequently during colder conditions than smallerfemales. Generally, the opposite was
true for males, and may be the result of larger females bearinga larger energeticcost during
spawningthan smallerfemales. Assuch, we suspect female Bull Trout may be actively trying to
conserve more energy, although we did not directly test this hypothesis. Thisis also consistent
with other work which found a larger decline in female condition during the spawning period,
but with a recovery in condition by spring (Nitychoruk et al. 2013). As such, we suggestusing
the male Bull Trout energetics model as a surrogate for both sexes when assessing energetic
costs of altered flow regimes outside the reproductive period and male-and female-specific
models during the reproductive period.

We were not able to develop a complete energetics model for Mountain Whitefish, dueto a
number of missing components. Probably the most critical hinderance was the lack of
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calibration experiments for Mountain Whitefish, as such it was not possible to predict tail fin
beat frequency from the available EMG telemetry data. This made it problematic to predict
eitherthe propensity to swimor swim speeds, which are required for the active metabolic
component. Given the success of derivinga universal calibration equation for Bull Trout, a small
addendum study to derive this calibration relationship and apply it to data from previously
tagged Mountain Whitefish data may be viewed as a possible approach. However, the current
lack of available small EMG tags is considered a major drawback to this approach (see Appe ndix
J). A furtherhindrance to the use of existing EMG Mountain Whitefish data is the lack of sexing
for most of the sampledindividuals. The Mountain Whitefish spawning period occurs in late
fall, which likely have coincided with the telemetry studies (Roberge et al. 2002). If post-
spawning female Mountain Whitefish behaviour differed from male behaviour, as it did with
Bull Trout, then the previous tagging study may be of limited utility as few tagged fish were
successfully identified as male. As such, sex-specificpost-spawning behaviour could affect
parameter estimatesif sexes were pooled together, as would be requiredif the original EMG
data was to be employed. Other components that would need to be determined ina future
field study include the tail beat frequency threshold for active swimming, and a standardized
length equation for converting fork length measurements to total length.

It was determinedthat a future study usingaccelerometertags could address all these issues at
the cost of discarding most of the EMG Mountain Whitefish data. No year-specificeffectswere
noted inthe Bull Trout responses, suggestinga future field study with accelerometertags could
potentially be completedina single yearif a sufficient range of hydrological conditions were
available duringthe study period. Future studies may also consider avoiding the spawning
periodto avoid potential sex-specific post-spawning behavioural differences, or have
observations both before and during spawning, if energetics during spawningis a goal.
Mountain Whitefish will also need to be successfully sexed if sex-specificdifferences are to be
modelled.

Finally, any future telemetry studies may also wish to considerthe use of accelerometry tags as
an alternative to EMG tags as these could provide an easiersurgical option (Metcalfe et al.
2015). While promising, care should be taken to confirm that behavioural components, such as
the propensity to swim, can still be accurately estimated. Furthermore, the change in
methodology could negate the ability to include previousfield datainvolving EMG telemetry
due to potential response differences between the two tagging technologies.

6 Conclusions

Bull Trout — A bioenergetics model successfully produced realisticbiological behaviours that
included activity trade-offs under differing environmental conditions. When the model was
usedto predict energeticdemands under peak REV 5 flows the extrapolation appearedto be
well within the biological range and daily energy expenditures compared to base conditions and
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were found to be similaracross the seasons and during reproductive and non-reproductive
periods. As such, we do not find evidence fora sustained impact on Bull Trout energeticsunder
REV 5, compared to base conditions, if overall water management practices remain similarto
the current practices (e.g., duration of peak flows). While the model makes predictions about
holding behaviours under differing environmental and hydrological conditions, foraging trade -
offsassociated with holding were not considered because costs are unknown and would be
otherwise difficultto estimateina field environment.

Mountain Whitefish— It was not possible to develop bioenergetic model based on currently
available field data, as no EMG calibration data was collected for Mountain Whitefish during
the study. This prevented EMG from beingusedin the energetics equations. Further field study
optionswere consideredincluding:

1. Afollow-up EMG telemetry study designedto build off the original study. Drawbacks:
Current available EMG tag have a larger tag burden than in the original EMG study.
Furthermore, the original EMG study oftenlacked sex determination for Mountain
Whitefish making reuse of previously collected data problematic, given that the original
study likely occurred during reproductions which could have resultedin sex-specific
swimmingbehaviouras was observedin Bull Trout. Suggestion: Not recommended
primarily due to the tag burden associated with available EMG tags. Furthermore, the
original study lacked EMG calibration data for Mountain Whitefish, soitis unclear
whether calibration experiments with new larger EMG tags would even be applicable to
the original study.

2. Repeat Mountain Whitefish study using accelerometertags as an alternative to EMG
tags as these could provide an easiersurgical option with lowertag burdensand less
handling. Drawbacks: previous EMG data cannot be used and a shorter tag life could
mean a less diverse set of natural conditions are sampled. That said, shorter tag life can
be mitigated by decreasing tag pulse rate, whichis expected to have a minimal effecton
study precision and therefore sample sizes. Suggestion: recommended approach,
assuming this sample size is attainable.

Any follow-up Mountain Whitefish study will require swimtunnel calibration experiments to
ensure that the data collected from the tag can be convertedto predictenergeticexpenditures.
The number and types of calibration experiment required will depend on the approach used to
predict energeticexpenditures. Allapproachesshould attempt to validate the threshold for
active swimming as this was a key behavioural componentin the Bull Trout model. A study
sample size of 98-150 individuals would be required to produce a precision similarto that of the
Bull Trout study.
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Appendix A: Tagged Fish Metrics

Table Al. Characteristics associated with tagged Bull Trout. Missing information is indicated with a dash.
. Baseline EMG
Length (mm) Weight (g) Total (flow <100 cms)
Tag Tag TBF EMG 1%
Season ID Code Sex Fork Total Observed Predicted Calibration Readings n Quartile

