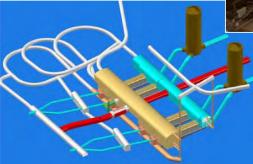
2013 Resource Options Report Update

Appendix 9-A

Lower Mainland / Vancouver Island Pumped Storage Report


and

North Coast Pumped Storage Report

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT

MILAR D

PREPARED FOR BC Hydro 333 Dunsmuir Street Vancouver, BC V6B 5R3

<u>PREPARED BY</u>

Knight Piésold Ltd. Suite 1400 – 750 West Pender Street Vancouver, BC V6C 2T8

VA103-313/1-1 Rev 0 November 30, 2010

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

Rev	Description	Date	Approved
0	Issued in Final	November 30, 2010	SRM
	аң саң саң саң саң саң саң ж ^а л бай бай бай бай сайта сайтан тайна кай бай бай бай бай бай бай бай бай бай б		

Knight Piésold Ltd.

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8 Telephone: (604) 685-0543 Facsimile: (604) 685-0147 www.knightpiesold.com

Knight Piésold

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

EXECUTIVE SUMMARY

BC Hydro requested the services of Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the Lower Mainland and Vancouver Island region of southwest British Columbia.

The focusing question of this study is: "Are there potentially viable greenfield pumped storage hydroelectric sites in the Lower Mainland and Vancouver Island region of southwest British Columbia that are economically viable?"

The answer to this question is YES, there are numerous potential pumped storage sites that meet the basic criteria established for this study. The results of this study are summarized below, with each numbered paragraph below being a summary of the corresponding section of this report:

- 1. BC Hydro has conducted three previous assessments of pumped storage hydro potential in the Lower Mainland and Vancouver Island dating back to 1977. These studies have included site identification, costing and environmental consideration.
- 2. Freshwater pumped storage is the most prevalent form of pumped storage that has been developed worldwide to date, with approximately 127,000 MW in operation as of 2009. Only one conventional saltwater pumped storage facility is in operation worldwide (the 30 MW Okinawa Pumped Storage Facility in Japan), and there are no known operating underground pumped storage plants (i.e. with an underground reservoir). Each type of pumped storage facility is subject to permitting, financial and schedule risks, however saltwater and underground pumped storage have additional technical, environmental, permitting and schedule risks due to the lack of worldwide experience.
- 3. The screening assessment was limited to the area south of latitude 51°N and west of longitude 121°W. The following screening constraints were also applied:
 - a. Terrestrial parks were excluded from the assessment, but all other land use types were considered, such as marine parks, private land, and Indian reserves
 - b. Known salmon bearing rivers were excluded from the study (Chinook, Sockeye, Chum, Coho, Pink and/or Steelhead); however, salmon bearing lakes were considered in the assessment
 - c. Drinking water reservoirs and BC Hydro reservoirs were also considered in the assessment
 - d. The capacity threshold for the assessment was limited to 1,000 MW in the Lower Mainland and 500 MW on Vancouver Island
 - e. A minimum storage requirement was set at 6,000 MWh for 1,000 MW sites, and 3,000 MWh for 500 MW sites, equivalent to the water required for full plant generation output for 6 hrs; and

I of II

f. A loaded capital cost threshold at plant gate (no site access, transmission or interconnection costs were assessed in this study) of \$200/kW-yr was set for the assessment, based on a design life of 70 years and a discount rate of 6%.

194 sites in the Lower Mainland and Vancouver were identified using a combination of a GIS-based assessment tool and visual assessment. As anticipated, freshwater pumped storage was generally the most economical form of pumped storage, followed by saltwater and underground pumped storage. Compared to the most attractive freshwater and saltwater alternatives identified in this study, underground pumped storage is not cost competitive in BC. The identified sites fit into the following levelized cost ranges:

- Freshwater Pumped Storage
 - 45 projects were identified less than \$100 /kW-yr
 - 54 projects were identified between \$100 \$125 /kW-yr
 - 9 projects were identified between \$125 \$150 /kW-yr
 - 9 projects were identified between \$150 \$175 /kW-yr, and
 - 4 projects were identified greater than \$175 /kW-yr.
- Saltwater Pumped Storage
 - o 6 projects were identified less than \$100 /kW-yr
 - 31 projects were identified between \$100 \$125 /kW-yr
 - 27 projects were identified between \$125 \$150 /kW-yr
 - o 7 projects were identified between \$150 \$175 /kW-yr, and
 - o 2 projects were identified greater than \$175 /kW-yr.
- Underground Pumped Storage
 - A 'typical' underground pumped storage project is anticipated to cost in the range of \$230/kW-yr.

This study was limited in its scope based on the tight timeline associated with the deliverables, with the entire study being completed in less than 6 weeks. The level of detail and screening criteria used for this assessment can easily be updated, as the key components of the GIS assessment tool have now been developed. If this study is to be expanded upon, the following items are recommended. KPL is aware that some of these items are already underway as a follow-up to this study.

- Estimate the costs of transmission, interconnection and access to each alternative identified above in order to meaningfully be able to compare each identified site
- Conduct a system-wide study of the BC Hydro grid to determine the benefits/impacts of integrating pumped storage
- Determine the 'ideal' characteristics of a pumped storage facility, in terms of providing the maximum benefits to the BC Hydro system, improving export opportunities and firming of renewable (especially wind power) sources
- Conduct a screening assessment for the remaining portions of the province, especially where there is a high resource potential of intermittent renewable energy sources such as wind, run-of-river hydro, tidal and/or wave energy, and
- Conduct a more detailed assessment of the most favourable sites identified in this assessment.

BC HYDRO

EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

TABLE OF CONTENTS

PAGE

EXECUTIV	E SUM	MARYI
TABLE OF	CONTE	NTSi
SECTION 7 1.1 1.2	INTRO	RODUCTION AND BACKGROUND 1 DUCTION 1 OUS STUDIES 1 Pumped Storage in British Columbia – Preliminary Engineering Assessment, 19771 1 Resource Smart - Pumped Storage in British Columbia, 1993 2 Vancouver Island Green Energy Study – Review of Pumped Storage and Tidal 2 Barrage Energy Generation, 2001 2
SECTION 2	2.0 - TE(CHNOLOGY REVIEW
2.1	BACK	GROUND
2.2	FRESH	IWATER PUMPED STORAGE
	2.2.1	General Concept
	2.2.2	Worldwide Development Status
	2.2.3	Development Risks5
2.3	SALTV	VATER PUMPED STORAGE
	2.3.1	General Concept5
	2.3.2	Worldwide Development Status
	2.3.3	Development Risks5
2.4	UNDEF	RGROUND PUMPED STORAGE
	2.4.1	General Concept
	2.4.2	Worldwide Development Status
	2.4.3	Development Risks7
2.5	PUMPI	ED STORAGE IN BRITISH COLUMBIA
2.6	DEVEL	OPMENT SCHEDULE
2.7	CLOSE	ED VERSUS OPEN SYSTEMS7
SECTION 3	3.0 - SC	REENING ASSESSMENT9
3.1		ENING CONSTRAINTS
-	3.1.1	Spatial Limitations
	3.1.2	Limitations on Generation Capacity
	3.1.3	Minimum Storage Requirements
	3.1.4	Environmental Limitations
	3.1.5	Technical Constraints

	3.1.6	Other Limitations and Constraints	11
3.2	SCREE	NING ASSESSMENT RESULTS	11
	3.2.1	Freshwater Site Identification	11
	3.2.2	Saltwater Site Identification	12
	3.2.3	Underground Site Identification	12
	3.2.4	Site Characterisation and Costing	13
3.3	PHOTO	OS AND SCHEMATICS OF TYPICAL PUMP STORAGE PROJECTS	14
SECTION 4	4.0 - COI	NCLUSIONS AND RECOMMENDATIONS	16
SECTION 5	5.0 - REF	FERENCES	17
SECTION 6	6.0 - CEI	RTIFICATION	18

TABLES

Table 2.1 Rev 0	Summary of Freshwater Pumped Storage Site > 1,000 MW Worldwide
Table 3.1 Rev 0	Summary of Freshwater Pumped Storage Sites
Table 3.2 Rev 0	Summary of Saltwater Pumped Storage Sites
Table 3.3 Rev 0	Underground Mines in the Project Area
Table 3.4 Rev 0	Development Cost Distribution by Pumped Storage Type

FIGURES

Figure 2.1 Rev 0	Conceptual Development Schedule
Figure 3.1 Rev 0	Study Area
Figure 3.2 Rev 0	Salmon Bearing Lakes and Rivers in the Project Area
Figure 3.3 Rev 0	Freshwater Pumped Storage Sites
Figure 3.4 Rev 0	Saltwater Pumped Storage Sites
Figure 3.5 Rev 0	Underground Mines in the Project Area
Figure 3.6 Rev 0	Summary of Pumped Storage Potential

PHOTOS

- Photo 1 Schematic of Pumped Storage Scheme.
- Photo 2 Schematic of Single-Stage vs. Multistage Reversible Pump Turbines.
- Photo 3 Schematic of Pelton Unit Combined with Multistage Pump.
- Photo 4 Schematic of 3D Model of Underground Powerhouse.
- Photo 5 Spirit of Ireland Project Artistic Rendition of Saltwater Pumped Storage Scheme.
- Photo 6 Okinawa Saltwater Pumped Storage Plant Cutaway Model of Plant.
- Photo 7 Ingula Pumped Storage Scheme CFRD Dam.
- Photo 8 Ingula Pumped Storage Scheme Intake Tower Under Construction.
- Photo 9 Ingula Pumped Storage Scheme Machine Hall Under Construction.
- Photo 10 Ingula Pumped Storage Scheme Outlet Structure Under Construction.

- Photo 11 Example of "Crow's Nest" Upper Reservoir Taum Sauk Facility, USA.
- Photo 12 Example of "Crow's Nest" Upper Reservoir Seneca Facility, USA.
- Photo 13 Example of "Crow's Nest" Upper Reservoir Dlouhé Stráně Facility, Czech Republic.
- Photo 14 Aerial View of Okinawa Saltwater Pumped Storage Plant, Japan.

iii of iii

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SCREENING ASSESSMENT REPORT (REF. NO. VA103-313/1-1)

SECTION 1.0 - INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

BC Hydro requested the services of Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the Lower Mainland and Vancouver Island region of southwest British Columbia. This report discusses the results of the assessment.

1.2 PREVIOUS STUDIES

BC Hydro has commissioned three screening level studies of pumped storage hydroelectric potential in southwest British Columbia since 1977. A brief discussion of the findings of each study is presented in the following subsections.

