The Building Envelope Thermal Bridging Guide

October 16, 2014

Presentation Overview

Acknowledgments

Main Authors

Patrick Roppel, Principal, Building Science Specialist Christian Cianfrone, Principal, Building Energy Specialist Neil Norris, Building Energy Consultant

Building Performance Analysis Group

Ivan Lee, Building Science Consultant Ruth McClung, Building Science Consultant Nick Adamson, Building Science Consultant Radu Postale, Building Science Consultant Alex Blue, Building Energy Consultant

Advisors

Mark Lawton, VP, Senior Building Science Specialist Jameson Vong, Principal, Building Envelope Specialist Eileen Holt, Business Development Coordinator

Funding Partners

BChydro C powersmart

Canadian Wood Council Conseil canadien du bois

Homeowner Protection Office Branch of BC Housing

Private Clients

- EIFS
- Insulated Metal Panel
- Cladding attachments
- Vacuum insulated panels (VIP) in insulated glazed units for glazing spandrel sections
- Structural thermal breaks
 manufacturer

Use of Energy Codes

- Code Compliance in all of BC
 - References either ASHRAE 90.1 2010 or NECB 2011
- LEED
 - References either ASHRAE 90.1 2007 or MNECB 1997
 - Requires "better than" minimum performance
 - Modeling procedures and assumptions differ from Code compliance – see LEED documents!
- Incentive Programs
 i.e. BC Hydro New Construction Program
 - References ASHRAE and NECB, with modifications
 - Modeling procedures and rules published by BC Hydro

ASHRAE 90.1 Prescriptive Opaque areas

	Zone 7								
Components	Non-Res	sidential	Resid	dential	Semi-Heated				
	U factor	R value	U factor	R value	U factor	R value			
Roof - insulation above deck	0.048 (R20.8)	20.0c.i.	0.048 (R20.8)	20.0c.i.	.093 (R8.4)	10c.i.			
Roof - Attic	0.027 (R37.0)	38.0	0.027 (R37.0)	38.0	.034 (R29.4)	30.0			
Walls - Mass	0.071 (R14.1)	15.2c.i.	0.071 (R14.1)	15.2c.i.	0.123 (R8.1)	7.6c.i.			
Walls - Steel framed	0.064 (R15.6)	13.0+7.5c.i.	0.042 (R23.8)	13.0+15.6c.i	0.124 (R8.1)	13.0			
Walls - Wood framed	0.051 (R19.6)	13.0+7.5c.i.	0.051 (R19.6)	13.0+7.5c.i.	0.089 (R11.2)	13.0			

Effective Thermal Resistance

What is a Thermal Bridge?

- Highly conductive material that by-passes insulation layer
- Areas of high heat transfer
- Can greatly affect the thermal performance of assemblies

ASHRAE Research Project 1365 2011

Goals and Objectives of the Project

- Calculate thermal performance data for common building envelope details for mid- and high-rise construction
- Develop procedures and a catalogue that will allow designers quick and straightforward access to information
- Provide information to answer the fundamental questions of how overall geometry and materials affect the overall thermal performance

ASHRAE Research Project

Calibrated 3D Modeling Software

- Heat transfer software by Siemens
 PLM Software, FEMAP & Nx
- Model and techniques calibrated and validated against measured and analytical solutions
- ISO Standards for glazing
- Guarded hot box test measurements, 29 in total

ASHRAE Research Project

Details Catalogue

- 40 building assemblies and details common to North American construction
- Focus on opaque assemblies, but also includes some glazing transitions
- Details not already addressed in ASHRAE publications
- Highest priority on details with thermal bridges in 3D

What's this BC Study?

Building Envelope Thermal Bridging Guide Analysis, Applications, & Insights

1365-RP and Beyond

BC hydro					Log in	or	Create a MyHydro Profil About BC Hydro	Car	Q, /	Ask a question	Contact U
Accounts & B	illing	Powe	er Smart	Energy in B.C.	News, Events & Media	ļ	n Your Community	Safe	ety &	Outages	
Residential •	Busin	ess •	Power Sr	nart Alliance • 25	Years of Power Smart						

Home > Power Smart > Business > Programs & Incentives > New Construction Program

NEW CONSTRUCTION PROGRAM

INCENTIVES, RESOURCES

Power Smart offers financial incentives, resources and technical assistance to building owners, developers and the design industry to create high-performance, energy-efficient buildings.

PROGRAMS & INCENTIVESPower Smart Partner ProgramPower Smart ExpressWorkplace Conservation
AwarenessEnergy Management Assessment

Energy Performance Contracts

Continuous Optimization

What it looks like: featured projects

Incentives to study system design

Building Envelope Thermal Bridging Guide

This guide explores how the building industry in British Columbia can meet the challenges of reducing energy use in buildings, in part by effectively accounting for the impact of thermal bridging.

