Resource Options Update Session

December 12, 2019

Welcome & agenda

Anne Wilson, BC Hydro (Moderator) Kathy Lee, BC Hydro

Agenda

Purpose

To seek feedback on the update of BC Hydro's resource options inventory

- An inventory of potential resources to meet future customer demand
- This update will inform the development of BC Hydro's Integrated Resource Plan (IRP) next year
- The need for resources will be addressed in the IRP

FILL OUT A FEEDBACK FORM

Are there additional resource options we should be considering?

We'd like to hear from you!

Are there additional technical considerations when developing and characterizing resource options?

Resource options inventory

This update covers options from demand to supply side, and includes the trend towards smaller scale distributed options

Approach for this update

Focus on options that have evolved and watch out for new technologies

- Building on existing knowledge
- Focusing efforts on resource options that have seen the most changes and developments (e.g. wind, solar, batteries, etc.)
- Keeping watch on new technologies
- Collaborating with FortisBC on the update of generation supply-side options in the province

Resource options characteristics

Both energy and capacity are needed to meet customer demand

- Energy electricity produced over a period of time (MWh/month, GWh/year)
 Intermittent resources such as wind provides energy, but not capacity
- **Capacity** maximum electricity produced at a point in time (MW)
 - It can be relied upon whenever it is needed particularly during winter peak periods
 - It can meet system capacity needs and/or regional capacity needs
- Along with additional attributes (e.g., cost, location, GHG emissions)

Generation supply-side options

Alex Tu, BC Hydro

Are there additional resource options we should be considering?

We'd like to hear from you!

Are there additional technical considerations when developing and characterizing resource options?

BC Hydro Power smart

	C	Genera	tion supply-side opt	tions
E	Evolving	3	Existing database	Emerging
S	W	В		

Generation supply-side options

We've focused efforts on evolving resources and ensuring a breadth of coverage of resource options

Generation supply-side options					
	Evolving		Existing database	Emerging	
S W B		В	• Geothermal	Next generation:	
<u>S</u> olar			Run-of-river hydro	Solar or storage	
 Utility and community 			• Biomass	• Hydrogen	
scale			 Municipal Solid Waste 	Customer distributed	
 Custon 	ner scale		 Pumped storage 	generation e.g., venicle to	
Mind			 Natural gas 	gna	
<u>vv</u> ind			• Marine		
<u>B</u> atteries			Off-shore wind		
 Utility scale 			 BC Hydro assets 		
Customer scale			(expanding capability)		
A BC Hydro					

Power smart

	Generation supply-side options				
E	Evolving	3	Existing database	Emerging	
S	W	В			

Solar resources – utility scale

Technical resource limited by land use designation and distance from transmission

Unconstrained – exclude only water, parks and built areas

Less than 5% slope, not heavy forest

At least 15 MW, and within 25km of transmission

Solar resource – utility scale

Projected capital costs for B.C. solar resources is very similar to the average U.S. costs

Solar resource – O&M costs

Operations and maintenance costs for utility and community scale solar is in line with U.S. averages, but property tax is specific to B.C.

ltem	Solar
Operations & maintenance	\$11 /kW-yr
Sustaining capital	\$8 /kW-yr
Insurance	\$2 /kW-yr
Property tax	\$5 /kW-yr
Total	\$26 /kW-yr

	Generation supply-side options				
E	Evolving]	Existing database	Emerging	
S	W	В			

Solar resources – community scale

Community scale resources can be sited in available urban spaces and connected to local distribution system

Province-wide resources (~100 potential resources)

Lower Mainland resources

	Generation supply-side options				
E	Evolving]	Existing database	Emerging	
S	W	В			

Customer scale – solar

The resource potential for rooftop solar is limited by available roof space, roof orientation, and shading

Gagnon, P. et al. (2016) Rooftop Solar Photovoltaic Technical Potential in the U.S.