1.2.1 <u>Pumped Storage in British Columbia – Preliminary Engineering Assessment, 1977</u>

In December 1977, BC Hydro and Power Authority completed a preliminary assessment of pumped storage hydroelectric potential in the Lower Mainland and Vancouver Island. The study was bound by the following constraints:

- 1. The lower Mainland area was limited to approximately 150 km from Vancouver
- 2. Only sites capable of generating 500 MW or higher were considered, and
- 3. Both lower and upper reservoirs were required to have sufficient storage to operate on a weekly cycle.

The report identified approximately 80 sites that were deemed suitable for pumped storage development. Of these 80 sites, eight sites were selected (four on Vancouver Island and four in the Lower Mainland) based on their ability to generate 500 MW for 10 hours of continuous operation, the conduit length to head ratio and other considerations, such as interfering with park boundaries.

Overall design concepts were prepared on 1:50,000 scale mapping of the eight shortlisted sites. A helicopter reconnaissance and overview geological assessment was conducted for each site in order to identify the top two preferred sites on each of Vancouver Island and the Lower Mainland. The most attractive pumped storage sites were identified to be:

- 1. Lower Mainland Stave River Thomas Lake 1000 MW Development
- 2. Lower Mainland Harrison lake Slollicum Lake 1000 MW Development
- 3. Vancouver Island Buttle Lake Beadnell Lake 1000 MW Development, and
- 4. Vancouver island Great Central Lake Doran Lake 1000 MW Development.

Page 8 of 72

Cost estimates of each development were generated, and ranged from \$249 million to \$326 million dollars (1977). This corresponds to an approximate development cost ranging from \$249/kW to \$324/kW.

It was noted in the study that "When it became apparent that there were a large number of good sites, the potential in the more remote areas of the Lower Mainland and north-western part of Vancouver Island was not pursued in detail."

1.2.2 Resource Smart - Pumped Storage in British Columbia, 1993

In March 1993, the Hydroelectric Engineering Division of BC Hydro re-evaluated the economics associated with the pumped storage alternatives that were identified in the 1977 study. The main objectives of the study were to:

- 1. Update the costs of the 1977 study
- 2. Obtain equipment costs from manufactures
- 3. Determine any significant change to pumped storage technology and costs, and
- 4. Conduct environmental assessments of the four sites identified in the 1977 study.

The results of the study indicated the following main findings:

- Development costs had increased from a range of \$249/kW \$324/kW to a range of \$635/kW \$773/kW.
- 2. The updated costs were similar to inflated 1977 costs.
- 3. Sites located in areas where increased peak capacity is required, would be most beneficial.
- 4. Advances in technology between 1977 and 1993 increased single unit capacities to approximately 300-330 MW. For single-stage reversible pump turbines, the maximum allowable head increased from 600 m in 1977 to approximately 900 m in 1993.
- 5. Pumped storage could be incorporated into existing BC Hydro facilities, such as Ash River, Wahleach, Bridge River and Cheakamus.
- 6. Peak vs. off-peak energy pricing should be included in future analyses.

1.2.3 <u>Vancouver Island Green Energy Study – Review of Pumped Storage and Tidal Barrage Energy</u> Generation, 2001

In September 2001, Klohn Crippen Consultants Ltd. completed a review of the pumped storage sites identified in the 1977 study. The purpose of the assessment was to identify the most cost effective development that would add a combined capacity of 200 MW to Vancouver Island. Sites in the Lower Mainland were not considered in the study.

Potential pumped storage sites identified in the 1977 study that were situated in parks were not considered in the assessment. An initial screening was completed, resulting in the selection of the seven most attractive sites for development. From these seven alternatives, the two best sites were chosen for a more detailed assessment and costing. The redevelopment of the Strathcona generating site was also considered in the detailed assessment and costing. The results of the study indicate the following main findings:

1. Shawnigan Site – 200 MW – Development cost of \$1200 /kW

- 2. Comox Site 200 MW Development cost of \$1270 /kW, and
- 3. Strathcona Redevelopment 200 MW Development cost of \$1230 / kW.

Environmental considerations were also described for each development alternative listed above.

SECTION 2.0 - TECHNOLOGY REVIEW

2.1 <u>BACKGROUND</u>

The concept of pumped storage is the generation of electricity by capturing the energy of water being transferred from a higher elevation upper reservoir, through turbine/generator units, into a lower elevation reservoir. The system is then reversed and the water from the lower reservoir is pumped back to the upper reservoir. Though the system is a net consumer of energy, it can be advantageous to developers/utilities by:

- Providing additional capacity during high-load hours when the cost of energy is greatest
- Increasing profitability by using low-value base load energy to pump water to the upper reservoir during low-load hours
- Providing grid stability by reducing the generation differential between high-load and low-load periods,
- Relieving constrained transmission components
- Providing voltage regulation, especially at the end of long transmission systems (i.e. the Peace River to Lower Mainland transmission network)
- Providing storage for intermittent renewable energy sources that cannot be dispatched on demand
- Providing backup capacity in the event of a planned or unplanned outage of another significant generation source connected to the grid, and/or
- Providing capacity for export.

The following subsections discuss some of the types of pumped storage, including their general concepts, development status and development risks. Comments on the state of pump-turbine technology are discussed as well as closed vs. open systems.

2.2 FRESHWATER PUMPED STORAGE

2.2.1 General Concept

Freshwater pumped storage simply refers to a pumped storage hydroelectric project where the upper and lower reservoirs impound only fresh water. Nearly all pumped storage development to date worldwide has primarily consisted of freshwater pumped storage.

2.2.2 Worldwide Development Status

Freshwater pumped storage is by far the most prevalent form of pumped storage that has been developed to date worldwide. Construction of freshwater pumped storage dates back to the early 1900s, when the first pumped storage plants came into operation in Italy and Switzerland. Since then, pumped storage development has increased with rising energy demand, and the increased need for peaking capacity.

The last thirty years has seen the largest growth of pumped storage development. Table 2.1 shows a list of operating projects greater than 1,000 MW in capacity that are known to be operating to date.

As of 2009, it was estimated that more than 127,000 MW of pumped storage capacity was operating worldwide, with some experts predicting future growth to be up to 60 percent over the next four years.

2.2.3 Development Risks

There are very few technical risks unique to freshwater pumped storage development that cannot be addressed through diligent planning and design. Freshwater pumped storage is a proven technology with projects operating worldwide, and as such, the predominant risks in development are similar to those of conventional hydropower development, or any large infrastructure project. Some of these risks include:

- Permitting risks Social acceptance and environmental impact
- Geotechnical risks
- Financial risks, and
- Schedule risks.

2.3 <u>SALTWATER PUMPED STORAGE</u>

2.3.1 <u>General Concept</u>

The concept of saltwater pumped storage is the same to that of freshwater pumped storage, with the exception that seawater is exchanged between the ocean and an upper reservoir instead of freshwater. The advantage of saltwater pumped storage over freshwater pumped storage is that construction of only one reservoir is needed. This allows for potential development of sites closer to load centres, where freshwater pumped storage may not be feasible due to unsuitable terrain or other constraints.

2.3.2 <u>Worldwide Development Status</u>

Only one "conventional" saltwater pumped storage plant exists worldwide: the Okinawa Pumped Storage Plant on the coast of Japan. The 30 MW plant was constructed as a demonstration project and consists of a lined upper reservoir that transfers water via a tunnel and fibre-reinforced plastic penstock through an underground powerhouse to the Pacific Ocean. The project, which commenced operation in 1999, has a net head of approximately 136 m, and consists of a single 30 MW reversible pump-turbine.

2.3.3 <u>Development Risks</u>

Due to the unique high corrosion environment of saltwater pumped storage projects, as well as the lack of worldwide experience in saltwater pumped storage, there are higher development risks than conventional freshwater pumped storage.

Some of these risks include:

- Corrosion protection of components exposed to sea water that are susceptible to rust
- Potential saltwater contamination of groundwater

- Prevention of marine growth in project waterways
- Potential requirement to line upper reservoir and install costly drainage collection system to prevent saltwater seepage into groundwater
- Potentially longer permitting timeline
- Higher operating costs, and
- Higher equipment costs.

Initial feedback from some pump/turbine manufacturers indicates that corrosion protection of high head projects (gross head > 400 m) represents a much higher risk than low head projects (gross head < 400 m) due to the current technology of corrosion resistant austenitic stainless steel having a lower strength than traditional martensitic stainless steel. Further, these manufacturers believe that currently available coatings (including ceramic coatings traditionally used for abrasion protection) are not suitable for use in saltwater pump-turbines due to their brittle nature as well as low resistance to cavitation.

2.4 UNDERGROUND PUMPED STORAGE

2.4.1 General Concept

The concept of underground pumped storage is the same as conventional pumped storage, with the exception that one or both of the reservoirs are located underground in either natural or manmade caverns.

The concept of underground pumped storage has advanced in recent decades as the number of viable surface configurations have been reduced with development, as well as the increased environmental and social sensitivity associated with the disturbance caused by the construction of a conventional pumped storage scheme above ground.

2.4.2 <u>Worldwide Development Status</u>

To date there are no known operating "Underground Pumped Storage" projects (i.e. with the lower reservoir located underground). Concepts for such developments have been presented in both Canada and the USA, but none have proceeded to the construction phase to date.

Studies to date have considered the use of abandoned mines for reservoir storage, and others have considered excavation of a cavity large enough to meet reservoir requirements. In order to make the alternative more cost effective, abandoned mines or natural cavities could be used to meet the reservoir requirements.

Though conceptually feasible, the increased cost and higher technical risk of underground pumped storage development is much higher than other more economical energy alternatives. Prohibitive costs and underground geotechnical risks are the primary detractors from advancing underground pumped storage beyond feasibility study and into construction and operation.

Page 13 of 72

2.4.3 Development Risks

Sources of technical risk for underground pumped storage development include:

- Higher volume and cost of excavation of underground reservoirs.
- Longer (more expensive) access tunnels and shafts.
- Longer (more expensive) and more complex ventilation requirements.
- Higher geotechnical risks, including:
 - o Structural adequacy of the rock mass
 - Permeability of the rock mass
 - Mineral content and contamination of the water supply, and
 - Groundwater contamination.
- Disposal of large amount of excavated material (large spoil areas required).

2.5 PUMPED STORAGE IN BRITISH COLUMBIA

To date, there are no operating pump-storage generation stations in the province of British Columbia, or are there any under construction. Recently, some private companies have applied for water licenses in support of future pumped storage developments.

