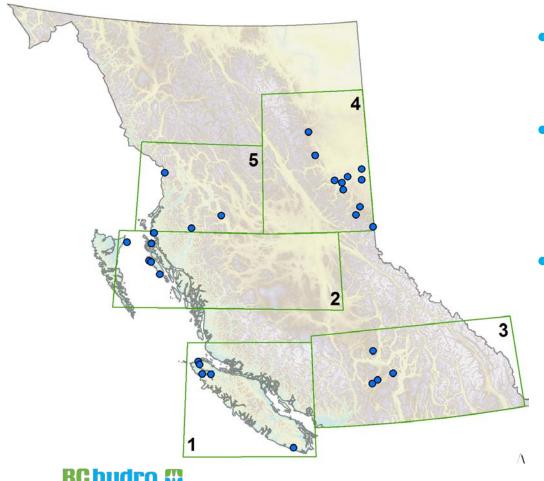
BC HYDRO WIND RESOURCE OPTION ENGAGEMENT

DECEMBER 15,2014

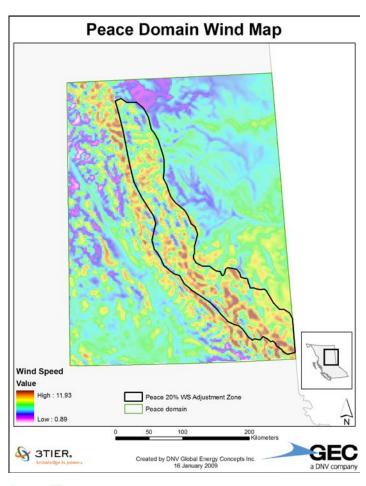
AGENDA

- BC Hydro FortisBC collaboration on resource option database
- Follow-up on action items from previous engagement session
 - Review wind speed adjustment for Peace Region
 - Investigate if AWS Truepower high resolution wind data is suitable for resource planning
 - Review loss assumption
 - Collect information on turbine characteristics from OEMs
- Proposed changes for input assumptions
- Next steps



BC HYDRO- FORTISBC COLLABORATION ON RESOURCE OPTIONS INVENTORY

- Goal is to share information on resource options and develop a common resource option inventory (where possible)
- Will benefit future engagement and regulatory processes
- Not expected to impact this engagement process



WIND SPEED ADJUSTMENT APPLIED IN THE 2010 WIND DATA STUDY

- Validation was completed for 30 points
- Modelled wind speed bias in NC, VI and SI generally within ±15%, with no persistent bias
- Persistent -ve modelled wind speed bias (-18% to -26%) found for validation sites in PR, specifically in the high country east of the Continental Divide

WIND SPEED ADJUSTMENT APPLIED IN THE 2010 WIND DATA STUDY

 Wind speed adjustment of 20% was applied to a specific area to correct for persistent and significant underprediction of wind speed

APPLICABILITY OF AWS TRUEPOWER'S HIGH RESOLUTION WIND DATA FOR RESOURCE PLANNING

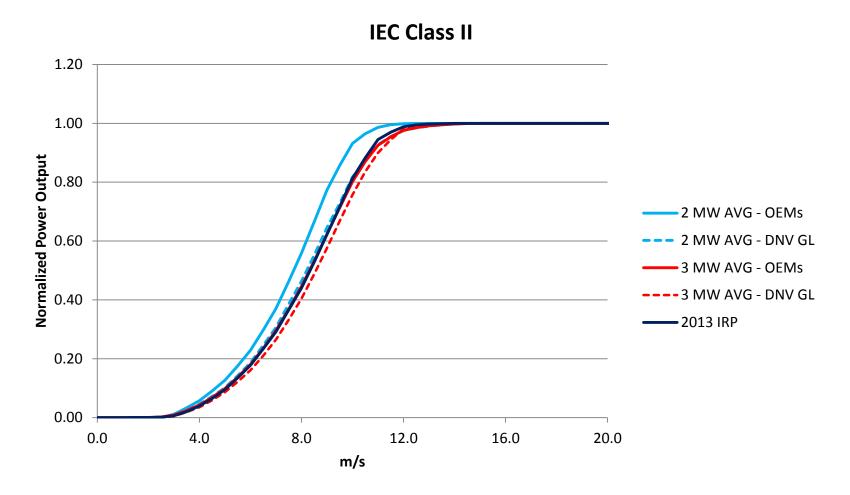
- AWS Truepower applies microscale modelling to mesoscale model output to create 200-m grid resolution wind maps
- Underlying mesoscale modelling is based on 366 days sampled from a recent 15-year period (i.e. representative meteorological year)
- Does not provide time series (or length of time series) required for wind integration study