Fall 2008 3 13 Female 541 568 - 1,551 - 12,842 3,009 3
Fall 2008 5 15 Female 504 529 - 1,245 - 5,976 870 2
Fall 2008 6 16 Female 617 647 - 2,435 - 107,766 18,025 2
Fall 2008 9 21 Female 615 645 - 2,406 - 1,061 11 -
Fall 2008 11 23  Female 567 595 - 1,810 - 188,045 29,631 8
Fall 2008 12 24  Female 566 594 - 1,799 - 142,123 30,690 1
Fall 2008 21 40 Female 670 703 - 3,335 - 120,197 24,337 7
Fall 2008 22 42  Female 530 556 - 1,453 - 361 1 -
Fall 2008 23 43  Female 641 672 - 2,808 - 7,302 2,824 10
Fall 2008 24 44  Female 610 640 - 2,336 - 814 31 -
Fall 2008 26 48 Female 655 687 - 3,051 - 20,297 3,443 1
Fall 2008 29 55 Female 622 652 - 2,509 - 28,866 5,471 2
Fall 2008 30 57 Female 544 571 - 1,579 - 108,991 25,338 8
Fall 2008 32 59 Female 551 578 - 1,646 - 25,541 5,895 4
Fall 2008 2 12 Male 611 641 - 2,763 - 84,092 12,801 3
Fall 2008 4 14  Male 669 702 - 3,898 - 100,483 22,878 8
Fall 2008 7 19 Male 793 832 - 8,136 - 110 2
Fall 2008 8 20 Male 588 617 - 2,410 - 69,640 14,137 8
Fall 2008 10 22  Male 830 871 - 10,134 - 102,257 17,253 6
Fall 2008 13 25 Male 788 827 - 7,898 - 55,651 12,327 1
Fall 2008 14 26 Male 610 640 - 2,747 - 118,126 22,216 8
Fall 2008 15 29 Male 662 694 - 3,739 - 120,498 17,506 1
Fall 2008 16 32 Male 667 700 - 3,852 - 93,338 22,048 8
Fall 2008 17 33 Male 702 736 - 4,741 - 88,985 17,852 9
Fall 2008 18 35 Male 664 697 - 3,784 - 79,888 16,751 2
Fall 2008 19 36 Male 705 740 - 4,826 - 520 - -
Fall 2008 20 39 Male 764 801 - 6,850 - 53,335 8,613 7
Fall 2008 25 47  Male 810 850 - 9,000 - 49,112 6,619 0
Fall 2008 27 49 Male 592 621 - 2,468 - 1,168 51 -
Fall 2008 28 52 Male 754 791 - 6,455 - 78,192 14,824 1
Fall 2008 31 58 Male 662 694 - 3,739 - 47,942 4,409 1
Fall 2008 33 60 Male 672 705 - 3,968 - 113,536 35,036 3
Fall2009 51 30 Female 531 557 1,440 1,462 Yes 121,785 27,403 3
Fall 2009 52 31 Female 534 560 1,666 1,488 - 2,267 356 1
Fall 2009 55 17 Female 674 707 3,357 3,415 - 5,852 2,156 3
Fall 2009 56 46 Female 649 681 2,845 2,944 Yes 55,788 11,713 6
Fall 2009 62 56 Female 593 622 2,086 2,112 Yes 19,759 3,648 2
Fall 2009 65 90 Female 455 477 914 931 Yes 26,216 5,823 3
Fall 2009 66 41 Female 570 598 1,839 1,842 - 138 10 -
Fall 2009 73 85 Female 614 644 2,268 2,392 - 9,661 2,738 8
Fall 2009 74 87 Female - - - - - 8,251 2,757 3
Fall 2009 75 97 Female - - - - - 4,199 1,101 10
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. Baseline EMG
Length (mm) Weight (g) Total (flow < 100 cms)
Tag Tag TBF EMG 1%
Season ID Code Sex Fork Total Observed Predicted Calibration Readings n Quartile

Fall 2009 76 93 Female 567 595 1,864 1,810 - 3,129 705 2
Fall 2009 78 86 Female 668 701 3,490 3,296 Yes 180,619 29,897 2

Fall 2009 81 95 Female 531 557 1,395 1,462 - 1,211 364 9.63
Fall 2009 53 50 Male 578 606 1,789 2,272 - 19,486 5,084 9
Fall 2009 54 18 Male 484 508 1,452 1,300 - 7,014 753 2
Fall 2009 57 38 Male 554 581 1,721 1,970 - 3,393 1,109 7
Fall 2009 58 27 Male 675 708 4,663 4,039 - 71 8 -
Fall 2009 59 11 Male 564 592 2,241 2,090 - 162 23 -
Fall 2009 60 51 Male 437 458 1,012 984 - 190 19 -
Fall 2009 61 28 Male 609 639 2,352 2,730 - 36 4 -
Fall 2009 63 88 Male 488 512 1,523 1,332 - 182 32 -
Fall 2009 64 37 Male 624 655 2,628 2,985 - 9,290 1,932 2
Fall 2009 67 54 Male 549 576 2,370 1,912 - 122 22 -
Fall 2009 68 89 Male 482 506 1,095 1,285 - 3,919 290 2
Fall 2009 69 34 Male 668 701 3,768 3,875 Yes 175,710 35,89 4
Fall 2009 70 53 Male 471 494 1,334 1,204 Yes 107,865 25,983 8
Fall 2009 71 92 Male 467 490 1,269 1,176 Yes 51,889 14,811 2
Fall 2009 72 91 Male 455 477 914 1,095 Yes 126,475 26,067 3
Fall 2009 79 96 Male 714 749 5,667 5,091 - 85,358 5,812 3
Fall 2009 80 94 Male 513 538 1,595 1,545 Yes 119,907 24,550 2
Fall 2010 96 28 Female 532 558 - 1,471 - 36 4 -
Fall2010 108 36 Female 548 575 - 1,617 - - - -
Fall2010 117 27 Female 522 548 - 1,386 - 2,015 1 -
Fall 2010 93 11  Male 505 530 - 1,473 - - - -
Fall 2010 94 17 Male 560 587 - 2,041 - 18 - -
Fall 2010 95 20 Male 720 755 - 5,276 Yes 304,345 5,021 10
Fall 2010 97 29 Male 715 750 - 5,121 - 1,920 217 10
Fall 2010 98 32 Male 760 797 - 6,689 - 1 1 -
Fall 2010 99 12 Male 515 540 - 1,563 - 1 - -
Fall2010 100 14  Male 435 456 - 972 - 1,386 300 10
Fall2010 101 16 Male 490 514 - 1,348 - 1,083 241 6
Fall2010 102 23 Male 755 792 - 6,494 - 871 1 -
Fall2010 103 24  Male 545 572 - 1,868 - 9,999 268 2
Fall2010 104 25 Male 805 844 - 8,737 - 251 - -
Fall2010 105 31 Male 486 510 - 1,316 - 12 1 -
Fall2010 106 34 Male 617 647 - 2,863 - 3 1 -
Fall2010 107 35 Male 605 635 - 2,666 - 5 - -
Fall2010 109 13 Male 565 593 - 2,103 - - - -
Fall2010 110 15 Male 595 624 - 2,513 - 17 - -
Fall2010 111 19 Male 580 608 - 2,299 - 199 9 -
Fall2010 112 33  Male 467 490 - 1,176 - 2 - -
Fall2010 113 18 Male 520 545 - 1,610 - 193 3 -
Fall2010 114 21  Male 510 535 - 1,517 - 797 2 -
Fall2010 115 22 Male 570 598 - 2,166 Yes 667,667 30,922 2
Fall2010 116 26 Male 780 818 - 7,532 Yes 49,416 9 -
Fall2010 118 30 Male 700 734 = 4,685 Yes 273,042 23,113 2
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Table A2. Characteristics associated with tagged Mountain Whitefish. Missing information is indicated witha

dash.
Baseline EMG
Length (mm) Weight (g) ':;:;ac: (flow < 100 cms)
Tag Tag TBF Reading 1%
Season ID Code Sex Fork Total Observed Predicted Calibration s n Quartile
Fall2008 38 65 Unknown 307 322 - 450 - 46,740 6,784 0.0
Fall2008 40 68 Unknown 405 425 - 788 - 37,980 4,460 7.0
Fall2008 43 73 Unknown 305 320 - 444 - 1,038 71 -
Fall 2008 44 74 Unknown 411 431 - 816 - 29,894 879 7.0
Fall 2008 45 75 Unknown 348 365 - 569 - 196,278 12,197 3.0
Fall2008 34 61 Female 372 390 - 652 - 15,363 2,107 2.0
Fall 2008 35 62 Female 340 357 - 543 - 54,147 7,664 9.0
Fall2008 36 63 Female 314 329 - 468 - 109,599 19,147 8.0
Fall2008 37 64 Female 375 393 - 664 - 4,288 702 1.0
Fall2008 39 66 Female 375 393 - 664 - 793 6 -
Fall 2008 41 71 Female 330 346 - 513 - 19,113 2,810 10.0
Fall2008 46 76 Female 310 325 - 457 - 48,565 2,005 1.0
Fall 2008 47 77 Female 395 414 - 744 - 16,646 1,778 1.0
Fall 2008 49 83 Female 315 330 - 471 - 8,430 799 5.0
Fall 2008 42 72 Male 405 425 - 788 - 11,474 1,775 11.0
Fall2008 48 82 Male 311 326 - 460 - 2,865 1 -
Fall2009 82 67 Unknown 307 322 275 450 - 16,615 5,709 14.0
Fall 2009 83 103 Unknown 314 329 317 468 - 64 11 -
Fall2009 86 81 Unknown 384 403 817 699 - 6,722 2,908 11.0
Fall2009 87 100 Unknown 344 361 649 556 - 1,598 558 3.0
Fall2009 88 102  Unknown 408 428 768 802 - 15,509 2,226 6.0
Fall 2009 89 69 Unknown 432 453 1,102 920 - 19,566 6,442 1.0
Fall2009 90 84 Unknown 352 369 542 582 - 11,070 4,219 2.0
Fall2009 91 80 Unknown 352 369 626 582 - 9,115 3,079 2.0
Fall2009 92 101  Unknown 384 403 824 699 - 8,215 2,295 3.0
Fall2009 77 79 Female 358 376 605 602 - 4,567 306 1.0
Fall2009 84 78 Female 366 384 709 630 - 445 62 -
Fall2009 85 70 Female 381 400 629 687 - 1,744 4 -
Fall2010 119 42 Female 420 441 - 859 - 10,244 1,240 2.0
Fall2010 120 47 Female 420 441 - 859 - 1 - -
Fall2010 121 37 Female 440 462 - 963 — 9,872 556 3.0
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Appendix B: Standardized Weights

