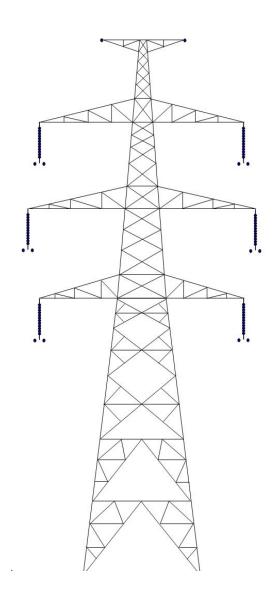
Customer Information Session on Transmission Load Interconnection Process, Timelines and Requirements

Housekeeping and Agenda


Moderator: Frank Lin

AGENDA

- 1. Context
- 2. Interconnection Process
- 3. System Impact Study
- 4. Facilities Study
- 5. Implementation
- 6. RDA Timeframe & Next Steps
- 7. Questions & Comments

Context and Scope

Presenter: Sam Jones

CONTEXT

BCUC: DCAT CPCN Decision – October 2012

• "... this Panel recommends that the Commission should consider a review of TS 6 and invite all interested parties to participate in the review as this is a significant and urgent issue." (Decision Page 128)

Industrial Electricity
Policy Review
(IEPR) Final Report
– Oct 2013

- Taskforce Recommendations
- Government Response

2015 Rate Design Application (RDA)

2015 RDA SCOPE

- All 7 customer classes: Residential, Small General Service, Medium General Service, Large General Service, Irrigation, Street Lighting and Transmission
- Cost of Service (COS), and Rebalancing within confines of section 58.1 of the Utilities Commission Act (UCA)
- Rate structure design, including all conservation rate structures and relevant IEPR recommendations such as Recommendation #13 to take advantage of industrial power consumption flexibility such as Time of Use (TOU) and Interruptible rates
- Transmission and Distribution extension policies, informed by DCAT CPCN proceeding and IEPR submissions for Transmission, and 2007 RDA and customer issues for Distribution
- Electric Tariff terms and conditions

CONTEXT

Tariff Supplement No. 6/Facilities Agreement (FA)

Non-Tariff BCH Business Practice and Applicable Planning Criteria Transmission
Load
Interconnection
Process,
Timelines and
Requirements

Interconnection Process

Presenter: Herman Kwan

Customer at Early Stage (No Queue Position)

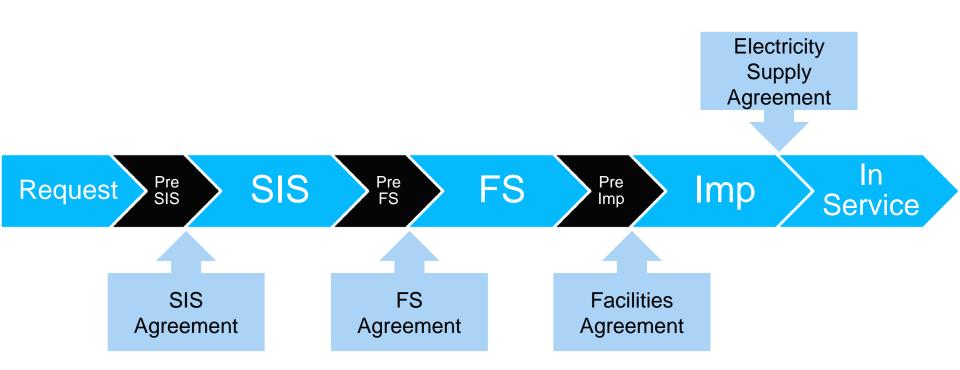
Accepted Request with Minimal Load and Equipment Information

Conceptual Review

Feasibility Study

Customer Ready to Commit to formal process (Assigned Queue Position) – First Come First Served Principle

Accepted Request with Detailed Load and Equipment Information


System Impact Study

Facilities Study

Implementation

MANDATORY STEPS AND AGREEMENTS

SIS: System Impact Study

FS: Facilities Study

Imp: Implementation

STUDY TASKS

Order of Magnitude Cost Estimate

System Reinforcements Required

Implementation Level Cost Estimate

Impact to BC Hydro System

Interconnection Method

High-level Cost Estimate

In Service Date Feasibility

Scope of Work

Project Plan

Permitting

Construction

Commissioning

High Level Schedule

11

FOR GENERATIONS					
	Conceptual Review	Feasibility Study	System Impact Study	Facilities Study	Implementation
Commentary on Interconnection Proposal	✓				
Preliminary Impact Study		✓			