2.6 DEVELOPMENT SCHEDULE

Conceptual development schedules were prepared for each pumped storage type, and are shown on Figure 2.1. It should be noted that the development schedule for each particular pumped-storage alternative can be expected to vary significantly. The schedules shown on Figure 2.1 aim to show the differences in development timelines between the different pumped-storage types, and are not applicable to any particular site.

Some of the key differences in development schedules between the three pumped storage types are:

- Saltwater pumped storage may have longer lead time on equipment and materials due to anticorrosion requirements, permitting period extended since no projects have been completed to date in Canada or the USA; and
- Underground pumped storage has a longer timeline due to increased geotechnical investigations, longer construction timeline, potential challenges in permitting, and longer technical studies due to lack of worldwide experience (i.e. no reference projects built to date, and therefore likely extended due diligence requirements by financiers).

2.7 <u>CLOSED VERSUS OPEN SYSTEMS</u>

A "closed" pumped storage project refers to a design where the water used for generation and pumping is in a hydraulically closed loop. There are no (or minimal) inflows or discharges from either the upper or lower reservoir beyond seepage, evaporation, sublimation and direct rainfall.

An "open" pumped storage project refers to a design where a portion of the water used in generation or pumping comes from either natural runoff, or sources beyond the storage of the upper and lower reservoirs. Some of the following scenarios can be considered "open" systems:

- A pumped-storage plant that is integrated into an existing traditional hydroelectric plant
- A pumped-storage plant where either reservoir receives a significant portion of inflow from natural basin runoff, and
- A pumped-storage plant where either reservoir draws from or discharges to a natural lake or an existing river system.

Some "open" pumped storage projects can be converted to "closed" systems by constructing diversions around both the upper and lower reservoirs, similar to those used in tailings ponds in the mining industry. This hydraulically isolates each reservoir, and thus "closes" the system by eliminating external inflows.

SECTION 3.0 - SCREENING ASSESSMENT

3.1 SCREENING CONSTRAINTS

3.1.1 <u>Spatial Limitations</u>

The study area was limited to the Lower Mainland and Vancouver Island, defined as the area south of latitude 51°N and west of longitude 121°W. Within this study area, the following spatial limitations apply:

- Terrestrial parks and reserve areas will be EXCLUDED from the study area
- Marine parks will be INCLUDED in the study area
- Private land will be INCLUDED in the study area, and
- Indian Reserves will be INCLUDED in the study area.

A summary of the study area is shown on Figure 3.1.

3.1.2 Limitations on Generation Capacity

The original project terms of reference called for the identification of projects capable of generating a peak capacity of at least 100 MW. Due to the suspected large number of potential sites, this generating capacity threshold was increased to 1,000 MW for the Lower Mainland, and 500 MW for Vancouver Island, with the idea that should inadequate sites be found, the generation capacity threshold criteria would be lowered.

3.1.3 Minimum Storage Requirements

The minimum storage requirements for each pumped-storage facility was set at 6,000 MWh (the amount of water required for 6 hours of generation at 1000 MW capacity) for the Lower Mainland, and 3,000 MWh (the equivalent storage of 6 hours of generation at 500 MW capacity) for the 500 MW sites on Vancouver Island. The volume of water required to store this amount of energy varies by project, depending on the available head.

3.1.4 Environmental Limitations

Salmon bearing rivers were excluded from the study. The Fish Information Summary System (FISS) from the BC Ministry of Environment was used as the basis for known fish distribution data. Rivers with historical observances of Chinook, Sockeye, Chum, Coho, Pink and/or Steelhead were not considered in the screening assessment.

It should be noted that lakes and rivers with historical observations of Kokanee Salmon were not excluded from the study area, as several existing BC Hydro reservoirs contain this salmon species. Historical observances of any other fish species other than those listed above were ignored in the assessment.

Existing lakes with historical observances of Salmon were included in the assessment. However, these lakes were labelled as being salmon bearing in the assessment results. A summary of the fish distribution data for the salmon species mentioned above are shown on Figure 3.2.

For the saltwater pumped storage screening assessment this constraint was ignored.

3.1.5 <u>Technical Constraints</u>

As per the terms of reference, projects with a maximum real levelized cost greater than \$200/kWyear were to be excluded from the assessment. Since a cost estimate could not be completed until a potential site had been identified, additional constraints were necessary to eliminate unattractive sites prior to completing project capital cost estimates.

In order to determine the real levelized cost (\$/kW-year), the following was assumed:

- Design Life = 70 years, and
- Discount Rate = 6%.

Freshwater Lake-to-Lake Sites

The abundance of small lakes in combination with the steep topography, give south-western British Columbia a high potential for freshwater pumped-storage development. Due to this large potential, sites with the most attractive characteristics were targeted. These characteristics included:

- Existing lakes within a 5 km horizontal distance that could be used as an upper and lower reservoir respectively (i.e. waterway length is limited to approximately 5 km or less). In some instances, lakes with horizontal distances greater than 5 km were considered.
- Existing lakes with the capability of storing 6,000 MWh (or 3,000 MWh for the 500 MW sites on Vancouver Island) by constructing a maximum dam height of 20 m. In some instances, maximum dam heights exceeding 20 m were considered. Since no bathymetry data was obtained for the lakes in the study area, the depth-area-capacity curve for each lake could not be determined. As such, all storage was assumed to be constructed above the natural lake water level, with the following exceptions:
 - For BC Hydro reservoirs, lake drawdown was accepted, since existing operations draw down most reservoirs
 - For drinking water reservoirs, lake drawdown was accepted, since existing operations draw down most reservoirs, and
 - For large existing lakes, where the draw down would be minimal, draw down was accepted.

Freshwater "Crow's Nest" Sites

As historical developments have shown, existing lakes or reservoirs are not a pre-requisite for a successful pumped-storage development. Some reservoirs are created through the construction of a dam in an incised valley, or even by constructing perimeter dams on flat ground or around

natural depressions (i.e. "Crow's nest" sites). Since the combinations of dam locations and geometries are limitless, it was necessary to apply some screening constraints.

The same constraints were used for the identification of freshwater "Crow's nest" sites, including the 5 km maximum waterway length, the ability to store either 6,000 MWh (1000 MW sites) or 3,000 MWh (500 MW sites) by constructing a maximum embankment height of 20 m. In some instances, these constraints were exceeded. The same drawdown constraints were also applied.

Saltwater Pumped Storage Sites

The same constraints for the freshwater "Crow's nest" sites were applied to the screening assessment of saltwater pumped storage sites. Additionally, freshwater lakes were not considered as upstream reservoirs, due to the high environmental impact of pumping saltwater into a freshwater ecosystem. In some instances, upstream reservoirs were proposed in areas that contained either wetland or small ponds. Since it is difficult to determine at what size threshold this may not be permissible, a certain amount of judgement was required to satisfy this constraint.

Underground Pumped-Storage Sites

Due to the potentially smaller surface footprint of an underground pumped storage project, potential sites could potentially be located anywhere (though proximity to load centres, geological conditions and available spoil areas may drive site selection). To make the sites economically competitive however, they would potentially need to utilize existing underground caverns (such as those in abandoned underground mines) to save the costly expense of excavating a large cavern. Site identification was therefore limited to searches of active and abandoned underground mines in the study area.

3.1.6 Other Limitations and Constraints

- Existing BC Hydro reservoirs were INCLUDED in the study area, and
- Drinking water reservoirs were INCLUDED in the study area.

The potential impact of a potential pumped storage project on existing BC Hydro reservoirs and drinking water reservoirs was considered beyond the scope of this study.

3.2 SCREENING ASSESSMENT RESULTS

3.2.1 Freshwater Site Identification

Freshwater pumped-storage sites were identified using a combination of an automated GIS search, and a visual assessment. For the automated GIS search, KPL developed a pumped-storage assessment tool, which identified existing lakes that could be developed into pumped storage projects while meeting the constraints listed in Section 3.1. These constraints could be varied in order to identify projects of different characteristics. The tool analyzes a pair of existing

lakes by extracting their elevation, area and proximity. It then calculated whether their head differential and surface area were sufficient to meet the characteristics of the constraints mentioned in Section 3.1.

As mentioned in Section 3.1, sites were also identified by visual assessment of the areas in the vicinity of the largest existing lakes and BC Hydro reservoirs. The visual assessment was conducted by examining digital TRIM and NTS mapping for incised valleys or plateaus surrounding largest freshwater lakes in the study area. Sites were flagged and then characterised in the same manner as the sites identified using the automated GIS search (discussed in Section 3.2.4). A summary of the results are shown in Table 3.1. Similarly, the identified sites can be seen on Figure 3.3.

The sites listed in the above tables are considered the most attractive sites in the study area, and range in gross head from 42 m to 1590 m. Many of the identified sites in the Lower Mainland area are clustered around existing lakes and BC Hydro reservoirs, as the larger lower reservoir in many cases eliminated the need for construction of a lower impoundment, thus making the projects more economically viable. Further, the large lower reservoir provides adequate storage for projects of ranging gross head.

3.2.2 <u>Saltwater Site Identification</u>

Saltwater pumped-storage sites were identified through a visual assessment of the coastline for high-elevation depressions, incised valleys and/or plateaus. Utilizing existing lakes as upper reservoirs was not deemed suitable for site identification, since the environmental impacts of pumping saltwater into an existing freshwater lake were deemed too great.

The potential saltwater sites identified ranges in gross head from 180 m to 1670 m. The majority of the saltwater pumped storage sites are located in the Lower Mainland, since coastal Vancouver Island contains numerous coastal parks on the west coast, and lacks steep topography near the coastline on a large portion of the east coast.

The identified saltwater pumped storage sites are shown in Table 3.2 and Figure 3.4.

3.2.3 <u>Underground Site Identification</u>

Table 3.3 shows a list of current and historical underground mines in the project area. These sites are shown on Figure 3.5. The assessment of the feasibility of underground pumped storage at these active/abandoned underground mines is considered beyond the scope of this assessment.

In order to determine the cost competitiveness of a greenfield underground pumped storage project, KPL completed a cost estimate of a "generic" underground pumped storage plant with the following characteristics:

• The upper reservoir would consist of an existing lake with adequate storage (6,000 MWh), therefore eliminating the requirement to construct a reservoir

- New underground lower reservoir (no existing underground cavern or abandoned underground mine considered) corresponding to a volume of 6,000 MWh of storage, and
- Gross head = 750 m. This gross head was selected because it is approximately equal to the highest achievable gross head of single-stage reversible pump turbines.