Table B1. AICc model ranking results for proposed Bull Trout standardized weight equations fit to log-
transformed observed wet weights.

AlCc Cumulative Log
Model K AlCc AAICc Weight Weight Likelihood
(3) Sex-specificintercept, sameslope 4 -35.3 0 0.82 0.82 22.52
(4) Sex-specificintercept, separate slopes 5 -3231 2.98 0.18 1 22.52
(2) Zerointercept, separateslopes 3 20.75 56.05 0 1 -6.88
(1) Zerointercept,sameslope 3 56.29 91.59 0 1 -24.65

Table B2. AICc model ranking results for proposed Mountain Whitefish standardized weight equations fit to
log-transformedobservedwet weights.

AlCc Cumulative Log

Model K AlCc AAICc Weight Weight Likelihood
(2) Non-zerointercept, separateslopes 3 227 0 1 1 5.64
(1) Zerointercept,sameslope 2 10.51 12.78 0 1 -2.59
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Appendix C: Predicting Tail Beat Frequency from SEMG Readings

Approach 1: Individual Calibration Equations

Taylor et al. (2014) calibrated the standardized EMG (SEMG) response of subset of tagged Bull
Trout (Table A1). We developedtwo calibration approaches, to predict tail beat frequency (TBF)
from SEMG readings (see Section 3.5 for a description). As suggested by Brown et al. (2007), the
first approach developedindividual calibration equations forthe 14 calibrated individuals
(Figure C1), which would only make 13 individuals available forthe in situ portion of the study
due to lack of data (see Table Al). Linear mixed effect models were using the nmle package
(Pinheiro etal. 2018) in the R computing environment (R Core Team, 2018). All modelsusedlog
transformed SEMG readings, with random effectsto describe among-tag differences, but with
separate slopes for each individual. Because ourdata included repeat observations, an auto-
regressive error structure was used (i.e., AR(1)) was used because individual SEMG observations
closer togetherin time were expected to be more similarto each other than those separately
widelyintime. This structure was determined by preliminaryinspection of the SEMG to TBF
calibration results using autocorrelational and partial-autocorrelational plots, as well as by
inspecting autocorrelation of residuals from initial model fitting. In all cases, SEMG values were
log transformed before being regressed against observed TBF.

Study Year 2009 & 2010
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Figure C1. Standardized EMG (SEMG) to tail beat frequency relationships for individually calibrated Bull
Trout. Solidlines indicate simplelinear regressionlineagainstlogtransformed SEMG readings,
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shadingindicated 95% confidence region fortheregression line. Horizontal dashed line indicates a
tail beatfrequency of 58, which was assumed to be the cut-off for active swimming. Fork length is
indicated inthe panel strip text.

Approach 2: Universal Calibration Equation

The second approach attemptedto build a universal calibration equation using AICc model
ranking to select between competing models (Burnham and Anderson 2002). 12 candidate
models were considered in additionto a null, intercept only, model (Table C1). Sex-specificand
sex neutral models were considered in additionto body length (and potential two-way
interactions). All SEMG valueswere log transformed. The all supported models(i.e., AAICc
values from 0-7) were sex-specific, implying differing swim performance. The top supported
model had most of the support (i.e., AICc weight over50%) and considered sex-specificSEMG
responses as well as sex-specificbody size effects. The top model was then used as the
universal calibration model when predicting TBF for male and female Bull Trout study
population (Table Al).

Table C1. AlCc model ranking results for the candidate universal calibration equations for male and female

Bull trout.

Model K  AlCc  AAICc W:::gcht C”V'\'I‘;:’I:i"e Like"l‘i’:oo ;
SEMG + Sex + Length + SEMG:Sex + Sex:Length 9 4268.2 0.0 0.58 0.58 -2124.9
SEMG + Sex + Length + SEMG:Sex + SEMG:Length +

Sex:Length 10 4270.1 2.0 0.22 0.80 -2124.9
SEMG + Sex + SEMG:Sex 7 42711 3.0 0.13 0.93 -2128.5
SEMG + Sex + Length + SEMG:Sex 8 42732 5.0 0.05 0.97 -2128.5
SEMG + Sex + Length + SEMG:Sex + SEMG:Length 9 42752 7.0 0.02 0.99 -2128.4
SEMG + Sex + Length + Sex:Length 8 4278.8 10.6 0.00 1.00 -2131.3
SEMG + Sex + Length + SEMG:Length + Sex:Length 9 4280.7 125 0.00 1.00 -2131.2
SEMG 5 4280.8 12.6 0.00 1.00 -2135.3
SEMG + Sex 6 4280.9 12.7 0.00 1.00 -2134.4
SEMG + Length + SEMG:Length 7 42819 13.7 0.00 1.00 -2133.8
SEMG + Length 6 4282.8 14.6 0.00 1.00 -2135.3
SEMG + Sex + Length 7 42829 14.7 0.00 1.00 -2134.4
SEMG + Sex + Length + SEMG:Length 8 4284.8 16.6 0.00 1.00 -2134.3
Null 4 4351.9 83.7 0.00 1.00 -2171.9
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Appendix D: Proportion of Hour Spent Swimming
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Figure D1. Distribution of the percentage of an hour spent swimming for A) female and B) male Bull Trout
under varying flow conditions. Colorindicates differentindividuals. Panels text indicate either
receiver location (see Figure 1) or total body length.
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Figure D2. Percentage of hour spent swimming for female (left) and male (right) Bull Trout undervarying river
discharge conditions at the threereceiver locations (rows; Table 1). Individualresponses are
connected by lines, and colors indicate |length category. Panels text indicate either receiverlocation
(seeFigure1)andsex. Barsindicate 95% confidence interval for the mean response of individual
observations. Alogittransformation has been applied to the y-axis scaling.
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Predicted Time Spent Swimming (Mean Response)
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Figure D3. Predicted mean percentage (logit scale) of an hour spent swimming under average temperature
conditions based on the top supported model (Table D3).

Table D1. AICc model ranking results for predicting the proportion of an hour that Bull Trout spend
swimming as a function of a single environmental predictor.