Most practitioners will find PART1 and Appendices A and B to be most useful. PART 1 outlines how to effectively account for thermal bridging. Appendices A and B provide a catalog of common building envelope assemblies and interface details, and their associated thermal performance data.

Researchers and regulators will be interested in PART 2 and PART 3, and Appendices C to E. They contain the cost-benefit analysis, and discussion on significance and further insights, of using this guide to mitigate thermal bridging in buildings.

- Introduction [PDF, 2.2 MB]
- Part 1: Building Envelope Thermal Analysis (BETA) Guide [PDF, 4.5 MB]
- Part 2: Energy Savings and Cost Benefit Analysis [PDF, 1.8 MB]
- Part 3: Significance, Insights and Next Steps [PDF, 2.8 MB]
- Appendix A Catalogue Material Data Sheets [PDF, 14.3 MB]
- Appendix B Catalogue Thermal Data Sheets [PDF, 11.7 MB]
- Appendix C Energy Modeling Analysis and Results [PDF, 1.2 MB]
- Appendix D Construction Costs [PDF, 1.2 MB]
- Appendix E Cost Benefit Analysis [PDF, 7.3 MB]

The Beginning of Guides

Introduction

- Part 1
- Building Envelope Thermal Analysis (BETA) Guide
- Part 2 Energy and Cost Analysis
- Part 3 Significance, Insights, and Next Steps
- Appendix A Material Data Catalogue
- Appendix B Thermal Data Catalogue
- Appendix C Energy Modeling Analysis and Results
- Appendix D Construction Costs
- Appendix E Cost Benefit Analysis

And now for a little math

Parallel Path Heat flow

PARALLEL PATH METHOD

Thermal Bridging

- Parallel path doesn't tell the whole story
- Many thermal bridges don't abide by "areas" ie: shelf angle
- Lateral heat flow can greatly affect the thermal performance of assemblies

Addressing lateral Heat Flow

Overall Heat Loss

Overall Heat Loss

The Conceptual Leap

Types of Transmittances

Total Heat loss =heat loss due
to clear fieldHeat loss due to
anomalies

$Q / \Delta T = \Sigma (U_o \cdot A) + \Sigma (\Psi \cdot L) + \Sigma (\chi)$

Identifying assemblies and details

Summing Transmittances

Transmittance Description		Area, Length or Amount Takeoff	Units	Trans V	mittance alue	Units	Source Ref	Heat Flow BTU/hr°F
Glazed Spandrel		9036	ft²	C).13	Btu / hr ft² °F	1.1.1	1,175
Concrete	Opaque U-Value		1365-18	3,253				
Parapet at Window Wall		(BTU/hr	ft ² °F)	0.	080	1.1.5	140
Parapet at Concrete Wall	Ff	fective F	2-val				1365-20	23
Parapet and WW to Deck		(ff ² hr °F)	(BTU)		1	2.5	1.1.5	42
Parapet at Con Wall to De		(······ ·)					1365-20	16
Glazing Transition, Vert.		19938	ft	C).29	Btu / hr ft °F	4.1	5,782
Glazing Transition, Horizo	Or	oaaue U	-Val	ue			3.2	704
Balcony at WW	-	(BTU/hr f	ft ² °F))	0.	280	4.2	1,254
Balcony at Conc							1365-18	835
Spandrel Bypass	Eff	fective R	-val	ve	3 4		1.1.3	1,041
Eyebrow		(fffhr °F/	/BTU)				4.1	444
Shear Wall		1295	ft	().66	Btu / hr ft °F	3.4	855

Clear Field

 U_{o}

CLADDING ATTACHMENTS

Vertical Z-Girts Horizontal Z-Girts

Mixed Z-Girts

Intermittent Z-Girts

Clip Systems

Effect of Thermal bridging in 3D

Glazing Spandrel Areas

Glazing Spandrel Areas

Glazing Spandrel Areas

Concrete Walls

Concrete Walls

Slab Edges – Balcony

Slab Edges – Shelf Angle

Slab Edges – Shelf Angle

Slab Edges – Balcony

With **EIFS**

Assemb l y Type	Exterior Insulation Nominal R-Value hr.ft².ºF/BTU (m²K/W)	Linear Transmittance BTU/ft.hr.ºF (W/mK)		
teel Stud wall with EIFS	R-15 (2.64)	0.012 (0.022)		
teel Stud with EIFS and R-12 batt nsulation in stud cavity	R-7.5 (1.32)	0.076 (0.132)		
our-in-place concrete wall with EIFS	R - 15 (2.64)	0.013 (0.023)		