Study Considerations - Risks and Impacts

BC Hydro
-study scope
-planning criteria
-data assumptions

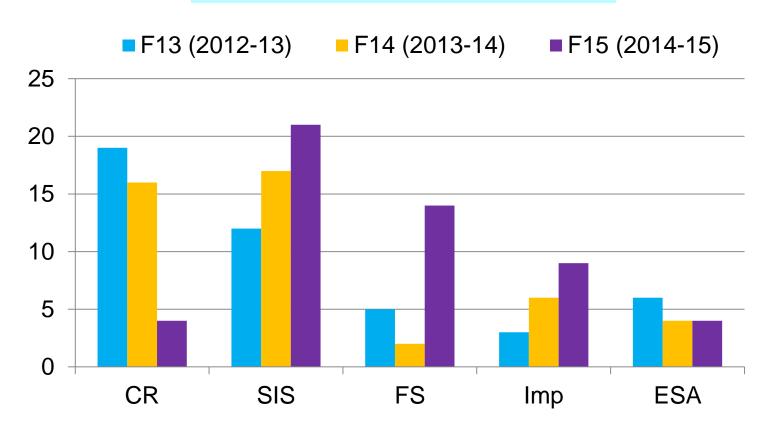
Risks and Impact on Customer

- Plant construction cost and schedule
 - Financial decision
 - Equipment selection
 - First Nation, environmental, etc.

Impact on Delivered Product

- Quality
- Speed
- Cost

Risks and Impact on BC Hydro/Rate Payers

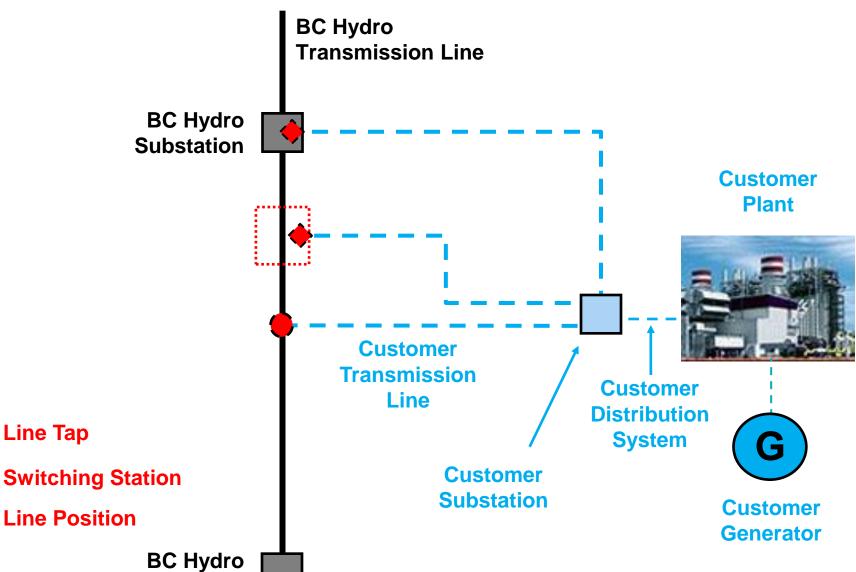

- System capacity
- System reliability
- System upgrade cost and schedule
 - First Nation, environmental, etc.