AlCc Cumulative Log
Model K AlCc AAICc Weight Weight Likelihood
River Discharge (cms) 5 50428.9 0.0 1.00 1.00 -25209.4
Receiver Location 6 50857.2 428.3 0.00 1.00 -25422.6
Sex 5 50873.0 4441 0.00 1.00 -25431.5
Water Temperature(°C) 5 50873.4 444.6 0.00 1.00 -25431.7
Null (Interceptonly) 4 50875.1 446.2 0.00 1.00 -25433.6
Size 5 50876.1 447.2 0.00 1.00 -25433.1
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Table D2. AICc model ranking results for predicting the proportion of an hour that Bull Trout spend
swimming as a function of a secondary environmental predictorin combinationwith discharge for
models that either pool across sex or model sex-specific responses. Flow =River Discharge (cms);
Loc= Receiver Location (see Figure 1); Temp =Water Temperature (°C)

AlICc  Cumulative Log
Model K AlCc AAICc  Weight Weight Likelihood
Pooling Across Sex
Flow*Loc 9 5039338 0.0 0.80 0.80 -25187.9
Flow*Size 7 50396.6 2.8 0.20 1.00 -25191.3
Flow +Loc 7 50408.2 14.4 0.00 1.00 -25197.1
Flow*Temp 7 50425.0 31.2 0.00 1.00 -25205.5
Flow 5 504289 35.0 0.00 1.00 -25209.4
Flow + Temp 7 508554 4616 0.00 1.00 -25420.7
Flow +Size 7 50858.0 464.2 0.00 1.00 -25422.0
Sex-specific
(Flow + Temp)*Sex 13 50317.8 0.0 1.00 1.00 -25145.9
(Flow*Loc)*Sex 15 50354.8 37.0 0.00 1.00 -25162.4
(Flow +Size)*Sex 13 503585 40.7 0.00 1.00 -25166.3
(Flow*Size)*Sex 11 50364.5 46.7 0.00 1.00 -25171.2
(Flow + Loc)*Sex 11 503645 46.7 0.00 1.00 -25171.3
(Flow*Temp)*Sex 11 50369.1 51.3 0.00 1.00 -25173.6
Flow 7 50416.2 98.4 0.00 1.00 -25201.1

Table D3. AICc model ranking results for predicting the proportion of an hour that Bull Trout spend
swimming as a function of a secondary environmental predictorin combinationwith sex- and
area-specific discharge relationship. Flow = River Discharge (cms); Loc = Receiver Location (see
Figure 1); Temp =Water Temperature (°C). Baseline model was the top sex-specific model from the
previous ranking exercise (Table D2).

AlCc  Cumulative Log
Sex-specific Model K AlCc AAICc Weight Weight Likelihood
baseline +Size*Loc +Size*Temp 21 501990 0.0 1.00 1.00 -25078.5
baseline + Temp*Loc +Size*Temp 21 502226 23.6 0.00 1.00 -25090.3
baseline +Size*Loc + Temp 19 502524 53.4 0.00 1.00 -25107.2
baseline +Size*Loc 19 502524 534 0.00 1.00 -25107.2
baseline+Temp*Loc +Size 19 502854 86.4 0.00 1.00 -25123.7
baseline+Temp*Loc 17 502913 92.3 0.00 1.00 -25128.7
baseline+Size 15 503122 1132 0.00 1.00 -25141.1
baseline + Temp 13 503178 118.8 0.00 1.00 -25145.9
baseline 13 503178 118.8 0.00 1.00 -25145.9
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Appendix E: Active Hourly Swim Speeds
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Figure E1l. Observed male Bull Trout swim speeds under different river discharge conditions using A) no
transformation, B) log transformed discharge, C) log transformed swim speed, and D) log
transformed discharge and swim speed.
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Figure E2.
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Table E1. AICc model ranking results for predicting Bull Trout active hourly swim speed as afunction of the
baseline model combined with an additional location specific predictors. Light =Dawn, Daylight,
Dusk, Night; DOY =Day of Year; Size =Body length (mm); Temp = Water Temperature (°C); Year =

Study year.
AlCc Cumulative Log
Location-Specific Model K AlCc AAICc Weight Weight Likelihood
Baseline + Light 27 13742.5 0.0 1 1 -6844.2
Baseline + Temp 21 14018.7 276.2 0 1 -6988.3
Baseline + Size 24 14077.0 334.5 0 1 -7014.5
Baseline + DOY 21 14087.0 344.6 0 1 -7022.5
Baseline + Year 21 14296.2 553.8 0 1 -7127.1
Baseline 18 14318.8 576.3 0 1 -7141.4
Table E2. AICc model ranking results for predicting Bull Trout active hourly swim speed as a function tertiary

effects based on top model fromthe previous step (Table E1). Light = Dawn, Daylight, Dusk, Night;
DOY = Day of Year; Size =Body length (mm); Temp = Water Temperature (°C).

AlCc Cumulative Log
Location-Specific Model K AlCc AAICc  Weight Weight Likelihood
Baseline + Light + Temp*DOY 36 13357.1 0.0 1 1 -6642.5
Baseline + Light + Temp 30 13438.7 81.6 0 1 -6689.3
Baseline + Light + DOY 30 13490.6 133.5 0 1 -6715.3
Baseline + Light + Size 33 13504.3 147.2 0 1 -6719.1
Baseline + Light + Year 30 13717.7 360.6 0 1 -6828.8
Baseline + Light 27 13742.5 385.4 0 1 -6844.2
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Appendix F: Site Selection

A) Female Bull Trout
Revelstoke Dam Scales Creek Skull Point

99.0% 5
95.0%
80.0% : - 2
50.0% -« = | . ] - -

20.0% 4 A it 1

mE
L]
abueyos|g Mo

1.0% - . -
99.0% 4
95.0% - . .
80.0% - ) . .

50.0% -
200%4 5 ° . _ . e

L ]
-
afueyosig wnipayy

1.0% = =
99.0% < v
95.0% = i
80.0% = ' A N
50.0%4 . . A

20.0% 1 Il k

Hours
Observed

= 0-99
1.0%: = i * i 4 100 - 249

T T T T T T T T T T T T T
450 500 530 600 630 450 500 550 600 G650 450 500 550 600 650 = 250-500

+ 500+
B) Male Bull Trout
Revelstoke Dam Scales Creek Skull Paint

™
abueyasig ybIH

Year
» 2008
s 2000
« 2010

99.0% - .
95.0% - =

80.0% 4w . ‘. %a
50.0% - .
20.0% - | |

Proportion of Total Hours

L]
L]
[]
. =
p
-
-
-
.\
afueyzsig Mo

1.0% 4 . . . )
99.0% 4 T —
95.0% -
80.0% - & K
50.0% 4= & . - _—
20.0% = " an

abseys|g wipayy

1.0% . i LEns
99.0% = .
95.0% 1= i

80.0% 4 o2 : . Z - —a=
50.0% = - x—f al |® - — - s ha
20.0%4 N e )
& - & £ &
10:!'"}- T T T T T -r T T T T T T
500 600 700 800 500 600 700 800 500 600 700 800
Fork Length (mm)
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flows, by size.
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Appendix G: Example Bioenergetics Comparison
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and realized swim speed) on a daily basis for the Septemberand November2010 hydrological
regimes (A) and the percent differences (B). The proportion of the hour spent swimming (top
panel) and the active speed when swimming (middle panel) are combinedto produce the realized
hourly speed (bottom panel). Solidlines indicates the daily average andthe shading indicates the
2.5and 97.5 percentiles from 1,000 simulations.
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Appendix H: High Discharge Extrapolations

Figure H1.
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Appendix |: Pre-Post REV 5 Comparison

Daily energetics before and after the addition of fifth turbine unit in Revelstoke Dam (i.e., REV
5) was compared by running the energetics model on hourly hydrology data from selectdays in
both periods across all four seasons (Table | 1).

Hourly temperature data was only available from 2008 onwards, 2008 to Dec 21, 2010 was
used as the before period (i.e., pre REV 5), and 2011 to 2018 was used as the after period (i.e.,
post REV 5). Within the full time span (i.e., 2008-2018) water input intothe systemand as a
resultand water management was not identical throughout the period or within seasons
(Figure I11). This made direct comparisons between the pre/postRev 5 periods by season
problematicas environmental and water managementdifferences were also confounded with
changes to the turbine setup. As such, comparisons usingall the data from each period would
be as much a test of general water management changes overtime as it would be an
assessment of the effect of the REV5 addition on bull trout energetics.