The estimated cost of such a "generic" development, which was considered to have very favourable characteristics, was approximately 230 \$/kW-yr. Compared to the most attractive freshwater and saltwater alternatives identified in this study, underground pumped storage is not cost competitive in BC.

3.2.4 Site Characterisation and Costing

Each site was characterised in order to determine the project properties, which were then used as the basis of the cost estimate for each alternative. The main parameters of the characterisation include overall project parameters (gross head, design flow, capacity) reservoir parameters (required storage volume, reservoir area, embankment height and length, embankment volume), and waterway parameters (length, diameter, lining requirements). A summary of the parameters for each site is shown in Tables 3.1 and 3.2.

Cost estimates were prepared for each identified pumped storage alternative by developing a cost template of unit rates for project components. The unit rates used in the costing were based on experience from other recent projects, as well as budget quote information from pump/turbine suppliers. All costs are in 2010 dollars. The capital cost esimates do not include transmission, interconnection or access to the site. BC Hydro indicated to KPL that these costs would be determined by others, and should not be considered in this assessment.

The costs for each site are presented as loaded capital costs (based on the schedules presented in Figure 2.1, a discount rate of 6%, and a cost distribution as presented in Table 3.4). Cost per MW installed, cost per MWh stored, and levelized capital cost (\$/kW-yr) were also determined. The costs for each site are summarized in Tables 3.1 and 3.2. As indicated, costs range from \$77/kW-yr (\$1.3 billion loaded capital cost) to \$213/kW-yr (\$3.3 billion loaded capital cost) for 1000 MW facilities. This is in the range of \$1,300 to \$3,300 per kW installed. A breakdown of the cost ranges is shown below:

- Freshwater Pumped Storage
 - 45 projects were identified less than \$100 /kW-yr
 - 54 projects were identified between \$100 \$125 /kW-yr
 - o 9 projects were identified between \$125 \$150 /kW-yr
 - o 9 projects were identified between \$150 \$175 /kW-yr, and
 - 4 projects were identified greater than \$175 /kW-yr.
- Saltwater Pumped Storage
 - o 6 projects were identified less than \$100 /kW-yr
 - 31 projects were identified between \$100 \$125 /kW-yr
 - 27 projects were identified between \$125 \$150 /kW-yr
 - o 7 projects were identified between \$150 \$175 /kW-yr, and

- o 2 projects were identified greater than \$175 /kW-yr.
- Underground Pumped Storage
 - A favourable pumped storage project is anticipated to cost in the range of \$230/kW-yr.

As mentioned previously, the costs above do not include transmission, interconnection or access to the site. As such, it would not be prudent to compare the above sites purely on a cost basis until these additional costs have been determined. Ultimately, the cost of transmission, interconnection and access will favour those sites closer to the load centres or major transmission lines in the Lower Mainland and Vancouver Island.

The cost breakdown varied by each project, but is summarized below as average percentages of the total estimated capital cost.

- Freshwater pumped storage
 - o 17% Mob, Demob, Insurance, Bonds, Overhead, Contractor's Profits
 - 6% Permitting and Design
 - 24% Generation equipment and switchyard (this ranged from 14%-30%, depending on the project)
 - o 31% Construction costs (this ranged from 25%-41%, depending on the project), and
 - o 22% Contingency.
- Saltwater Sites:
 - o 17% Mob, Demob, Insurance, Bonds, Overhead, Contractor's Profits
 - o 6% Permitting and Design
 - 27% Generation equipment and switchyard (this ranged from 15%-32%, depending on the project)
 - o 28% Construction costs (this ranged from 23%-40%, depending on the project), and
 - o 22% Contingency.

Operation and maintenance costs were also estimated for each site. These costs were described as a percentage of the total estimated capital cost (2010 dollars) as follows:

- Freshwater pumped storage sites, 1000 MW 1.0%
- Freshwater pumped storage sites, 500 MW 1.5%, and
- Saltwater pumped storage sites, 1000 MW 2.0 %.

3.3 PHOTOS AND SCHEMATICS OF TYPICAL PUMP STORAGE PROJECTS

Attached with this report are several schematics and photos of 'typical' developments as well as photos from recent KPL experience. A description of the photos/schematics and the applicability to this study are below.

Photo 1 is a schematic of a typical pumped storage scheme. The schematic could apply to both freshwater and saltwater pumped storage projects.

Photo 2 is a schematic of single-stage and multistage pump turbines. The single-stage pump turbine is applicable to the sites identified in this study that have a gross head approximately less than or equal to 750 m. The multistage pump turbine is applicable to sites with a gross head greater than 750 m.

Page 21 of 72

Photo 3 is a schematic of a powerhouse where the pelton turbine is combined with a submersible pump. They are connected such that the two can be run simultaneously in order to be dispatched nearly instantaneously, such as for spinning reserve. Though not applicable to any particular project identified in this study, pumped storage facilities can be designed with this concept.

Photo 4 is a rendition of a three dimensional computer model of the underground works of a pumpedstorage powerhouse. The schematic includes the powerhouse cavern, inlet valve hall, waterway tunnels, transformer gallery, surge chambers (pump mode) and access tunnels. This schematic is applicable to all sites identified in this study.

Photos 5 and 6 are applicable to all saltwater pumped storage projects. Photo 5 is an artistic rendition of the Spirit of Ireland Project, which KPL has been recently involved. Photo 6 is a photo of a physical model of the Okinawa Pumped Storage Plant in Japan. The cutaway shows the reservoir, tunnel, underground powerhouse and access shaft.

Photos 7 – 10 are from the Ingula Pumped Storage Scheme in South Africa, which KPL has been a part of the design team. The photos show the upper dam, intake tower, underground works and outlet structure during construction. This 1,334 MW project is similar in scale to a potential 1000 MW development in south western BC.

Photos 11 – 14 show different "Crow's Nest" reservoirs from various projects around the world (USA, Japan and Czech Republic). These are applicable to the "Crow's Nest" reservoirs that have been identified in this study.

SECTION 4.0 - CONCLUSIONS AND RECOMMENDATIONS

South-western British Columbia has a high technical potential for freshwater and saltwater pumped storage development, due to the steep topography and existence of hundreds of large natural lakes and man-made reservoirs. The vast coastline also yields a high potential for numerous saltwater pumped storage sites, especially near the Lower Mainland.

Approximately 194 sites were identified in the Lower Mainland and Vancouver Island, ranging from 500 MW to 1,000 MW in installed capacity as shown on Figure 3.6. Each site has the capability of storing the equivalent of 6 hrs at full output (3,000 MWh for a 500 MW site, and 6,000 MWh for a 1,000 MW site). Cost estimates were prepared for sites (at the plant gate, not including transmission, interconnection or access to the site), which ranged from \$77/kW-year to \$213/kW-yr. Within that range, projects were divided into the following levelized capital cost brackets:

Freshwater Pumped Storage

- 45 projects were identified less than \$100 /kW-yr
- 54 projects were identified between \$100 \$125 /kW-yr
- 9 projects were identified between \$125 \$150 /kW-yr
- 9 projects were identified between \$150 \$175 /kW-yr, and
- 4 projects were identified greater than \$175 /kW-yr.

Saltwater Pumped Storage

- 6 projects were identified less than \$100 /kW-yr
- 31 projects were identified between \$100 \$125 /kW-yr
- 27 projects were identified between \$125 \$150 /kW-yr
- 7 projects were identified between \$150 \$175 /kW-yr, and
- 2 projects were identified greater than \$175 /kW-yr.

Underground Pumped Storage

• A 'typical' underground pumped storage project is anticipated to cost in the range of \$230/kW-yr.

Should BC Hydro wish to pursue further pumped storage potential in BC, KPL recommends the items below. KPL is aware that some of these items are already underway as a follow-up to this study.

- Estimate the costs of transmission, interconnection and access to each alternative identified above in order to meaningfully be able to compare each identified site
- Conduct a system-wide study to determine the benefits/impacts of integrating pumped storage into the BC Hydro grid
- Determine the 'ideal' characteristics of a pumped storage facility, in terms of providing the maximum benefits to the BC Hydro system, improving export opportunities and firming of renewable (especially wind power)
- Conduct a screening assessment for the remaining portions of the province, especially where there is a high resource potential of intermittent renewable energy sources such as wind, run-of-river hydro, solar, tidal and/or wave energy, and
- Conduct a more detailed assessment of the most favourable sites identified in this assessment.

SECTION 5.0 - REFERENCES

American Society of Civil Engineers. 1989. *Civil engineering guidelines for planning and designing hydroelectric developments.* Volume 5, Pumped Storage and Tidal Power. New York, NY: American Society of Civil Engineers.

American Society of Civil Engineers. 1993. *Compendium of Pumped Storage Plants in the United States.* New York, NY: American Society of Civil Engineers.

BC Hydro and Power Authority. 1977. *Pumped storage in British Columbia preliminary engineering assessment.*

BC Hydro. 1993. Pumped storage in British Columbia.

Deane, J.P., Ó Gallachóir, B.P. & McKeogh, E.J. (2010). Techno-economic review of existing and new pumped hydro energy storage plant. *Renewable and Sustainable Energy Reviews*, 14, 1293-1302.

Elizabeth A. Ingram. 2010. *Worldwide pumped storage activity.* Retrieved September 21, 2010, from www.hydroworld.com.

Klohn Crippen Consultants Ltd. 2001. Review of Pumped Storage and Tidal Barrage Energy Generation.

Task Committee on Pumped Storage. *Hydroelectric pumped storage technology international experience*. New York, NY: American Society of Civil Engineers.