Customer
-data provided
-operation reliability
-study output

Volume of Work by Fiscal Year

CR: Conceptual Reviews

FS: Facilities Study


ESA: Signed Electricity Supply Agreement

SIS: System Impact Study

Imp: Implementation

FOR GENERATIONS

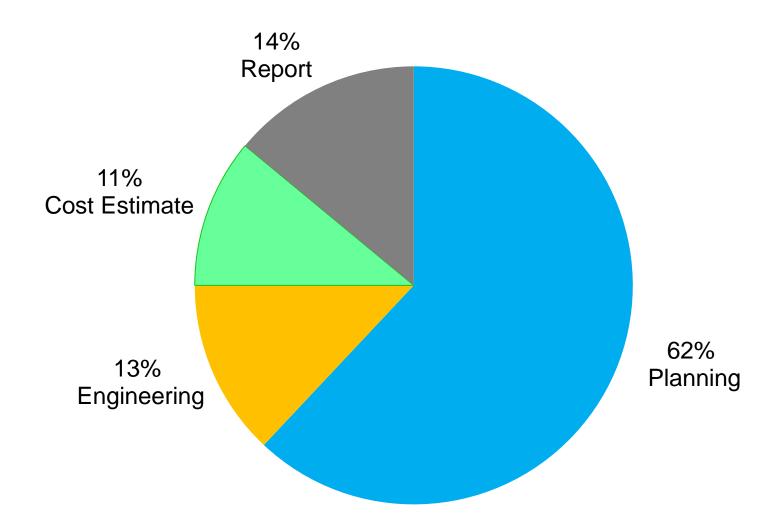
Line Tap

Substation

System Impact Study

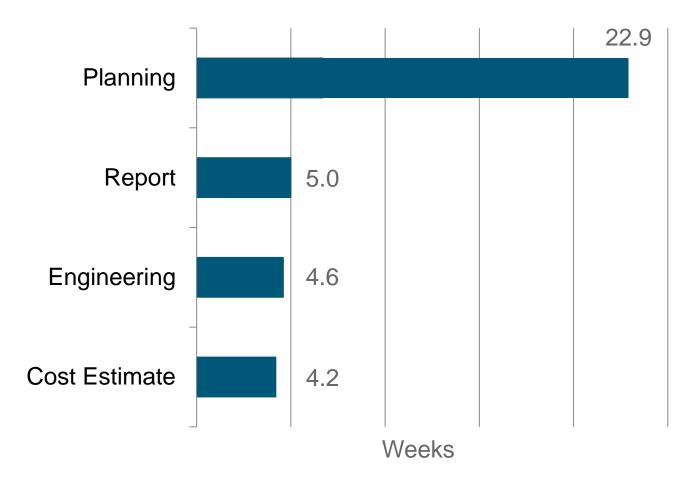
Presenter: Wah Shum

PURPOSE

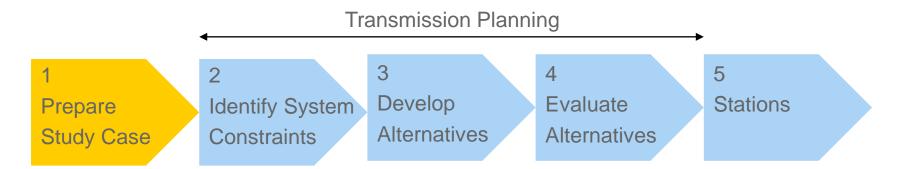


Study impact of the interconnection.

[for both normal and contingency conditions]

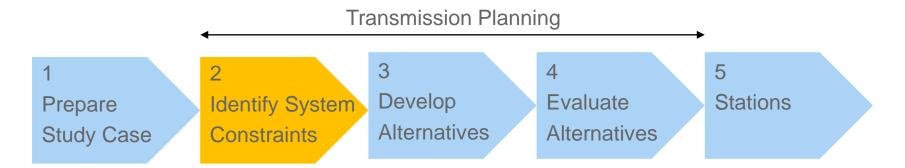

EFFORT

TIME ALLOTMENTS (36.7 WEEKS)


Average Study Time: 31.7 weeks [does not include data collection]

CUSTOMER ENGAGEMENT

- Clarify Scope
- Clarify Customer Reliability and Performance Needs
- Optimize Solutions (customer installed facilities can avoid system facilities)
- Update Meetings (progress and feedback)



1. Study Case

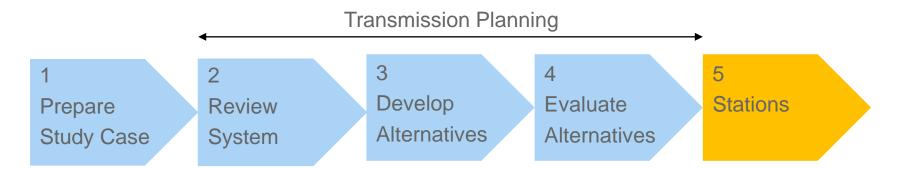
- review customer request and data
- prepare computer models incorporating customer facilities [base cases]

2. System Constraints

- review new system
- apply system contingencies
- Identify reliability violations (NERC, WECC,...)

3. Determine System Reinforcements

- Ability to supply demand needs
- Ability to withstand disturbances
- Ability to provide reliable service from a long term perspective
- Feasibility screening



4. Select Alternatives for Downstream Work

- Technical Feasibility, Order-of-Magnitude Cost
- Losses
- Reliability
- Preliminary assessment of routing, First Nations, environment
- Implementation timelines; * Risks

5. Determine Substation Equipment

- Assess stations constraints and expansion feasibility
- Develop alternatives (upgrade existing station or new station)
- Technical evaluation of alternatives

- 6. Assess impact of proposed interconnection on BC Hydro's system and existing customers from system performance and equipment perspectives
- Prepare electromagnetic transient model to conduct studies
- Develop mitigation solutions

- 7. Preliminary transmission engineering
- Conducted* in parallel with tasks 5, 6, or 8
- Upgrade existing lines or construct new lines
- Preliminary routing for new lines

- 8. Specifies Protection and Control systems to protect system integrity
- Specifies telecom requirements
- May require system changes for the protection system to operate securely

Scope

- 9. Specifies Telecom Facilities
- For Protection and Control

Scope

10.