Scenarios from the CLBMON-17 project, which considered flow and reservoirlevel scenarios
separately (Table 12), were also considered as guidelines forselectingapplicable daysforthe
comparison, but were found not to be fully compatible with observed reservoiroperations
across all four seasons (Figure 12). As such, any pre/post REV 5 comparison across all seasons
based on these scenarios would not be possible asthe energetics model requires real
operational data summarized on an hourly time step and some seasons had few or no
applicable days that matching the CLBMON-17 comparison conditions (i.e., intersection
betweenthe vertical and horizontal lines; Figure 12).

To deal with the problemthat flow and reservoirlevel oftenrelate to conditions and water
management decisions applicable ranges corresponding “typical” common base and peak flow
conditions within each season were determined. For base conditions, the range of conditions
around the seasonal median was determined as smallest region captured by the 25th and 75th
percentilesacross period (i.e., largest pre/post 25th percentile and smallest pre/post 75th
percentile) (Figure 13). Thiswas determined separately forreservoirlevel and average daily
discharge. Together these metrics define a region representing seasonal “median conditions”
where days could be selectedinorder compared energeticdifferences associated with turbine
configurations (highlighted area; Figure 14a). Within the samplingthere were generally small
differencesthat may be reflective of some seasonal water management differences between
periods as well as natural variation (Table 13).

For peak conditions, days with peak hourly flow in the 95% percentile within each period were
chosen (Figure 14b). This typically featured higher peak flows for Post REV 5 turbine
configuration ((Table 13).
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Tablel1. Date range associated each seasonal designation.

Season Date Start Date End

Spring March 19 June20
Summer June21 September 22

Fall September 23 December 21
Winter December 21 March 18 (following year)
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Figure I1. Average reservoir level (A) and daily discharge (B) across four seasons in the pre/post REV 5

periods. Error bars indicate the standard deviation.
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Table 12. CLBMON-17 suggested base and peak flow scenarios.

Rev Output Jordan Flow lllecillewaet Flow ALRLevel

Scenario (m3/s) (m3/s) (m3/s) (m)
Base#l—Low 8.5 22 49 427.3
Base#2 —Low 142 22 49 427.3
Base#3 —Low 296 22 49 427.3
Peak #1 — Low 1603 22 49 427.3
Peak #1 — Low 2057 22 49 427.3
Base#l —High 8.5 22 49 437.1
Base#2 —High 142 22 49 437.1
Base#3 —High 296 22 49 437.1
Peak #1 —High 1603 22 49 437.1
Peak #1 —High 2057 22 49 437.1
Figure 12. Revelstoke Dam average daily discharge with CLBMON-17 flow scenarios (horizontal lines; blue =

base conditions, orange = peak conditions) and Arrow Lakes Reservoir level (horizontal lines).

A) Resevoir Level

Spring Summer Fall Winter
4404 L | _ | i
E R §
< 4351 Fioo-o- 1 |
> M - T B T _ | i
8 b= | [ I g
x 4301 1 T
-l
< ‘ |
4254
B) Average Daily Discharge
Spring Summer Fall Winter

—~ 1500 1
w
E .
= |
@ 1000+ [ | : N
E) Y p—
oe | =L
-
8 5004 Lo Jbr——zk---t{|
° |

0._ T - T J T T T T T T

Pre Post Pre Post Pre Post Pre Post
Rev 5 Period
Figure 13. Box plot of season specific daily reservoir (A) and average daily discharge (B) in the preand post

REV 5 periods.Horizontal dashed lines indicate the maximum of the lower 25% percentile and the
minimum of the 75" percentile across the pre/post periods.
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Table I3. Sample size available, and the corresponding summaries of discharge and Arrow Lake Reservoir
elevations for the proposed base and peak conditions comparisons (Figure 14).
Season Av:::ZIsale AvYaeiIZrI:Ie Inter Qu:ratlill‘; I;;s::: = (cmS)Ave rage pesk ([c,:z;mrge ALR(:SVEI
Pre Post Pre Post Pre Post Pre Post Pre Post

» | Spring 67 101 3 7 30-429 32-430 215 212 753 1,374 429-432

% é Summer 15 14 3 5 419-474 402-471 442 442 1,178 1,130 435-438
= g Fall 41 67 2 386-740 383-828 520 659 1,212 1,132 430-434
Winter 45 9 3 3 662 -984 649-977 803 868 1,219 1,425 427 -431

o | Sering 28 66 2 5 611-830 542-924 725 763 | 1,148 1,452 | 424-434

§ é Summer 29 67 2 4 586 - 684 1365-1593 649 1435 | 1,154 1,983 429 - 440
= g Fall 27 64 2 4 1133-1174 | 1011-1263 1137 1134 | 1,188 1,820 424 - 436
Winter 26 69 3 4 1029-1146 | 1257-1558 | 1029 1146 | 1,176 1,804 | 424-436
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A) Base Conditions Comparison
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Figure 14. 2-way scatter plot of Revelstoke Dam discharge and Arrow Lakes Reservoir level with highlighting
indicating proposed sampling region for base conditions (A) and peak conditions (B).
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Appendix J: Mountain Whitefish Feasibility Assessment

An energetics model predicting respiration metabolism associated with novel hydrological
regimes was successfully built for Bull Trout. However, an energetics model could not be built
for Mountain Whitefish due to a number of missingcomponents from the field study. The most
critical component missing from the field study was the lack of calibration experiments required
to convert the electromyogram (EMG) signal to tail fin beat frequency (TBF). The critical
calibration experiment that was missingwould have allowed tail beat frequency to be used to
predict swimspeed (SS). The Bull Trout energeticmodel relied ona TBF to SS relationship
derivedfor Sockeye Salmon (Brett 1995), which had been used before for other Bull Trout
studies (e.g., Taylor et al. 2014). While Bull Trout and Sockeye Salmon (both subfamily
Salmoninae) have the classic robust salmonid body shape, Mountain Whitefish are more
distantly related (subfamily Coregoninae), are more slender, elongate, and smaller-bodied
(Scott and Crossman, 1973), and therefore may not follow the Brett (1995) relationship. This
made it problematicto predict Mountain Whitefish swim speed, whichis a critical input
variable for computing the active metaboliccomponent of respiration. Given that the energetic
models were intended to assess the energeticimpact of changes in hydrology regimes, this was
a major shortcoming.

A secondary drawback of the original investigation was the partial sexing of sampled Mountain
Whitefish. Nearly half (i.e., 45%) of samples were not sexed, and the majority of sexed
individuals were female (Table A2). The Bull Trout investigation found that females exhibited
different swim behaviours than males during the study period. The study period also
overlapped with Bull Trout spawning period, and itwas hypothesized that differencesin post-
spawn behaviourwere responsible forthe observed differences. Similarto Bull Trout, the
Mountain Whitefish spawning period occurs in late fall and likely coincided with the telemetry
studies (Roberge et al. 2002). Post-spawning female Mountain Whitefish swimmingbehaviour
and energetics may have differed from male behaviour (as it did with Bull Trout). Giventhat in
the Bull Trout studies male behaviourwas used to represent more “typical” swimming patterns,
the almost complete lack of confirmed male Mountain Whitefish representsanothersignificant
stumbling block.