Knight Piésold

SECTION 6.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

NON 30, 2010 Prepared: Tom Furst, P.Eng **Project Engineer** Reviewed: Sam Mottram, P.Eng Specialist Hydropower Engineer Approved: 2 Jeremy Haile, P.Eng President

This report was prepared by Knight Piésold Ltd. for the account of BC Hydro. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

18 of 18

VA103-313/1-1 Rev 0 November 30, 2010

TABLE 2.1

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SUMMARY OF FRESHWATER PUMPED STORAGE SITES > 1000 MW WORLDWIDE

)	Station	Country	Location	Capacity (MW
	FRESHWATER PUMPED STORAGE			
	Operating Projects			
1	Tumut-3 Coo Hydroelectric Power Station(fr)	Australia	50°23'12" N 5°51'26" E	1,500 1,164
2	Sir Adam Beck Hydroelectric Power Station(II)	Belgium Canada	43°08'51" N 79°02'42" W	1,164
4	Bailianhe Hydroelectric Station	China		1,224
5	Baoquan Pumped Hydroelectric Station	China		1,200
6	Guangdong Pumped Storage Power Station	China	23°45'52" N 113°57'12" E	2,400
7	Heimifeng Pumped Storage Power Station	China		1,200
8	Huhhot Dam	China		1,200
9	Liyang Hydroelectric Power Station	China		1,000
10 11	Pushihe Pumped Storage Power Station Taian Pumped Storage Power Station	China China		1,200
12	Tianhuangping Pumped Storage Power Station	China		1,800
13	Tongbai Pumped Storage Station	China		1,000
14	Xiangshuijian Pumped Storage Station	China		1,000
15	Xianyou Pumped-storage Power Station	China		1,200
16	Xilongchi Pumped Storage Power Station	China		1,200
17	Yixing Pumped Storage Power Station	China		1,000
18	Zhanghewan Pumped Storage Station	China		1,000
19	Zhuhai Pumped Storage Station	China		1,800
20 21	Grand Maison Dam Goldisthal Hydroelectric Power Station	France Germany		1,070
21	Markersbach Dam	Germany		1,060
23	Tehri Pumped Storage Power Station	India	30°22'40" N 78°28'50" E	1,000
24	Siah Bisheh Dam	Iran		1,140
25	Chiotas Dam	Italy		1,184
26	Lago Delio Hydroelectric Station	Italy		1,040
27	Piastra Edolo Pumped Storage Station	Italy		1,020
28	Presenzano Pumped Storage Power Station	Italy		1,000
29	Imaichi Dam	Japan		1,050
30 31	Kazunogawa Dam	Japan		1,600 1,200
32	Matanoagawa Pumped Storage Station Ohkawachi Pumped Storage Power Station	Japan Japan		1,200
33	Okukiyotsu Pumped Storage Power Station	Japan		1,040
34	Okumino Pumped Storage Power Station	Japan		1,036
35	Okutataragi Pumped Storage Power Station	Japan		1,932
36	Okuyoshino Pumped Storage Power Station	Japan		1,206
37	Shimogo Pumped Storage Power Station	Japan		1,040
38	Shin Takasegawa Pumped Storage Station	Japan		1,280
39	Shintoyone Dam	Japan	35°07'33" N 137°45'38" E	1,125
40 41	Tamahara Pumped Storage Power Station	Japan		1,200
41	Kruonis Pumped Storage Plant Vianden Pumped Storage Plant	Lithuania Luxembourg	54°47'56" N 24°14'51" E	1,600 1,100
42	Kaishador Pumped Storage Station	Russia		1,600
44	Zagorsk Pumped Storage Station	Russia		1,200/1,320
45	Drakensberg Pumped Storage Scheme	South Africa	28°34'23" S 29°05'13" E	1,000
46	Ingula Pumped Storage Scheme	South Africa		1,332
47	Yangyang Pumped Storage Power Station	South Korea		1,000
48	Grande Dixence Dam	Switzerland	46°04'50" N 07°24'14" E	2,069
49	Minghu Dam	Taiwan		1,000
50	Mingtan Dam	Taiwan		1,602
51	Tashlyk Hydro-Accumulating Power Station	Ukraine United Kingdom	53°07'07" N 04°06'50" W	1,494 1,728
52 53	Dinorwig Power Station Bad Creek Hydroelectric Station	United Kingdom United States	35°0'40" N 83°0'52" W	1,728
54	Bath County Pumped Storage Station	United States	38°12'32" N 79°48'00" W	2,772
55	Blenheim-Gilboa Hydroelectric Power Station	United States	42°27'18" N 74°27'29" W	1,057
56	Castaic Dam	United States	34°31'09" N 118°36'25" W	1,566
57	Helms Pumped Storage Project	United States		1,200
58	Ludington Pumped Storage Power Plant	United States	43°53'37" N 86°26'43" W	1,872
59	Mount Elbert	United States		1,412
60	Muddy Run Pumped Storage Facility	United States	39°48'29" N 76°17'54" W	1,071
61	Northfield Mountain	United States	42°36'36" N 72°26'50" W	1,080
63	Pyramid Lake Raccoon Mountain Pumped-Storage Plant	United States United States	34°38'39" N 118°45'51" W 35°02'55" N 85°23'48" W	1,495 1,530
64	Rocky Mountain Hydroelectric Plant	United States	34°20'41" N 85°18'14" W	1,046
		2		.,
	Projects Under Construction			
1	Lima	South Africa		1,470
2	Dniester Pumped Storage Power Station U/C	Ukraine		2,268
3	Huizhou Pumped Storage Power Station U/C	China	23°16'07" N 114°18'50" E	2,400
4	Kannagawa Hydropower Plant U/C	Japan	36°00'18" N 138°39'09" E	2,820
5	Limmern Pumped Storage Project U/C	Switzerland		1,000
6	Jixi Pumped Storage Project	China		1,800
	SALTWATER PUMPED STORAGE			