+100/-35% accuracy

Scope

11.

P. Eng. Sealing starting 2014

Outcome

- Technical Feasibility
- Method of Interconnection
- Facility Upgrades
- Costs
- Customer Requirements
- Schedule Feasibility
- Risks

Discussion

Facilities Study

Presenter: Navreet Kooner

FACILITIES STUDY

BC Hydro Project and

- 1) Project Scope of Work
- Refinement of SIS scope
 2) Project Implementation Schedule

 Program Delivery
 BC Hydro
 AMEC
 SNC
 Lavalin
- 3) Project Implementation Cost Estimate
 - +20%/-10% estimate variability
 - Split of Basic Transmission Extension and System Reinforcement cost estimate

FACILITIES STUDY - PROJECT SCOPE

- Electrical
- Civil/Structural
- Metering
- Telecommunications
- Protection and Control
- Automation SCADA

FACILITIES STUDY

- 1) Project Scope of Work
 - Refinement and finalization of project scope
 - Preliminary Engineering
 - Site visits
 - Assessments
 - First Nations
 - Community Relations and Stakeholder Engagement
 - Regulatory, permits and tenures
 - Property issues, acquisitions, etc.
 - Environmental issues
 - Risks/Hazards
 - Outage Planning

FACILITIES STUDY

- 2) Project Implementation Schedule
- 3) Project Implementation Cost Estimate
 - +20/-10% estimate variability
 - Split of Basic Transmission Extension and System Reinforcement costs

FACILITIES STUDY

- Risk Management
 - Key risks to project delivery
 - Enter into Early Engineering and Procurement Agreement
 - Advance engineering and critical procurement

Implementation

Presenter: Navreet Kooner

IMPLEMENTATION

- Project Management
 - Cost control and schedule management
- Engineering
 - Detailed Engineering
 - BC Hydro Transmission Engineering Owner's Engineer role
- Procurement
 - Materials
 - Blanket contract orders or BCH inventory
 - Tender on BC Bid for unique equipment (i.e. capacitor banks, control buildings etc.)

IMPLEMENTATION

- Construction
 - Internal resources or external contractors
 - Competitive procurement via tenders on BC bid
- Commissioning
 - Operating Order 1T35 Commissioning Procedure For Generators,
 Station and Transmission Projects
 - http://transmission.bchydro.com/transmission_system_operating_orders/

IMPLEMENTATION

- Risk Management
 - Scope, schedule and cost impacts
 - Examples
 - Outages unavailable
 - Increase in time needed for receipt of permits, applications, etc.
 - Environmental issues encountered
- Customer Engagement
 - Visibility of risks and issues
 - Impact assessment
 - Coordination
 - Construction and commissioning milestones

RDA Timeframe and Next Steps

Presenter: Sam Jones

NEXT STEPS

- Post presentation
- Collect and analysis feedback from this session
- Continue to engage and collect feedback from industry groups over the next several months as options on TS #6 and interconnection process are developed
- Post a draft of the revised Guide and Requirements for comments

RDA ENGAGEMENT

Workstream	Date
Cost of Service	concluded
Transmission Service Rates - workshop #1	Oct 22, 2014
Transmission Extension Policy – workshop #1	Nov 18, 2014
Distribution Extension Policy – workshop #1	Dec 4, 2014
Large General Service, (LGS), Medium General Service (MGS) Small General Service (SGS) – workshop #1	mid Jan 2015
Large General Service, (LGS), Medium General Service (MGS) Small General Service (SGS) – workshop #2	early Apr 2015
Residential Rates - workshop	mid Feb 2015
Transmission Extension Policy – workshop #2	Feb/Mar 2015
Distribution Extension Policy – workshop #2	Feb/Mar 2015
Transmission Service Rates – workshop #2	early Mar 2015

CONTACTS

If there are any questions on this presentation or the interconnection process please contact:

Email: Herman.Kwan@bchydro.com

For all general 2015 RDA feedback, questions or if you are interested in participating in other Rate Design engagement activities, please contact us by:

- Mail: BC Hydro, BC Hydro Regulatory Group "Attention 2015 RDA", 16th Floor, 333 Dunsmuir St., Vancouver, B.C. V6B-5R3
- Fax: 604-623-4407, "Attention 2015 RDA"
- Email: bchydroregulatorygroup@bchydro.com
- Web: www.bchydro.com/about/planning_regulatory/2015-rate-design.html

QUESTIONS / COMMENTS / FEEDBACK