Generation supply-side options				
E	Evolving	3	Existing database	Emerging
S	W	В		

Solar resources – community scale

For ~ 5 MW resources, prices generally in line with high land cost jurisdictions

Source: NREL Q1/Q2 2019 Solar Industry Update

Customer scale – solar

Technical potential of rooftop solar in B.C. estimated based on generalizations developed in U.S. study to develop theoretical upper bound

Residential rooftops

- Limited to single family dwellings
- U.S. average for 'suitability' based on roof shape, shading, and orientation (79%)
- Limited to owner-occupied (76% of single family dwellings)
- Suitable houses could host (on average) ~6 kW system (~400 square feet roof space)

Total ~ 3.6 GW residential (1.8 GW in Lower Mainland)

Commercial customer rooftops

- All small general service (SGS) customers included, e.g., restaurants, retail...
- Rooftop space based on average square foot by customer type
- 42% of all rooftop space is 'suitable' based on mid Navigant estimate
- Assume 67 square feet of 'suitable' rooftop space required per kW installed

Total ~ 2.5 GW SGS

	Generation supply-side options				
E	Evolving]	Existing database	Emerging	
S	W	В			

Customer scale – solar

Costs of rooftop solar in B.C. are coming down in the near term

Note: Cost declines based on National Renewable Energy Laboratory projections

Generation supply-side options				
E	Evolving]	Existing database	Emerging
S	W	В		

Wind resources

Dramatic price declines as technology and market conditions change

Generation supply-side options				
E	Evolving]	Existing database	Emerging
S	W	В		

Wind resources – B.C. cost update

BC Hydro undertook a review of wind costs in 2018

- Hatch Wind Project Review (August 2018)
- 2017 Wind Technologies Market Report (August 2018)
- Review of costs of wind projects in Alberta (July 2018)
- IPP survey of costs (August 2018)

2018 costs for sample 150 MW wind farm in B.C.

Cost	Low	Mid	High
Capital Cost (2018)	\$1,700 / kW	\$2,110 / kW	\$2,400 / kW
OMA Cost (2018)	\$40 / kW-yr	\$58 / kW-yr	\$80 / kW-yr

Energy storage resources

We are interested in long duration storage types that can be relied upon as alternative to supply-side capacity resource

Storage technology category	Duration at full power	Technologies
Long duration	4+ hours	 Compressed air energy storage Flow battery Sodium sulfur (NaS) battery Lithium ion battery
Medium duration	2 hours	
Medium-short duration	1 hour	
Short duration	30 minutes	

Energy storage resources

Long duration resources can be located at various grid locations, at different scales, costs and capabilities

Distribution Sub Station

Energy storage resources

We'll estimate costs for each combination of technology type and grid location

Technology	Grid location	AC capacity	Modules (\$/kWh)	Balance of plant (\$/kW)	Installation (\$/kW)	OMA (fixed variable)
CAES	Central / Bulk	100 MW				
CAES	Transmission	10 MW				
Li-Ion	Central/Bulk	100 MW				
Li-Ion	Transmission	10 MW				
Li-Ion	Distribution	2 MW				
etc.						

Summary – evolving category

The database will update installed costs & unit energy and unit capacity costs

Resource	Size	Representative size	Installed cost in 2020 (\$/kW)	ΟΜΑ
Solar – utility	>10 GW	50 MW	\$1,469 - \$1,640	\$26 /kW-yr
Solar – community	<1 GW	10 MW	\$1,989	\$26 /kW-yr
Solar – DER	~5 GW	6 kW – 50 kW	\$2,230 - \$2,650	\$10 – 20 /kW-yr
Wind onshore*	~17 GW	27 MW - 660 MW	\$1,960 - \$2,440	\$58/kW-yr
Li-Ion batteries	N/A	2 MW – 100 MW	TBD	TBD
CAES	N/A	100 MW	TBD	TBD
Flow batteries	N/A	2 MW – 100 MW	TBD	TBD
DER – Li-Ion	N/A	10 kW – 10 MW	TBD	TBD

* preliminary estimates based on 2018

Summary – existing resources

Update will result in installed costs, unit energy, and unit capacity costs

Resource	What was updated	Size	Representative size	Installed cost in 2020 (\$/kW)	OMA (\$/kW-yr)
Geothermal	Cost	~500 MW	30 MW	\$5,700 – 14,000	\$180-230
Run-of-river	Cost	>15 GW	5 MW	\$2000 - \$50,000	\$120+
Small storage run-of-river	Resource	<1 GW	50 MW	\$7,000 - \$9,000	\$350-450
Natural gas	Cost	N/A	100 MW	\$1,000 - \$1,700	\$50-200
Pumped storage	Cost	>100 GW	1000 MW	\$1,700 - \$3,700	\$16-75
Biomass	Resource & Cost	~460 MW	40 MW	\$5,910	\$146
MSW	Cost	~50 MW	12 – 25 MW	\$1,550 – \$2,290 / t	\$78 - \$87 / t
Marine – wave	Cost	~500 MW	50 MW	\$13,000	\$720
Marine – tidal	Cost	~500 MW	50 MW	\$10,000	\$580
Wind offshore	Resource & Cost	>10 GW	400 MW	TBD	TBD