FEEDBACK ON 18.6% LOSS ASSUMPTION

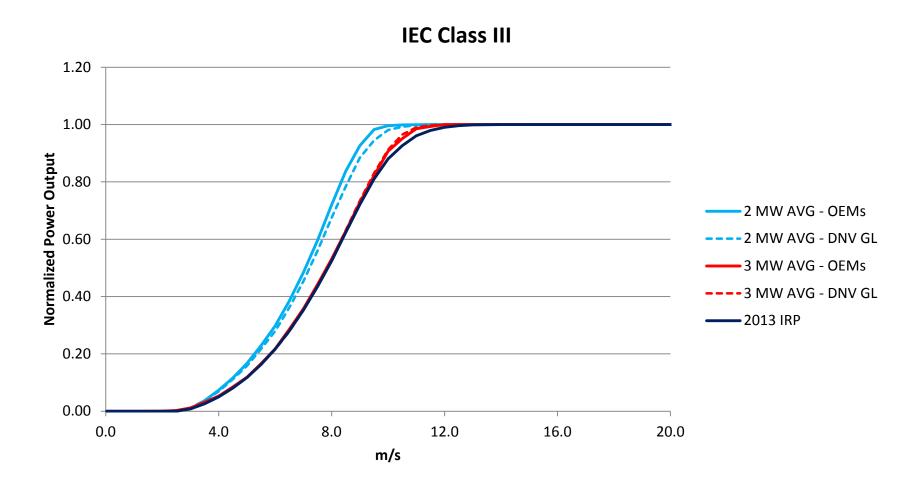
- Fair range for total technical losses considered to be 18% to 22%. This range does not include icing losses.
 - → Loss assumption of 18.6% on the low side
- Icing can range 0 to 18%, but very challenging to estimate
- Current assumption on turbine performance too low
- Missing losses due to curtailment

PROPOSE TO CHANGE LOSS ASSUMPTION FROM 18.5% TO 20.4%

Energy Loss Category	Losses assumed in 2010 Wind Data Study	Proposed Losses
Availability	5.9%	5.9%
Wake Effect	6.5%	6.5%
Electrical	2.5%	2.5%
Environmental	4.8%	5.3%
Turbine Performance	0.3%	1.5%
Curtailment	0.0%	0.5%
Total	18.6%	20.4%



- Contacted and received information from 5 turbine manufacturers
- Turbine summary:
 - Received information on 15 turbine models:
 - Nameplate capacity predominantly in the 3.0 3.3 MW range
 - 14 of submitted models are IEC Class II and III
- Other comments:
 - Install turbines with larger nameplate capacity in more complex terrain to save on construction costs
 - 'Mix-and-matching' of turbine models with different rotor sizes



- Hub height:
 - Seen as trending up
 - New tower developments will allow hub heights of 140m+
 - Several OEMs suggested hub height of 100-120 m for the near-term future
 - Still depends on location, wind condition, etc

PROPOSED CHANGES FOR INPUT ASSUMPTIONS

- Keep list of projects and installed capacity for each project unchanged
- Keep using wind speed time series from the 2010 Wind Data Study
- Increase loss assumption from 18.6% to 20.4%
- Increase hub height from 80 m to 100 m
- Assume a nameplate capacity of 3.3 MW across all IEC classes
- Use power curve for generic 3.3 MW for each IEC class, based on information obtained from OEMs

NEXT STEPS

- 3TIER to create new wind power generation time series, based on updated input information
- Work with engineering/construction firms to obtain BoP costs specific to BC
- Wind Integration Study Technical Review Committee kick-off meeting scheduled for early April 2015