Finally, Mountain Whitefish are purported to be a speciesthat are sensitive to capture (Taylor
et al. 2011), and while radio-tagging of Mountain Whitefish has been successful under certain
conditions (e.g., Hildebrand 2009; TableJ1), the invasive EMG tagging procedure may have
beenstressful resultingina low success rate. This was supported to some degree by the
CLBMON-18 EMG studieswhere only 19 of 31 (62%) of released Mountain Whitefish produced
useful information (Tayloret al. 2012). That said, nearly all of the released Mountain Whitefish
were detected at some point in the study (Table A2). It isunclear whetherindividuals with
fewerdetections had leftthe detection area or expressed post-tagging effects such as
mortality.
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Potential Methodologies

Moving forward, there are a number of available methodologies for estimating Mountain
Whitefish energy expenditure inthe natural environment, including the use of heart rate
monitors, doubly-labelled methods, and tagging methodologies such as EMG or accelerometer
tags. Of these options, the EMG and accelerometertag approaches appear to be the most
appropriate for aquatic species, as the doubly-labelled water method has limited applicability in
fish due to water flux (Nagy and Costa, 1980; Speakman 1997), and heart rate methods are
problematicdue to variable cardiac stroke volume infishes (Thorarensen et al., 1996).

This leaves eitherattempting a second EMG study on Mountain Whitefish, with the potential to
reuse some of the previously collected data, or a switch to accelerometertags, which have their
own advantages.

EMG Tagging Approaches

Further deployment of EMG tags could leverage previous work (e.g., Table A2) if a universal
EMG to TBF calibration equation can be derived from newly tagged individuals. However, onlya
subsetof individualsinthe previous study were sexed or had sufficientinformation to be used
in an energetics model, making the utility of this approach unclear. For example, ifitis assumed
or found that Mountain Whitefish do not display sex-specific post-spawn swimming behaviours
then more of the previously collected data could be leveraged than if sex-specific post-spawn
differencesare found. EMG tag deploymentsrepresent apotentiallyinvasive surgery, given
largerincisionsizes than for standard tags, and the need to implant and connect electrodesto
the axial swim muscle. Furthermore, Mountain Whitefish are smaller on average than Bull Trout
(Hugg 1996), thus the relatively highertag burdens may have contributed to the low success
rate of Mountain Whitefish deployments. The key to successful tagging operations with
Mountain Whitefish may be to minimize both handlingtime and the tag burden (Taylor et al.
2011).

Further complicating EMG tags deploymentsis that the tag model (Lotek CEMG2-R11-12;
weightin air: 8.8g) originally usedin Taylor and Lewis (2009, 2010, 2011) and Taylor et al.
(2012, 2013, 2014) are no longer available. Thistag was discontinued due to difficultiesin
stocking the specialized high-performance battery that was required for the small tag size
(Peter Davis, Lotek, personal communication, January 22, 2020). Assuch any new EMG studies
would need to make use of larger tags, which will have a relatively highertag burden than was
usedin the previous Mountain Whitefish study. Furthermore, the use of EMG tags in Mountain
Whitefish will require two calibration experiments so that energetics calculations can be
performed: one to map EMG signals to tail beat frequency, and a second to compare tail beat
frequency to swim speeds. This will resultinlongerhandlingtimes, which, due to the
sensitivity of Mountain Whitefish to handling stress (Taylor et al. 2011), may require sampling
additional individuals (some fish for calibration experiments and additional fish for free-
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swimmingobservations). For these reasons, the EMG tagging approach is not suggested, which
leaves accelerometertags as the remaining option. That said, while Mountain Whitefish are
typically understudied, successful tagging studies are non-uncommon (Table J1).

Table J1. Summary of Mountain Whitefish tagging studies

Authors Year Success Rate Fishing Method Tag Burden
Bégout Anras et al. 1994 44% Net (trap netsor gill nets) <2.5%
Reid et al. 2002 Unknown Electrofishing ~0.5%
Hildebrand 2009 96% Electrofishing <2.5%
Taylor et al. 2011 Variable Electrofishing <3%
Tayloretal. 2012 62% Electrofishing 1-3%
Boyer et al. 2017 83% Electrofishingand angling < 2%
Winkowski et al. 2018 92%* Electrofishing, hook and <2%
line, seining, and snorkel

* Initial success rate as part of preliminary finding.

Accelerometer Approaches

Tags with built-in accelerometers measure accelerationin 3D space and have been successfully
used to measure free-swimming energeticsin salmonids (Wilson et al. 2013). This type of
telemetrytag can be used in energetics calculations and should presenta lowerlevel of
invasivenessrelative to EMG type tags which require electrodesto be attached inadditionto
implantation of the tag. There are two main approaches that could be taken to estimate free-

swimming energetics using accelerometertags:

1. Use accelerometertags to predict tail beat frequency through a calibration relationship,
which can then be usedto predict swim speed and energeticexpenditure; or

2. Use accelerometertags to directly predict mass-specificrespiration rates (mg O; kg
min-1).

Both approaches will require calibration experimentsthatwill needtobe performedin a swim
tunnel or swim chamber.

Approach (1) will require three observational experiments to be completed. The first two will
be used to map accelerometertag readings to tail beat frequencies andtail beat frequenciesto
swimspeeds. The third provides a baseline for active swimming. All experiments should be
reasonably straightforward to carry outina field setting. Generally, for EMG tagging
applicationsit was believed that the slope and intercept of the EMG-to-tail-beat-frequency
regression line could differamong individuals (Brown et al. 2007). However, the Bull Trout
studied showed that most among-individual differences were inthe intercepts, which could be
estimated from field observations. Similarly, accelerometertags appear to have a fairly stable
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relationship with tail beat frequency (see Wilson et al. 2013), so a single calibration equation
developedfroma subset of individuals is possible, as it was with the EMG study on Bull Trout. A
second experiment will be required to develop an equation to predict swim speed based on
observed the tail beat frequency. This relationship will be critical for predicting energetics as
energetics equations require swim speedsand a model to predict swim speed does not
currently existfor Mountain Whitefish. Finally, the currentenergeticmodeling framework
predicts the probability of swimming, based on a baseline foractive swimming. The Bull Trout
analysis estimated thisfrom field data (i.e., lower 1t percentile of activity), which could
potentially also be done with accelerometertags. That said, if swimmingexperiments were
conducted it would be helpful to confirm the threshold for active swimmingobservedin the
swimtunnel roughly matches the estimated threshold for active swimmingin the lowerlevels
of activity observedin the natural. This could entail releasing a subset of fish that have been
usedin the swimtunnel experiments, and it may therefore be appropriate to exclude the swim-
tunnel individuals from the main field study. On the other hand, releasingthese individuals
could be useful forvalidating the lower baseline threshold foractive swimming observedinthe
swimming experiments. Finally, a sex-specificstandardized mass equation may also need to be
developed unlessthe mass of each tagged individual is measured.

Approach (2) will require fewer calibration experiments, but may be more problematicto
implementinafieldsetting. Inthis approach a swimtunnel can be used to directly measure
mass-specificrespiration rates under a variety of flows and temperatures (Metcalfe et al. 2015).
However, respirometer experiments in this context can be difficultto perform due to the
difficulty of transporting respirometer equipmentto the fieldand the handling stress caused by
transporting live fish to the lab (Cooke et al. 2004). That said, Wilson et al. (2011) showed very
stable relationships between accelerometerreadings and aerobic metabolism (i.e., combined
digestive, active and standard metabolicrates). If thisapproach was taken, the relationship
between tail beat frequency and swimspeedis not needed, but the experiment may needto be
executed across a variety of temperatures to eitheraccount for temperature differences
experiencedinthe natural environment or to demonstrate that the standard metabolicrate
(SMR) can be accurately accounted for (the energetics model predicts periods during which
only SMR apply). This can be determined by looking at oxygen consumption when the baseline
for active swimminghas not been met. Finally, similarto approach (1) it would be helpful to
confirm that observed baseline accelerometerreadings (associated with active swimming
thresholdsin swimming experiments)doindeed match lower quartile estimates from the
natural environment.