0 25NOV10 ISSUED WITH REPORT VA103-313/1-1 TMF SRM JPH REV DATE DESCRIPTION PREP'D CHK'D APP'D

		FISS - Drinking Upper	Ipper Lower Re	servoir Lower Desig	n Flow Pumping Generation Development and	11/30/2010 16:14 Estimated Upper Lower Staging/Lay Out Device Dev
Name	Latitude Longitude Latitude Longitude Capacity Location Salt/Fresh Pure/	re/Mixed Salmon Water Type Reservoir Base Elevation Crest Length H	Upper Reservoir Approx Unit of Natural Lower Reservoir Lower Reservoir Lower Reservoir Drawdow Catchment Area Runoff Inflow Area Base Elevation Dam Crest Length additional k	Storage Storage 2D waterway Design Flow	0), 70% of Pump/Turbine Duration at Duration at Construction Capital Cost on Flow Type Peak Output Peak Output Time Capital Cost	Loaded Capital (Loaded Capital Cost of Levelized Annual Reservoir Footprint Cost Cost/Capacity) Unit Cost of Levelized Annual Reservoir Footprint Cost Cost/Capacity) Cost Operating Cost Cost Cost Cost Cost Cost Cost Cost
Alouette-Stave Antimony - John George	Cd mm ss.s cd mm ss.s cd.dddd cd.dddd Mw Lwrvi N49 22 55.1 W122 18 13.8 49.38196 122.30383 1000 LM Fresh Mi N50 07 50.5 W121 50 56.9 50.1307 121.84914 1000 LM Fresh Mi	Y/N Y/N na mass m Mixed N N Lake to Lake 1650.0 126 0 Mixed N N Lake to Lake 20.4 1867 350 350	m km2 Vs/km2 % na mass m m 6.2 202 97 0.6% 5640 84 0 1.2 20.9 2.2 50 0.1% 23.5 1120 400	m m3 MWh m m % m3/s m 2 0.0 68,528,941 6,000 1400 42 3% 3173 22 18.4 3,853,033 6,000 4400 747 17% 178 1	Vis nrs nrs vears s 21 Single-Stage 8.6 6 8 2,659,319,370 25 Multi-Stage 8.6 6 8 1,287,477,562	\$ \$/MW \$/MW \$/KW-yr \$/yr na
Appleton Battle - Fraser	N49 57 00.2 W124 32 56.8 49.95005 124.54912 1000 LM Fresh P N50 41 30.6 W126 19 38.0 50.69183 126.32722 1000 LM Fresh Mi	Pure N Y Man Made 30.0 440 1700 319 Mixed Y N Lake to Lake 115.0 319 500	27.0 0.3 33 0.0% 12445 56 0 0.0 12.9 6.2 67 0.1% 94 89 400 0	6 0.0 7,495,353 6,000 500 384 77% 347 2 15.3 12,513,980 6,000 3600 230 6% 579 4	Image Image <th< td=""><td>1,941,557,071 1,941,557 323,593 118.5 17,084,521 10.5 9.1 0.5 0.0 6.0 4.6 3.8 34.5 1,897,212,225 1,897,212 316,202 115.8 16,694,314 8.4 1.4 9.4 1.3 6.0 6.5 5.4 38.5</td></th<>	1,941,557,071 1,941,557 323,593 118.5 17,084,521 10.5 9.1 0.5 0.0 6.0 4.6 3.8 34.5 1,897,212,225 1,897,212 316,202 115.8 16,694,314 8.4 1.4 9.4 1.3 6.0 6.5 5.4 38.5
Battle - Loose Beavertail - Campbell	N50 45 00.9 W126 22 45.9 50.75025 126.37943 1000 LM Fresh Mi N50 00 42.9 W125 31 14.7 50.01191 125.52074 500 VI Fresh Mi	Mixed Y N Lake to Lake 115.0 319 500 Mixed N Y Lake to Lake 105.4 274 2300	11.1 6.2 67 0.1% 283 44 300 16 6.4 49 0.0% 2435.9 179 0 0.6	5.7 10,466,238 6,000 2800 275 10% 485 3 2 3 15,148,503 3,000 3000 95 3% 701 4	Single-Stage 8.6 6 8 1,514,326,226 M Single-Stage 8.6 6 8 1,532,625,828	1,720,944,1891,720,944286,824105.015,143,2627.01.34.40.56.06.04.229.41,741,740,6293,483,481580,580212.622,989,38710.78.02.20.06.06.44.537.8
Berkeley - Heydon Berkely - Glendale	N50 33 21.7 W125 38 29.7 50.55603 125.64157 1000 LM Fresh Mi N50 36 57.4 W125 38 15.1 50.61594 125.63753 1000 LM Fresh Mi	Mixed Y N Lake to Lake 93.9 798 200 Mixed Y N Lake to Lake 93.9 798 200	6.0 3.3 33 0.1% 813 36 0 0.4 6.2 3.3 33 0.1% 122 73 1200 0	6 0.0 3,777,186 6,000 4400 762 17% 175 1 5.3 3,969,952 6,000 4100 725 18% 184 1	Multi-Stage 8.6 6 8 1,530,735,876 29 Multi-Stage 8.6 6 8 1,241,851,041	1,739,592,808 1,739,593 289,932 106.2 15,307,359 2.8 0.3 0.9 0.0 6.0 6.5 7.6 24.1 1,411,291,898 1,411,292 235,215 86.1 12,418,510 2.9 0.3 2.6 1.9 6.0 6.3 7.3 27.2
Blinch - Stave Bookhout - Great Central	N49 26 18.7 W122 13 36.5 49.43853 122.22681 1000 LM Fresh Mi N49 19 48.4 W125 06 14.6 49.3301 125.10405 1000 VI Fresh Presh	Mixed N Lake to Lake 58.8 770 750 Pure Y N Lake to Man Made 20.0 960 1585	9.1 3.5 97 0.2% 5640 84 0 0.0 18.6 0.2 132 0.0% 5301 95 0 0.0	7 0.0 4,195,649 6,000 3900 686 18% 194 1 5 0.0 3,327,417 6,000 1900 865 46% 154 1	36 Single-Stage 8.6 6 8 1,172,117,948 08 Multi-Stage 8.6 6 8 1,482,621,375	1,332,044,270 1,332,044 222,007 81.3 11,721,179 3.9 1.7 0.4 0.0 6.0 6.2 6.9 25.1 1,684,913,460 1,684,913 280,819 102.8 14,826,214 20.0 6.2 0.3 0.0 6.0 5.1 8.7 46.3
Bookhout 2 Boomerang - Hibbard	N49 19 36.2 W125 03 33.1 49.32673 125.05919 1000 VI Fresh Mi N51 02 04.3 W127 01 51.0 51.03452 127.03084 1000 LM Fresh Mi	Mixed Y N Lake to Man Made 20.0 800 1585 3 Mixed N N Lake to Lake 124.1 131 325 3	22.4 0.2 132 0.0% 5301 95 0 0.0 25.2 6.6 79 0.0% 255 31 700 0.0	3 0.0 4,082,575 6,000 1300 705 54% 189 1 13.3 28,782,155 6,000 2700 100 4% 1333 9	Multi-Stage 8.6 6 8 1,242,218,115 33 Single-Stage 8.6 6 8 2,116,492,164	1,411,709,056 1,411,709 235,285 86.2 12,422,181 20.0 7.2 0.4 0.0 6.0 4.8 7.1 45.5 2,405,270,958 2,405,271 400,878 146.8 21,164,922 19.0 1.6 12.9 2.1 6.0 7.1 4.1 52.8
Bradburn - Forbes1 Bradburn - Forbes2	N50 15 31.3 W124 28 37.6 50.2587 124.47712 1000 LM Fresh Mi N50 15 36.3 W124 27 32.8 50.26008 124.45912 1000 LM Fresh Mi	Mixed N Lake to Lake 49.2 1125 550 Mixed N N Lake to Lake 49.2 1125 550 550	16.4 2.9 86 0.1% 130.5 720 225 20.3 2.9 86 0.1% 56.9 806 650	7.4 7,106,705 6,000 2400 405 17% 329 2 17.9 9,022,619 6,000 3000 319 11% 418 2	30 Single-Stage 8.6 6 8 1,308,310,674 32 Single-Stage 8.6 6 8 1,467,173,266	1,486,819,428 1,486,819 247,803 90.7 13,083,107 7.4 1.9 4.4 0.4 6.0 5.6 4.1 29.9 1,667,357,577 1,667,358 277,893 101.8 14,671,733 9.5 2.3 8.8 2.4 6.0 6.0 4.5 39.6
Bradburn - Powell Burwell - Seymour Butchart - Goldstream	N50 12 10.4 W124 24 15.9 50.2029 124.40441 1000 LM Fresh Mi N49 26 50.7 W122 58 08.1 49.44741 122.96892 1000 LM Fresh Mi N48 30 52.5 W123 37 58.4 48.51458 123.6329 500 VI Fresh Mi	Mixed N Y Lake to Lake 49.2 1125 550 Mixed N Y Lake to Lake 46.0 837 534 534 Mixed N Y Lake to Lake 66.7 570 3000	7.5 2.9 86 0.2% 12445 56 0 0.0 15.2 3.6 98 0.1% 262.6 364 0 2.3 21 3.2 26 0.0% 74.5 457 600	2 0.0 2,692,437 6,000 5900 1069 18% 125 8 2 0.0 6,085,022 6,000 2000 473 24% 282 1 2 0.0 13,75,467 3,000 2300 113 5% 500 4	7 Multi-Stage 8.6 6 8 1,443,854,009 97 Single-Stage 8.6 6 8 1,177,004,048 12 Single Stage 8.6 6 8 1,177,004,048	1,640,856,590 1,640,857 273,476 100.1 14,438,540 2.8 1.1 0.2 0.0 6.0 7.2 10.7 27.9 1,337,597,040 1,337,597 222,933 81.6 11,770,040 6.6 1.8 2.7 0.0 6.0 5.3 4.7 27.0 1,680,294,161 3,360,588 560,098 205.1 22,178,350 11.3 12.7 11.1 2.5 6.0 5.8 3.3 52.6
Butchart - Goldstream Butchart - Sooke Camp Cove	N48 33 59.2 W123 40 37.9 48.56644 123.6772 1000 VI Fresh Mi N49 22 11.3 W121 50 21.9 49.36981 121.83941 1000 LM Fresh Mi	Nixed N I Lake to Lake 06.7 370 3000 Mixed N Y Lake to Lake 67.8 570 500 Mixed Y V Lake to Man Made 50.0 380 250	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 12,737,249 6,000 2100 13 37 360 4 0.0 7,437,249 6,000 3100 387 12% 344 2 1 0.0 7,80.042 6,000 1100 369 34% 361 2	Single-Stage 8.6 6 8 1,387,278,584 3 Single-Stage 8.6 6 8 1,387,278,584	1,060,294,101 3,300,366 300,966 200.1 22,176,300 11.3 12.7 11.1 2.3 6.0 3.8 3.3 32.0 1,576,561,892 1,576,562 262,760 96.2 13,872,786 6.6 1.4 2.2 0.0 6.0 5.9 4.7 26.8 1,428,004,056 1,428,004 238,001 87.2 12,565,567 50.0 0.9 0.4 0.0 6.0 4.9 3.7 65.9
Carpenter - Seton Centre - Lower Eldrid	N50 43 51.3 W122 14 17.8 50.73091 122.23829 1000 LM Fresh Mill N50 09 37.2 W124 08 34.8 50.16033 124.14301 1000 LM Fresh Mill	Mixed Y Lake to Lake 30.0 300 200 Mixed Y Y Lake to Lake 4672.0 909 0 Mixed N N Lake to Lake 17.7 1495 335	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 4,321,645 6,000 4800 666 14% 200 1 19.5 3.128,495 6,000 2000 920 46% 145 1	IO Single-Stage 8.6 6 8 1,266,011,320 I0 Multi-Stage 8.6 6 8 1,266,011,320	1,422,000,030 1,422,004 230,001 07.2 12,00,301 0.0 0.0 0.0 0.0 0.0 4.9 5.7 1,438,748,658 1,438,749 239,791 87.8 12,660,113 0.4 0.0 0.6 0.0 6.0 6.7 7.2 20.9 1,581,397,649 1.581,398 263,566 96.5 13,915,338 5.7 1.4 5.6 2.1 6.0 5.2 9.2 35.2