BC Hydro Power smart

Projecting cost declines

BC Hydro will use NREL annual technology baseline projections to estimate year over year cost reductions for all technologies

Battery Storage ATB cost projections Source: National Renewable Energy Laboratory Annual Technology Baseline (2019), http://atb.nrel.gov

Generation supply-side options					
Evolving			Existing database	Emerging	
S	W	В			

Emerging – assessing new technologies

We're continuing to monitor an evergreen list of emerging technologies

• Emerging solar

• Organic solar cells, floating solar, solar roads...

• Hydrogen and fuel cells

• Molten carbonate fuel cells, solid-state hydrogen storage, power-to-gas...

• Emerging storage

o Gravity storage, zinc-air batteries, advanced chemistries...

New customer side generation

• Micro-CHP, vehicle-to-home, vehicle-to-grid...

Next generation renewables

• Enhanced geothermal, zero-head hydro / hydrokinetic, floating offshore wind...

Generation supply-side options					
l	Evolving)	Existing database	Emerging	
S	W	В			

Emerging – assessing new technologies

Will use the Gartner Hype Cycle to assess new technologies in the B.C. context

27

Generation supply-side options					
	Evolving		Existing database	Emerging	
S	W	В			

Emerging – assessing new technologies

An example of a hydrogen and fuel cell technology hype cycle

Demand-side management options

Kristin Hanlon, BC Hydro

Are there additional resource options we should be considering?

We'd like to hear from you!

Are there additional technical considerations when developing and characterizing resource options?

BC Hydro Power smart

DSM resource options

Overview

Demand-side management options					
Energy efficiency	Capacity focused	Rate			
programs	programs	options			

Demand-side management options				
Energy efficiency	Capacity focused	Rate		
programs	programs	options		

DSM resource options

Terminology

Demand-side management options				
Energy efficiency	Capacity focused	Rate		
programs	programs	options		

Conservation potential review

Benefits of using a CPR for integrated planning

- What is a Conservation Potential Review (CPR)?
- The CPR integrates:
 - what is known about energy savings opportunities
 - (i.e., costs and savings for energy efficiency measures); with
 - actual energy sales (how energy is used today); and
 - our load forecast (how energy is projected to be used into the future)
- Consistent with how many other jurisdictions conduct resource planning

Demand-side management options				
Energy efficiency	Capacity focused	Rate		
programs	programs	options		

Conservation potential review

Building off what was done before

- In 2015, we worked with Fortis Gas, Fortis Electric, Pacific Northern Gas to conduct dual fuel, province wide CPR for the first time
- Navigant Consulting Ltd. chosen to perform modelling, with CleaResult subcontracted for the industrial sector
- Formed and engaged a Technical Advisory Committee to provide strategic advice into the study
- Estimated potential for energy efficiency (EE) and demand response (DR), and provided models for BC Hydro to use and update

Demand-side management options				
Energy efficiency	Capacity focused	Rate		
programs	programs	options		

Conservation Potential Review

Steps to calculating potential

Demand-side management options				
Energy efficiency	Capacity focused	Rate		
programs	programs	options		

Conservation Potential Review (CPR)

Updating the conservation potential review is the first step in developing demand side management resource options

- Update CPR models to reflect more current information including:
 - Actual sales up to fiscal 2019, by customer class and end use
 - The updated load forecast
 - Limited update on measures
 - Global assumptions
- Conservation potential will likely be lower overall, due to the lower load forecast

Demand-side management options		
Energy efficiency	Capacity focused	Rate
programs	programs	options

IRP resource options – energy efficiency

Approach to developing energy efficiency options

- Use the CPR market potential model
- Model incremental blocks of energy efficiency potential, over and above the current level of DSM

Demand-side management options		
nergy efficiency programs	Capacity focused programs	Rate options

IRP resource options – capacity

CPR demand response model

Demand-side management options		
Energy efficiency programs	Capacity focused programs	Rate options

IRP resource options – capacity

Approach to developing regional capacity resource options

Demand-side management options		
Energy efficiency programs	Capacity focused programs	Rate options