Sample Size Calculations for Accelerometer-based Studies

Moving away from EMG tags towards accelerometertags with a lowertag burden will require
sample size adjustments to achieve precision parity with the Bull Trout study. Electronic tags
that actively broadcast information have attributes such as how frequently they broadcast IDs
and accelerometer measurements (pulse rate) and the length of time overwhich the tag can
remain active (tag life). Because batteries have limited power, one settingimpacts the other
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(i.e., more frequent pulsingreducestag life). The longertags remain active, the greater the
total number of hourly bins with at least one detection (Figure J1a), yetthe average number of
observations per day remains reasonably stable (Figure J1b) during the detection period
regardless. Smallertags, which have a lowertag burden, also tend to have shorter life spans
due to reduced battery capacity, which will resultin fewer total detections of each individual
(hence lessinformation about each individual). While true, the amount of information lost with
shorter tag life may not be as large as first expected since repeat observations of the same
individual are not independent (i.e., repeated measures) and there are diminishingreturns
whereby each additional observation providesrelatively less new information.

To extendtag life, practitioners may consider changing how frequently tags transmit
information. For example, the EMG study used a 2 second pulse rate, which provideda
maximum tag life of about 65 days2. An accelerometertag witha lowertag burden from the
same company will only have a maximum tag life of 19 days at a 2 second pulse rate, but a 45
day tag life at a 5 second pulse rate. The slower pulse rate could howeverdecrease overall
detections and impact the effective number of hours with an observation.
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Figure J1. Scatterplots of the observed number of hours with adetection by theobserved duration (i.e.,

length of time between first and last detection) for Bull Trout and Mountain Whitefish EMG

2 Note that observation duration (i.e., the time between the first and last detection; FigureJ1) will be shorter than
manufacturer’s expected tag life due to processes such as mortality and movement out of the effective study area.
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studies (A) and hours per observedday (B). All axes aredisplayed using logarithmicscaling. The
vertical dashed lineinin panel Bindicates 24 hours.

Reductionsin both the tag life and the probability of detections could resultin smallereffective
sample sizesrelative to the Bull Trout study, which would likely reduce the precision of
energeticcalculations. Hence, we’ve made calculations to determine sample sizes that would
be neededto put the precision of an accelerometertag study on par with that of the previous
Bull Trout study.

Sample Size Adjustment for Tag Life

As outlinedinSection 3.6, the energetics model operates on an hourly timestep where raw
activity records (i.e., activity logged during each unique detections) are first averaged to the
minute level, then the minute averages are averaged to the quarter hour, and the quarter hour
averages are finally averagedto the hourly level. Because the energeticmodel uses hourly
activity levels, reduced tag life will reduce the total number of hours observed for each
individual (Figure J1a). Furthermore, while the total number of hours observedis positively
correlated withthe Observation Duration, the average number of hours per day remained
reasonably constant (Figure J1b), averaging roughly 8-9 hours per day dependingon the species
(TableJ2).

The questionthen becomes how many additional tags are required to accommodate for the
reductionin tag life. Thisadjustmentis complicated by the fact the reduction in the total
number of observed hours was for repeated measures rather than independent measurements
(see Hurlbert 1984). Repeated measures of the same individual generally do not provide the
same degree of information about a population parameter as observations from new
individuals, giventhatrepeat observations are often correlated. If the correlation coefficient is
known, then it is possible to calculate the effective sample size using the formula,

3 n
Meff =771 (n—1p

where n represents the number of hours and p representthe correlation coefficientbetween
hourly observations. This formula would apply to the number of effective hourly observations
we would have on an individual but can be used to understand the impact of tag life. Generally,
individuals provided 8-9 hours of observation for each day with a correlation of 0.44-0.48 (Table
12).

Table J2. Median and average hours of observations perday by species.

Species Median Average SD Correlation
(hrs day1) (hrs day1) (hrs day?) (p)

Bull Trout 6.65 7.86 6.19 0.44

Mountain Whitefish | 8.08 9.23 6.50 0.48
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If the effective sample size of each individual could be computed, then the total effective
sample size can be determined, howevernotall observations occur under the same
environmental conditions and as such are equivalent. Therefore, itis not clear how many hours
were observed under a particular set of conditions. That said, if we assumed conditions are
randomly distributed across we can assume 45-day tag will capture 69% fewer hours of
observations (i.e., 45/65) under any given unique set of environmental conditions than a 65-day
tag. Giventhat we can compute the effective sample size overa range of possible sample sizes,
and compare the relative precision of a tag with 65 day tag-life against one with only 45-days of
tag life (Figure J2). We can see that by about 10 total hours, the 45-day tag-life will produce an
estimate that has a relative error within 3% of the 65-day tag-life. That is, if a unique set of
conditionsis observedfor 10 total hours using a tag with a 65-day tag-life, we can expectabout
6.9 hours underthe 45-day tag. The fewerobservations will mean higheruncertainty, but the
realized difference in precisionislessthan 3% relative toa 65-day tag-life. Thisisdue to the fact
each additional repeat observation adds relatively less new information about the population
response. As the total numbers of hours of observationsincreases, the reductionin total
observed hours has a relatively smaller effect, which can be seenin Figure J2, where the
difference in precision asymptotically approaches zero with larger sample sizes. Therefore,
dependingon how many unique conditions are sampled, there is a good possibility thata 45-
day tag life will provide sufficientinformation relative to the 65-day tag life.

Relative Standard Error (45 day tag vs 65 day tag life)
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conditions. Therelationship assumes the 45-daytag will observedonly 69% (i.e., 45/65) of the
total hours under a given set of environmental conditions as the 65-daytag.

To testthis assumption that a 45-day tag life could provide a similaramount of information as
the 65-day tags, we re-fitthe empirical relationships from the Bull Trout energetics model after
truncating the data to exclude any observation after 45 days. The Bull Trout model was then
reappliedto the selected days from the pre-REV 5 analysis (see Section 4.8) and the relative
error betweenthe two analyses was compared. It was found that both produced the same
results, and that there was only a marginal difference inthe relative precision (i.e., lessthan
1%) betweenthem. As such, the extended tag-life over45 days did not appear to add
significantamounts of new information, and we do not believe a 45-day tag-life foran
accelerometertag will significantly impact the results relative to the 65-day tag-life usedinthe
EMG study.

Sample Size Adjustment for Pulse Rates

The second suggested change for an accelerometertag study was to increase the time between
tag pulses(i.e., whenthe tag transmits information) in order to extend the tag life. This can be
accomplished by reducing tag pulse rate, which can be expectedto impact the total number of
receiver detectionsthat occur in the experiment, and therefore the effective sample size. This
will occur through two main mechanisms:

1. Reduced precision of averages (e.g., minute-to-minute averages of activity level); and

2. Reduced number of unique minutes or hours during which a detection occurs.

Potential sample sizes adjustments can be considered for both mechanisms. Because the
energetics model operates on an hourly timestep raw activity records (i.e., unique detections)
are first averagedto the minute level, thenthe minute averages are averagedto the quarter
hour, and the quarter hour averages are then averaged to the hourlylevel (see Section 3.9). The
lower tag pulse rate will reduce the number of observations received each minute,and as a
resultthe minute averages of the activity level will be less precise relative to an experiment
that usesa tag with a faster tag pulse rate. The lower precision of the minute averages will also
reduce the precision of the quarter-hourly and hourly averages, as these averagesare a
function of the minute averages. Probabilistically, the lowertagpulse rate will resultin fewer
unigue minutes with an observation, which will furtherreduce the precision of the quarterly
and hourly averages. The questionthenremains whetherthese changes will have a meaningful
impact on overall precision of the experiment, and whethersample size adjustments need to be
made to match the precision of the successful Bull Trout experiment.

