ELECTRIC VEHICLE (EV) ACTIVITIES AND TARIFF IMPLICATIONS

BC HYDRO RATE DESIGN APPLICATION (RDA) FOLLOW-UP ENGAGEMENT MEETING WITH THE BC SUSTAINABLE ELECTRICITY ASSOCIATION AND SIERRA CLUB OF BRITISH COLUMBIA (BCSEA)

Presenters: Robert Gorter and Alec Tsang

October 10, 2014

OUTLINE

- 1. Background
- 2. Past EV Activities
 - Understanding impacts and preparing for EVs
- 3. Current EV activities
 - EV infrastructure deployment projects
 - Data collection and analysis
- 4. Tariff and Timing Implications
 - Load Forecast
 - Cost basis
 - Metering implications

RDA ENGAGEMENT – FEEDBACK AND RESPONSE

Workshop No. 1, May 8th – RDA Scope

BCSEA	12. BCSEA agrees with the principle that	BC Hydro is prepared to meet with
	BC Hydro avoid rate designs where it	BCSEA on this issue but notes that EV
	would need to know what happens	load is not material in the first 10 years of
	behind the customer meter, except in the	the 2013 load forecast (F2022: 125 GWh;
	case of Electric Vehicle (EV) Rates	F2028: 590 GWh)(May 2014 Load
		Forecast Update).

Workshop No. 3, June 25th – Residential Rate Design

BCSEA

- Very important for BC Hydro to put in place rate mechanisms designed to meet the unique needs of EV charging long before EV load becomes a material portion of the total load
- BC Hydro could play a valuable role in helping to reduce GHG emissions in BC by facilitating the adoption of EVs through implementing practical EV charging rates mechanisms

PAST EV ACTIVITIES AND DEVELOPMENT

- Investigated customer needs and implications for BC Hydro:
 - Assessed EV impacts on the system
 - Generation capacity to meet EV demand
 - Potential Distribution bottlenecks
 - Incorporated potential EV load into the 2010 Load Forecast and subsequent load forecasts
- Introduced EVs into BC Hydro Fleet, starting in 2011

DC FAST CHARGING PILOT PROJECT CRITICAL EV INFRASTRUCTURE NETWORK

ASSESSING NEED AND PRACTICALITY OF AN EV RATE

- EV Rate Considerations
 - Mechanism to enforce off-peak charging
 - Separate EV rate would require a separate meter
 - Basis on which to determine cost of service and load implications for pricing?
 - Industrial Electricity Policy Review submissions indicated no support for end use rates unless they are cost-based
- t of service F15 F16 W F22 t for end F28 F33

Fiscal

Year

Plug-in EV Load Forecast (GWh)

2012

2

5

161

733

1,396

- Why now?
- No meaningful system impact of EV's within the next 10 years
- EV purchasing economics dominated by upfront premium price of an EV, not the already 5:1 gas to electricity fueling cost ratio

2014

Update

8

15

141

625

1,215