Chickwat - Lower Tzoonie Chusan - Daniels	N49 52 44.3 W123 37 17.9 49.87897 123.62164 1000 LM Fresh Mi N50 24 38.7 W124 18 08.0 50.41074 124.30223 1000 LM Fresh Mi	Mixed N Lake to Lake 68.2 1588 600 Mixed N N Lake to Lake 79.9 1473 575	5.5 2.3 105 0.2% 19.3 369 300 16.8 2.2 86 0.0% 183 1229 700	14.2 2,361,128 6,000 3300 1219 37% 109 7 8.4 11.795,965 6,000 1300 244 19% 546 3	7 Multi-Stage 8.6 6 8 1,350,744,837 32 Single-Stage 8.6 6 8 1,359,238,252	1,535,043,401 1,535,043 255,841 93.7 13,507,448 2.0 0.9 4.0 0.9 6.0 5.9 12.2 32.0 1,545,043,401 1,535,043 255,841 93.7 13,507,448 2.0 0.9 4.0 0.9 6.0 5.9 12.2 32.0 1,545,043,401 1,535,043 255,841 93.7 13,507,448 2.0 0.9 4.0 0.9 6.0 5.9 12.2 32.0
Chusan - Upper Powell Clover - Powell	N50 24 37.5 W124 15 23.8 50.41041 124.2566 1000 LM Fresh Mi N50 04 33.0 W124 28 58.5 50.07583 124.48293 1000 LM Fresh Mi	Mixed N Lake to Lake 79.9 1473 580 Mixed N Y Lake to Lake 61.2 133 750	18.6 2.2 86 0.0% 80.3 1256 520 63.1 10 33 0.0% 12445 56 0 0.3	18.5 13,263,666 6,000 3900 217 6% 614 4 0 0.0 37,379,422 6,000 1400 77 6% 1731 12	30 Single-Stage 8.6 6 8 1,763,961,589 11 Single-Stage 8.6 6 8 2,315,865,787	2,004,640,344 2,004,640 334,107 122.3 17,639,616 10.9 2.3 10.8 2.0 6.0 6.7 5.9 44.5 2,631,847,552 2,631,848 438,641 160.6 23,158,658 38.6 8.7 2.4 0.0 6.0 7.0 2.1 64.8
Clowhom 1 Comox 1	N49 42 59.9 W123 32 30.4 49.71663 123.54177 1000 LM Fresh P N49 35 16.7 W125 10 24.1 49.58796 125.17337 1000 VI Fresh Mi	Pure N Lake to Man Made 8.8 841 915 915 Mixed Y Y Lake to Man Made 20.0 920 1585 21	43.7 1 105 0.1% 748.1 57 0 0.4 20.3 9.2 85 0.5% 2118 133 0 0.1	0.0 3,671,193 6,000 2600 784 30% 170 1 7 0.0 3,657,199 6,000 2600 787 30% 169 1	Multi-Stage 8.6 6 8 1,629,436,549 9 Multi-Stage 8.6 6 8 1,838,362,374	1,851,760,415 1,851,760 308,627 113.0 16,294,365 8.8 7.6 1.0 0.0 6.0 5.5 7.8 36.7 2,089,192,534 2,089,193 348,199 127.5 18,383,624 20.0 6.6 0.6 0.0 6.0 5.5 7.9 46.6
Deserted - Un-named Dodd - Powell	N50 10 07.2 W123 40 08.8 50.16866 123.66911 1000 LM Fresh Mi N50 01 15.1 W124 19 44.0 50.02086 124.3289 1000 LM Fresh Mi	Mixed N Lake to Lake 45.3 1531 330 Mixed N Y Lake to Lake 722.0 186 350	8.1 2.9 86 0.2% 14.5 487 225 5.1 63.6 33 0.2% 554.3 56 230	21.0 2,756,911 6,000 5200 1044 20% 128 8 6.0 22,140,119 6,000 4000 130 3% 1025 7	9 Multi-Stage 8.6 6 8 1,483,681,328 18 Single-Stage 8.6 6 8 2,059,005,858	1,686,118,036 1,686,118 281,020 102.9 14,836,813 3.0 0.7 5.6 1.0 6.0 6.9 10.4 33.5 2,339,941,095 2,339,941 389,990 142.8 20,590,059 5.9 0.5 6.7 0.4 6.0 7.3 6.0 32.8
Dodd-Goat Doran - Great Central	N50 01 28.8 W124 17 47.4 50.02465 124.2965 1000 LM Fresh Mi N49 20 32.5 W125 17 20.4 49.34237 125.289 1000 VI Fresh Mi	Mixed N Lake to Lake 722.0 186 700 Mixed Y N Lake to Lake 67.3 676 1400	5.1 63.6 33 0.2% 12445 56 0 0.1 9.4 2.7 132 0.2% 5301 95 0 0.0	3 0.0 22,140,119 6,000 4000 130 3% 1025 7 9 0.0 4,953,899 6,000 2800 581 21% 229 1	Single-Stage 8.6 6 8 2,062,602,461 S1 Single-Stage 8.6 6 8 1,434,677,334	2,344,028,427 2,344,028 390,671 143.1 20,626,025 5.9 1.1 1.4 0.0 6.0 7.3 6.0 27.7 1,630,427,830 1,630,428 271,738 99.5 14,346,773 4.3 3.2 0.5 0.0 6.0 5.7 5.8 25.5
Doran Neighbour Elephant - Lois	N49 20 42.0 W125 15 50.5 49.34501 125.26404 1000 VI Fresh Mi N49 50 08.3 W124 14 39.1 49.83565 124.24419 1000 LM Fresh Mi N49 50 08.3 W126 00 50 49.43265 124.24419 1000 LM Fresh Mi	Mixed Y N Lake to Man Made 15.7 876 10000 10000 10000	25.5 4.4 132 0.3% 5301 95 0 0.0 18.9 0.22 33 0.0% 2410 133 0 0.1	7 0.0 3,685,295 6,000 2400 781 33% 171 1 5 0.0 3,718,625 6,000 3600 774 22% 172 1	Multi-Stage 8.6 6 8 1,532,982,746 21 Multi-Stage 8.6 6 8 1,621,936,184	1,742,146,246 1,742,146 290,358 106.3 15,329,827 15.7 5.1 0.4 0.0 6.0 5.4 7.8 40.4 1,843,236,684 1,843,237 307,206 112.5 16,219,362 22.0 6.5 0.5 0.0 6.0 6.0 7.7 48.9 1,500,014 244,400 577,404 100.4 20,007,40 10.5 10.5 0.0 6.0 7.7 48.9
Elsie - Ash Florence - Stave	N49 25 28.1 W125 06 25.0 49.42448 125.10695 500 VI Fresh Mi N49 21 28.6 W122 19 00.9 49.35793 122.31691 1000 LM Fresh Mi N49 21 28.6 W122 19 00.9 49.35793 122.31691 1000 LM Fresh Mi	Mixed N N Lake to Lake 645.1 337 1000 Mixed N N Lake to Lake 32.4 370 2030 300	4 238 43 2.0% 59.7 206 1400 33.1 1.1 97 0.0% 5640.8 84 0 0.1 46.7 1 00 0.0% 100.0% 100.0% 100.0% 0.1	20 10,985,555 3,000 3700 131 4% 509 3 3 0.0 10,063,691 6,000 783 286 37% 466 3	Single-Stage 8.6 6 8 1,392,249,316 26 Single-Stage 8.6 6 8 1,585,100,491 26 Single Stage 8.6 6 8 1,585,100,491	1,582,210,841 3,164,422 527,404 193.1 20,883,740 3.1 1.3 10.5 5.9 6.0 6.4 5.6 38.7 1,801,375,049 1,801,375 300,229 109.9 15,851,005 13.7 13.0 1.0 0.0 6.0 4.9 2.9 41.5 1,801,042,020 1,802,014 200,495 143.2 16,411,227 10.7 8.2 5.2 1.0 6.0 5.2 2.0 28.2
Freda Frogpond - Powell Gibcon	N49 54 33.9 W124 17 04.0 49.90941 124.28444 1000 LM Fresh Pr N50 01 41.4 W124 24 45.6 50.02816 124.41268 1000 LM Fresh Mi N40 16 45 0 W132 44 55 40.27445	Pure N N Man Made 100.0 360 2300 Mixed N Y Lake to Lake 120.8 506 432 Mixed Y N Lake to Lake 120.8 506 432	10.7 1 33 0.0% 403.8 164 600 7.3 7.8 33 0.1% 12445 56 0 0.0 21.0 0.15 100 0.0% 1000 0.0% 1000 0.0	5.b 14,684,773 6,000 1000 196 20% 680 4 5 0.0 6,396,034 6,000 2200 450 20% 296 2 7 0.0 2,855,372 6,000 5000 1000 1000 196 20% 296 2	Single-Stage 8.6 6 8 1,618,132,689 07 Single-Stage 8.6 6 8 1,174,593,365 2 Multi-Stage 8.0 0 0 0 0	1,838,914,232 1,838,914 306,486 112.2 16,181,327 10.7 8.2 5.2 1.0 6.0 5.3 2.0 38.3 1,334,857,439 1,334,857 222,476 81.5 11,745,934 4.2 0.8 0.4 0.0 6.0 5.4 4.5 21.3 1,857,032,875 1,877,024 211,101 114.0 16,470,202 15.0 5.0 0.2 0.0 6.0 6.8 10.1 44.1
Gibson Goat Goldstream - Sooke	N49 16 45.0 W125 11 55.1 49.27915 125.19865 1000 VI Fresh Mi N50 00 03.5 W124 29 25.9 50.00097 124.49053 1000 LM Fresh Pi N48 31 14.4 W123 41 50.2 48.52066 123.69728 1000 VI Fresh Mi	Mixed Y N Lake to Man Made 15.0 1040 1373 1040 1373 1040 1373 1040 1373 1040 1040 1373 1040	21.0 0.15 108 0.0% 4238 32 0 0.0 14.3 0.4 33 0.0% 12445 56 0 0.0 16.7 12.7 36 0.1% 593.6 183 1400	7 0.0 2,855,373 6,000 5000 1008 20% 132 9 4 0.0 4,928,451 6,000 1500 584 39% 228 1 3.8 10,504,436 6,000 5000 274 5% 486 3	3 Multi-Stage 8.6 6 8 1,642,920,261 50 Single-Stage 8.6 6 8 1,540,626,770 40 Single-Stage 8.6 6 8 1,687,352,588	1,867,083,875 1,867,084 311,181 114.0 16,429,203 15.0 5.9 0.3 0.0 6.0 6.8 10.1 44.1 1,750,833,237 1,750,833 291,806 106.9 15,406,268 5.7 4.7 0.3 0.0 6.0 5.0 5.8 27.5 1.917,578,645 1.917,579 319,596 117.0 16,873,526 9.1 2.6 3.1 1.8 6.0 7.1 7.5 37.2
Goldstream - Sooke Goldstream - Sooke Griffin - Glendale		Mixed N Y Lake to Lake 71.5 457 730 Mixed N Y Lake to Lake 71.5 457 800 Mixed Y N Lake to Lake 45.6 666 230			Initial Single-Stage 8.6 6 8 1,687,352,588 70 Single-Stage 8.6 6 8 1,171,784,965 57 Single-Stage 8.6 6 8 1,274,448,220	1,331,665,855 2,663,332 443,889 162.6 17,576,774 4.5 1.8 1.5 0.6 6.0 7.3 8.9 30.5
Gun - Downton Gun-Carpenter	N50 49 58.2 W122 52 25.6 50.83282 122.87378 1000 LM Fresh Mi	Mixed Y N Lake to Lake 45.5 666 230 Mixed N N Lake to Lake 578.2 883 950 Mixed Y N Lake to Lake 578.2 883 950	12.6 3.5 3.3 0.1% 122 7.3 1200 5.7 43 28 0.1% 2242.3 747 0 0.9 4.3 43 28 0.2% 4672 671 0 0.2	4 0.0 21,163,349 6,000 2500 136 5% 980 6	Single-Stage 8.6 6 8 1,2/4,448,220 36 Single-Stage 8.6 6 8 1,789,345,069 40 Single-Stage 8.6 6 8 1,418,810,078	2,033,487,202 2,033,487 338,915 124.1 17,893,451 6.3 1.5 3.2 0.0 6.0 6.5 3.8 27.2