Window Interface

	Performance Category		Description and Examples	Linear Transmittance	
NSITIONS			Description and Examples		W m K
		Efficient	Well aligned glazing without conductive bypasses Example: wall insulation is aligned with the glazing thermal break. Flashing does not bypass the thermal break. The EIFS interface with the curtain wall was in this category.	0.1	0.17
AZING TRA		Regular	Misaligned glazing and minor conductive bypasses Examples: wall insulation is not continuous to thermal break. The EIFS punched window details, without improvements, are in this category.	0.2	0.35
GLJ		Poor	Un-insulated and conductive bypasses Examples: metal closures connected to structural framing. Un-insulated concrete opening (wall insulation ends at edge of opening).	0.3	0.5

Window in Wall with Ext. Insulation -Empty Cavity

Beam Thermal Breaks

	Exterior Insulation 1D R-Value (RSI)	R _。 ft²·hr·ºF / Btu (m² K / W)	R _{effective} ft²⋅hr⋅ºF / Btu (m² K / W)	ψ Btu/ft hr °F (W/m K)	Minimum Temperature Index on slab
Continuous Beam	R-27 (4.79)	R-17 (3.04)	R-7 (1.19)	1.73 (0.92)	0.483
With Isokorb® type S	R-27 (4.79)	R-17 (3.04)	R-9 (1.61)	0.91 (0.48)	0.749

Insights

The impact depends on type of construction.

heat flow associated with details

heat flow associated with clear field assembly

R-3.9 "Effective"

We Ain't Building What We Think We are Building

Wall Assembly U-Value per ASHRAE 90.1

Wall Assembly U-Value per NECB 2011

Thermal bridges at transitions not captured by ASHRAE wall assumptions

Just Adding Insulation is Seldom Effective

Adding More Insulation to Steel Stud Assemblies to go from an "Effective" R-value of R-15.6 to R-20

Building Type	Incremental Construction Cost	Energy Cost Savings	Payback (years)
Commercial Office	\$ 94,825	\$ 1,116	85
High-Rise MURB	\$ 153,222	\$ 2,542	60
Hotel	\$ 64,650	\$ 543	119
Large Institutional	\$ 150,375	\$ 1,833	82
Non-Food Retail	\$ 24,192	\$ 461	53
Recreation Centre	\$ 28,400	\$ 263	108
Secondary School	\$ 36,325	\$ 306	119

The Effectiveness of Adding More Insulation

- Even some "expensive" options look attractive when compared to the cost effectiveness of adding insulation
- The cost to upgrade to thermally broken balconies and parapets for the high-rise MURB with 40% glazing may require two to three times the cost of increasing effective wall assembly R-value from R-15.6 to R-20, but
- Seven times more energy savings
- Better details AND adding insulation translates to the most energy savings and the best payback period

Glazing

- Glazing area is major determinant of overall U
- U value of opaque spandrel closer to "glazing" values than "wall" values.
- The heat loss through transition elements such as deflection headers is large and usually not included in manufacturer's data
- Improvements can be made and some manufacturers are starting to make them

How to Improve?

How to Improve?

Interior Insulated Concrete Buildings are a Challenge

Window Sill Detail

- Insulation interrupted by slabs and shear walls
- Attachment of windows cold concrete problematic

New and Innovative Technologies

- Cladding attachments
- Structural thermal breaks
- Vacuum insulated panels (VIP) in insulated glazed units for glazing spandrel sections

Structural Thermal Breaks

Structural thermal break (image courtesy of Fabreeka)

Balcony connection (image courtesy of Lenton)

Structural thermal break (image courtesy of Schock)

Thermal break (image courtesy of Halfen)

Readily Available Low Conductivity Structural Materials

PU structural thermal break (image courtesy of General Plastics)

Wood – courtesy of the forest \bigcirc

PVC Structural thermal break

(image courtesy of Armatherm)

At Grade Solutions for Structural Thermal Breaks

Aerated Concrete (courtesy of Aercon)

Foam Glass (courtesy of Perinsul)

EPS Concrete (courtesy of Bremat)

Foam Glass (courtesy of Perinsul)

Proprietary Systems with Constant Spacing

Thermal vs. Structural Performance

The Role of Energy Codes and Standards

- Requiring that thermal bridging at interface details be considered will be the catalyst for market transformation
- Move past the idea that the only thing a designer or authority having jurisdiction needs to check is how much insulation is provided
- The guide can be leverage to help lead the way to constructive changes

- Industry needs a level playing field
- Designers need options
- Incentivize effective solutions

 Changes to code are on the way

Next Steps

- Improve the ability to enforce the code and level the playing field by adding clarity
- Adopt requirements that make sense for our climate and construction practice
- Replace "exceptions" based on wall areas with metrics that represent heat flow like linear transmittance or remove all exceptions
- Create incentives and reward improved details when practical
- Encourage good practice and a holistic design approach
- Use this guide to help policy and authorities implement programs that are more enforceable

mlawton@morrisonhershfield.com

morrisonhershfield.com