IRP resource options – capacity

Learnings from our existing capacity pilots will inform the update

Demand-side management options		
Energy efficiency programs	Capacity focused programs	Rate options

Capacity-focused rate design options

Price signals can be used to manage capacity

- **Scope:** Capacity focused rate designs that send a price signal to encourage peak shaving and load shifting
- **Topics:** Electricity pricing overview and jurisdiction scan of commonly used capacity focused rate designs

Electricity pricing overview

The cost of providing electricity service is commonly classified as being energy, demand and customer related, and these cost are reflected in pricing

BC Hydro Residential Rate

(Rate Schedule 1101)

Basic Charge 60 days @ \$0.2090 /day\$12.54*

ENERGY CHARGES

Step 1: 1,332 kWh @ \$0.0945 /kWh	.\$125.87*
Step 2: 106 kWh @ \$0.1417 /kWh	.\$15.02*

BC Hydro Medium General Service Rate

(Rate Schedule 1500)

Basic Charge 32 days @ \$0.2673 /day\$8.55*

ENERGY CHARGES

11,280 kWh @ \$0.0968 /kWh.....\$1,091.90*

DEMAND CHARGES

60 kW @ \$5.4200 /kW.....\$325.20*

Demand-side management options		
nergy efficiency programs	Capacity focused programs	Rate options

Common capacity-focused rate designs

A jurisdictional review shows there are five common rate designs to encourage peak shaving and load shifting

Rate type	Encourages customers to
Demand charges	reduce their peak demand
Time of use	use more electricity at certain, predefined times of the day, less electricity at other times
Peak time rebate	use less electricity during a limited number of critical periods
Critical peak pricing	use less electricity during a limited number of critical periods
Real time pricing	actively manage their demand in response to actual variations in its costs

Demand-side management options		
Energy efficiency programs	Capacity focused programs	Rate options

Time of use

Encourages load shifting by offering lower prices during off-peak, higher prices on peak. Simplified example adapted from Sacramento Municipal Utility District:

Power smart

Demand-side management options		
Energy efficiency programs	Capacity focused programs	Rate options

Peak time rebate

Encourages peak shaving at no risk to customer. Simplified example of pricing adapted from Portland General Electric:

Residential	

Standard rate			
Basic charge	\$11/month		
Energy charge	12 c/kwh		

Peak time rebate rate		
Basic charge	\$11/month	
Energy charge	12 c/kWh	
Peak time rebate amount	100 c/kWh	
Critical peak periods	Four consecutive hours per day, up to 20 days in a calendar year day ahead notice	

Demand-side management options			
Energy efficiency programs	Capacity focused programs	Rate options	

Critical Peak Pricing

Encourages peak shaving by sharing pricing risk and reward with customer Simplified example adapted from Xcel Colorado:

ı.

General service

Standard rate		
Service & facilities charge	\$300/month	
Demand charge	\$15/kW	
Energy charge	\$0.005/kwh	

Critical peak pricing rate		
Service & facilities charge	\$300/month	
Demand charge	\$11/kW	
Energy charge	\$0.005/kWh	
Critical peak period energy rate	1.35 \$/kWh	
Critical peak periods	Up to four consecutive hours per day, up to 15 days in a calendar year day ahead notice	

Demand-side management options			
Energy efficiency programs	Capacity focused programs	Rate options	

Illustrative real time pricing rate design

Encourages active capacity management by passing on pricing risk and reward to customer. Simplified example adapted from Georgia Power:

Grid management system

Cheong Siew, BC Hydro

Grid management system

Grid management enables integration of increasing distributed resources

Power smart

Grid management system

Maximizing benefits of distributed resources requires grid management

- Provides ability to forecast load requirements and resulting capacity constraints
- Provides ability to dispatch subscription based capacity-focused initiatives
- Results in increased benefits of some capacity focused initiatives by:
 - Reducing demand when there is insufficient capacity in the system
 - Coordinating the distributed resources with customer load requirements
- Greater visibility and influence at the local level allows effective management

Next steps & session close

Anne Wilson, BC Hydro

Next steps & thank you

We appreciate your interest and thank you for your participation in today's session

Your feedback is important to us

- Please leave your completed feedback form with us today
- Or, email your comments to us by December 20 integrated.resource.planning@bchydro.com
- We will consider your input as we update our database

For information about resource options, visit our web page, www.bchydro.com/supplyoptions