As a firststep, the detectionrates from the original EMG experiment were determined across
differingtime scales, of which it was clear that average receiverdetectionrates differedona
short and longertime horizon (Figure J3). The short-term trend likely reflected the frequency
of detections when a tagged fish was within the vicinity of the receiverand was under the
influence of environmental factors (such as turbulence) and short-term movement behaviours
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(e.g., foraging) within the vicinity of the receiver. Here there is a much higherprobability of
detection as the micro-conditions that lead to a successful receiverdetection event were much
more likely tostill exist. On the longertime scale, fish may be movinginto and out of the
vicinity of the receiver, combined with imperfect detection probabilities, the result was overall
lowerdetection rates.

As observations were first averagedto the minute level, we can consider the effects of changes
to the pulse rate on the subsequentdetectionrates on thistime scale. With a 2 second pulse
rate, there were roughly 4 receiverdetections recorded every minute (i.e., 3.97 detections per
minute). Given that there are 30 possible 2-second intervals during which these four detections
could have occurred, this gives a probability of detectionof 3.97/30 = 0.132 inany 2-second
interval. For a fishthat remainsin the area, thistranslates a probability of roughly 0.99 of being
detected withinthe minute (i.e., 1 — (1 — 0.132) 3% = 0.986). Assumingthat the probabilitya
tag pulse isdetected remains the same, under a 5 second pulse rate there are only 12 windows
were a tag pulse can be detected,and as such the probability of detection withina minute
dropsto 0.82 (i.e., 1 — (1 — 0.132)12 = 0.817), and the average number of detections events
are expectedto drop from 4 to 1.6.

The models predictingtail fin beats used log transformed values of the SEMG signal (i.e.,
log(SEMG)), so we can look at the potential impact of fewer observations per minute on the
standard error for log(SEMG) minute averages. Across the 965,738 minute averages, the
average standard error was about 0.09, which impliesa minute-to-minute standard deviation of
o = 0.09v4 = 0.18. With only 1.6 observations per minute, the expected standard error for
the minute averages will be 0.18/\/r = (0.142, an increase of about 58% in minute-to-minute
measurementerror over a 2-second tag pulse rate.

The nextstep is to considerhow the revised precision of the minute averages will impactthe
quarter-hourly and hourly averages. These averagesare done hierarchically, with the quarter
hour averages performed first, then the hourly average afterwards. This was done largelyto
reduce the impact of outliers or anomalous conditions that could occur throughout the hour
rather than to optimize precision of the hourly estimate. However, if conditions are relatively
uniformthis step is not required and will produce identical answers as just taking the hourly
average directly from the minute averages. Therefore, to keep calculations as straightforward
as possible, we will simply consider the impact on precision of generating hourly averages
directly from the minute averages.

Generally, under constant conditions one can expectthe hourly averages to be more precise
than the minute averages as the hourly averages will be made up of more underlying
observations than any minute average. However, the observed average standard error across
allthe hour averages was SE:(xTh) = 0.8188, which is larger than the average standard error for
minute averages (i.e., 0.09). On average, there were 22 minute averages available foreach hour
average, thus the expected hourly standard error would have been 0.09/,/(22) = 0.019 if
only measurementerror was considered. This suggeststhat another source of variation affects
the hourly estimates (e.g., Figure J3). Likely this represents variationin the flow conditions
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withinthe hour, whichwe can assume is independent of measurement uncertainty. More
formally we can write this as,

Var (hour average) = Var(environment) + Var(measure)

where the observed variationin hourly estimatesis a linearfunction of the environmental
uncertainty and the measurementerror (covariance is not considered due to the assumption of
independence). Given that we had determined the variance of the hourly measurements (i.e.,
0.0192), this suggest that the variance of Var(environment) = 0.819%2 — 0.019% = 0.670.

Under a 5 second tag pulse rate we can determine the expected measurementerror to be
larger due to fewerand less precise minute averages. As indicated in Figure J3, detectionrates
on the longertime scale appear to operate differently compared to the shorter time scale.
Based on the short-term detection rates (i.e., detection rate withina minute), tags witha 2-
second pulse rate would have had an expected 60 X 0.986 = 59 minutes withan activity
reading ifindividuals remainedinthe area, whereas an average of 22 readings were observed.
This suggeststhat individuals were only in the area for 37% of the time (i.e., 22/59 = 0.373).
Therefore, tags with 5-second tag pulse rate can be expectedto have 60 X 0.817 x 0.373 =
18.3 minutes with observations per hour. This would resultin a revised measurement error of

2
Var(measure) 55¢¢ = (0.142//18.3)" = 0.0332

While error associated with the measurement process showed a large increase (0.019 versus
0.33, a 73% increase), the increase in the measurement error associated final hourly average
was relatively small. This would imply an expected standard error of

SE(%p,)5%¢ = /0.670 + 0.0332 = 0.8192

which islessthan a 1% increase relative to the 2-second pulse rate (due to the overwhelming
impact of environmental variability). Equal precision could be attained by increasingthe
sample size by roughly 2%, which would translate to about 1 extrafish relative to the Bull Trout
study.
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Figure J3. The empirical probability of observing an additional detection by thelength of time from the
initial detection for short (i.e., under 2 minutes) and observation periods. They-axisisdisplayed
on the logitscale, while the x-axis using logarithmic scaling. Solidlines indicatelinear regression
lines with the shading indicating the 95% confidenceregion. Verticaldashed line indicates one
minute.

Final Sample Sizes

Although the tag life and pulse rate issues appear to be largely resolved, Mountain Whitefish
tag deployments may not be as successful as Bull Trout. A success rate of 19 out of 30 (i.e.,
63%) was originally reported by Taylor et al. (2012), which would suggest 141 tagged individuals
would needto bereleased (i.e., 89/0.63 ). However, not all of the 88 tagged Bull Trout release
should be viewed as successful, many had under 100 total detections, and 32 did not produce
enough data to allow a baseline EMG value to be determined (Appendix A). By this measure
the Bull Trout study had a similar success rate (i.e., 56 out of 88 or 64%) and therefore further
adjusts may not be warranted. Accelerometertags should have both alowertag burden and
reduced handling stress than the EMG tags, which should furtherassist the success rate.

Finally sample size allocations will also need to consider any calibration experiments. Ideally,
these fish should not be included when tallyingthe sample size of the main study. For example,
Wilson et al (2013) required about 9 individuals to successfully build accelerometer calibration
equationsfor energeticestimation. This would bring the total sample size to approximately 98-
150, dependingonthe anticipated success rate.
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Summary

Relative to the successful EMG study carried out on Bull Trout, itshould be feasible to execute a
similarly successful study on Mountain Whitefish by switchingto accelerometertags which
feature lowertag burden and less complicated surgeries. One of the primary concerns with
the switch was the shorter tag-life, which could reduce the variety of environmental conditions
energeticmeasurements are captured. This could be abated to some degree by increasing the
time between tag pulses (i.e., reducingthe tag pulse rate). Both changes could however affect
precision of the study and therefore the require sample sizes. When this trade-off was
investigated further we found no evidence that such changes would meaningfullyimpact the
precision of the energetics calculations relative to the Bull Trout study. In fact, only one
additional fish would need to be added to make up for the difference in precision (i.e., n=89), if
Mountain Whitefish tag deployments are as successful as Bull Trout deployments.

There has been concern about the poor success of Whitefish studies, suggestingalarger sample
size, but we found mixed evidence to support this position, with approximate ly 60% of
Mountain Whitefish and Bull Trout releases producing useful resultsin the previous EMG study.
As accelerometertags should provide a lowertag burden and less handling stress, we would
anticipate an equal or better success rates.

Taken together, along with allowances for calibrations, a total sample size of approximately 98-
150 Mountain Whitefish would be needed to produce an energetics model of similar precision
to the Bull Trout energetics model.
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