Haynon - Chochiwa Heather - Cowichan	N50 06 01.0 W121 51 29.1 50.10029 121.85808 1000 LM Fresh Mi	Mixed N Lake to Lake 370.2 365 350 Mixed N N Lake to Lake 22.6 1801 400 22.6 Mixed Y N Lake to Lake 31.8 990 300	20.0 2.1 50 0.1% 64.1 1095 485	8.4 4,076,793 6,000 3400 706 21% 189 1 0.0 3,484,522 6,000 5500 826 15% 161 1	Multi-Stage 8.6 6 8 1,416,517,010,010 32 Multi-Stage 8.6 6 8 1,165,474,388 I3 Multi-Stage 8.6 6 8 1,686,803,116	1,324,494,248 1,324,494 220,749 80.8 11,654,744 6.5 1.7 3.7 1.0 6.0 5.9 7.1 31.8
Heather - Kissinger Henderson	N48 55 16.5 W124 28 52.2 48.92124 124.48117 500 VI Fresh Mi N49 06 29.2 W125 05 15.5 49.1081 125.08763 1000 VI Fresh Mi	Mixed N Lake to Lake 31.8 990 350 Mixed Y N Lake to Man Made 40.0 560 2242	8 0.9 75 0.1% 12.5 192 1000 15.7 0.4 133 0.0% 1549 35 0 0.3		8 Multi-Stage 8.6 6 8 1,162,239,888 '8 Single-Stage 8.6 6 8 1,304,886,067	
High Falls - Powell Holyoak - Holland	N50 09 43.3 W124 21 27.0 50.16204 124.3575 1000 LM Fresh Mi N48 56 39.3 W123 51 47.3 48.94424 123.86314 500 VI Fresh Mi	Mixed N Y Lake to Lake 40.2 1125 570 Mixed N N Lake to Lake 21.1 1055 1130	8.7 4.4 86 0.3% 12445 56 0 0.0 19 1.2 55 0.0% 43.5 657 840 0	0.0 2,692,437 6,000 3100 1069 34% 125 8 10 3,615,849 3,000 6100 398 7% 167 1	Multi-Stage 8.6 6 8 1,334,747,150 I7 Single-Stage 8.6 6 8 1,187,997,225	1,516,862,955 1,516,863 252,810 92.6 13,347,472 3.1 1.2 0.2 0.0 6.0 5.8 10.7 26.9 1,350,090,151 2,700,180 450,030 164.8 17,819,958 5.9 4.5 4.0 2.0 6.0 7.3 9.2 38.9
Irving - Uun-named Isabel - Pitt	N49 37 39.7 W126 19 18.6 49.6277 126.32182 1000 VI Fresh Mi N49 29 36.6 W122 34 16.2 49.4935 122.57116 1000 LM Fresh Mi	Mixed N Lake to Lake 66.1 626 200 Mixed Y N Lake to Lake 32.0 617 300 300	9.3 2.7 133 0.2% 34.2 33 150 20.6 2.4 118 0.1% 5339 134 0 0.1	16.2 4,853,652 6,000 3000 593 20% 225 1 0.0 5,959,038 6,000 2200 483 22% 276 1	Single-Stage 8.6 6 8 1,187,093,434 33 Single-Stage 8.6 6 8 1,270,704,182	
Kaipit - Zeballos Keary - Carpenter		Mixed Y N Lake to Lake 87.3 1759 200	15.5 14.9 133 0.3% 198.5 333 300 5.0 20.9 7 0.1% 4672 671 0 0.0		30 Single-Stage 8.6 6 8 1,884,961,658 6 Multi-Stage 8.6 6 8 1,568,330,180	
Kenyon - Stave Knight - Fourth	N49 24 09.0 W122 16 20.0 49.40249 122.27222 1000 LM Fresh Mi N49 04 11.6 W124 25 00.5 49.06988 124.41682 500 VI Fresh Mi	Mixed N Lake to Lake 15 855 320	20.0 2.4 97 0.1% 5640.8 84 0 0.0 20 2.1 78 0.1% 200.9 323 260 0	3 2,705,090 3,000 5500 532 10% 125 8		1,158,887,218 2,317,774 386,296 141.5 15,296,254 5.4 1.3 1.4 0.3 6.0 6.9 8.3 29.5
Lake of the Mountains - Georgie Lewis - Dodd		Mixed N Lake to Lake 180.0 309 690 300 Mixed N N Lake to Lake 90.3 414 500 100	20.6 15.8 62 0.1% 465.1 223 550 16.0 18.9 33 0.1% 722 186 550		85 Single-Stage 8.6 6 8 2,426,643,879 09 Single-Stage 8.6 6 8 1,477,806,676	1,679,441,833 1,679,442 279,907 102.5 14,778,067 9.7 1.7 3.3 0.7 6.0 5.9 3.8 31.1
Lewis - Horseshoe Lewis - Nanton	N49 55 16.1 W124 18 06.0 49.92114 124.30166 1000 LM Fresh Mi N49 55 05.3 W124 19 49.7 49.91815 124.33046 1000 LM Fresh Mi N49 24 49.7 W121 45 56.0 49.41381 121.76556 1000 LM Fresh Mi	Mixed N Lake to Lake 90.3 414 500 Mixed N N Lake to Lake 90.3 414 500 1000 Mixed N N Lake to Lake 90.3 414 500 1000	14.7 18.9 33 0.1% 403.8 164 600 15.0 18.9 33 0.1% 105.4 169 500	4.9 11,512,862 6,000 5400 250 5% 533 3 13.1 11,747,818 6,000 4600 245 5% 544 3	Y3 Single-Stage 8.6 6 8 1,721,567,464 31 Single-Stage 8.6 6 8 1,667,889,464 8 Multi-Stage 8.6 6 8 1,574,483,756	1,895,459,930 1,895,460 315,910 115.7 16,678,895 9.0 1.6 8.3 1.5 6.0 7.0 6.9 40.2
Lookout - Harrison Loquilts - Un-named Marshall - Carpenter		Mixed Y Lake to Lake 10.7 1377 1000 377 Mixed N N Lake to Lake 47.1 1346 400 400 Mixed Y N Lake to Lake 63.2 1146 275	18.5 4 86 0.1% 58.2 975 230	15.3 7,757,993 6,000 4900 371 8% 359 2	8 Multi-Stage 8.6 6 8 1,574,483,756 51 Single-Stage 8.6 6 8 1,535,515,132 96 Single-Stage 8.6 6 8 1,240,313,995	1,745,024,156 1,745,024 290,837 106.5 15,355,151 8.4 1.5 7.4 0.8 6.0 6.9 7.4 38.4
Marshall - Carpenter McVey- Khartoum Mystery - Harrison			6.0 3.3 86 0.2% 482.3 133 0 0.7	6 0.0 3,657,199 6,000 5700 787 14% 169 1		1,776,579,543 1,776,580 296,097 108.4 15,632,820 2.7 0.6 1.2 0.0 6.0 7.1 8.6 26.2
Nimpkish 1 Nimpkish 2	N50 30 10.4 W127 01 25.1 50.5029 127.02365 1000 VI Fresh Mi N50 21 16.8 W126 55 51.0 50.35467 126.93085 1000 VI Fresh Mi	Mixed Y N Lake to Man Made 15.1 975 1380	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0.0 3,029,701 6,000 3200 950 30% 140 6	8 Multi-Stage 8.6 6 8 1,562,180,057 17 Multi-Stage 8.6 6 8 1,549,163,926	1,775,327,302 1,775,327 295,888 108.4 15,621,801 15.1 6.2 0.3 0.0 6.0 5.8 9.5 43.0
North Bonanza North Harrison	N50 22 50.8 W126 46 44.2 50.38078 126.77893 1000 VI Fresh Mi N49 44 47.3 W122 07 00.8 49.74647 122.11689 1000 LM Fresh Mi	Mixed Y N Lake to Man Made 40.0 622 500 500 Mixed Y Y Lake to Man Made 4.2 1601 530 500 <td>22.5 10.3 67 0.2% 915 271 0 0.9 45.1 1.1 57 0.1% 22263 11 0 0.0</td> <td></td> <td>Single-Stage 8.6 6 8 1,382,905,754 9 Multi-Stage 8.6 6 8 1,634,633,923</td> <td>1,571,592,423 1,571,592 261,932 95.9 13,829,058 40.0 2.3 1.9 0.0 6.0 5.4 3.5 59.1 1,857,666,931 1,857,667 309,611 113.4 16,346,339 4.2 4.5 0.1 0.0 6.0 6.7 15.9 37.4</td>	22.5 10.3 67 0.2% 915 271 0 0.9 45.1 1.1 57 0.1% 22263 11 0 0.0		Single-Stage 8.6 6 8 1,382,905,754 9 Multi-Stage 8.6 6 8 1,634,633,923	1,571,592,423 1,571,592 261,932 95.9 13,829,058 40.0 2.3 1.9 0.0 6.0 5.4 3.5 59.1 1,857,666,931 1,857,667 309,611 113.4 16,346,339 4.2 4.5 0.1 0.0 6.0 6.7 15.9 37.4
North Henderson Oliphant - Shawnigan	N49 07 14.5 W125 05 24.4 49.1207 125.09012 1000 VI Fresh Mi N48 36 00.4 W123 37 23.1 48.60012 123.62309 1000 VI Fresh Mi	Mixed Y N Lake to Lake 45.7 460 400 Mixed Y N Lake to Lake 21.5 421 1600 400			Single-Stage 8.6 6 8 1,386,933,177 08 Single-Stage 8.6 6 8 2,139,202,085	1,576,169,356 1,576,169 262,695 96.2 13,869,332 7.4 1.4 1.2 0.0 6.0 5.2 4.3 25.5 2,431,079,470 2,431,079 405,180 148.4 21,392,021 17.0 13.9 2.9 0.0 6.0 6.2 5.1 51.1
Palisade - Seymour Peneplain - Coquitlam	N49 26 43.3 W122 58 16.1 49.44537 122.97113 1000 LM Fresh Mi N49 26 06.2 W122 45 32.2 49.43505 122.75894 1000 LM Fresh Mi	Mixed N Y Lake to Lake 56.3 895 70 Mixed N Y Lake to Lake 28.2 967 400	11.6 2.4 98 0.1% 262.6 364 0 2.0 14.5 2.1 130 0.2% 1199.6 152 0 0.2	6 0.0 5,420,368 6,000 3700 531 14% 251 1 9 0.0 3,531,553 6,000 3700 815 22% 163 1	Y6 Single-Stage 8.6 6 8 1,207,930,159 14 Multi-Stage 8.6 6 8 1,375,305,577	
Pointer - Hornet Pointer - Loose	N50 46 30.0 W126 26 05.2 50.77501 126.43477 1000 LM Fresh Mi N50 45 30.9 W126 23 20.7 50.7586 126.38908 1000 LM Fresh Mi	Mixed N Lake to Lake 75.0 411 200 Mixed Y N Lake to Lake 75.0 411 450	12.5 2.3 79 0.0% 44.7 46 160 12.5 2.3 67 0.0% 283 44 300	19.6 7,885,522 6,000 2500 365 15% 365 2 4.8 7,842,549 6,000 830 367 44% 363 2	56 Single-Stage 8.6 6 8 1,325,903,514 54 Single-Stage 8.6 6 8 1,273,631,078	
Potato - Un-named Powell 1	N50 09 05.5 W123 41 17.9 50.15154 123.68829 1000 LM Fresh Mi N50 00 29.4 W124 33 48.6 50.00817 124.5635 1000 LM Fresh Presh	Mixed N Lake to Lake 23.7 1038 1000 Pure N Y Lake to Man Made 100.0 1000 980	17.4 6 86 0.3% 103.9 248 600 5.0 1.7 86 0.1% 12445 56 0 0.0	5.5 3,643,311 6,000 4900 790 16% 169 1 2 0.0 3,048,957 6,000 5900 944 16% 141 5	9 Multi-Stage 8.6 6 8 1,543,462,767	1,754,056,184 1,754,056 292,343 107.1 15,434,628 100.0 1.5 0.2 0.0 6.0 7.2 9.4 124.3
Powell 2 Powell 3	N49 59 52.7 W124 33 49.5 49.99797 124.56374 1000 LM Fresh Pr N50 03 04.1 W124 31 59.0 50.05115 124.53304 1000 LM Fresh Pr	Pure N Y Lake to Man Made 21.7 720 1650 21.7	8.1 1.6 86 0.1% 12445 56 0 0.0 22.0 21.7 86 0.9% 12445 56 0 0.0	3 0.0 4,334,662 6,000 3500 664 19% 201 1	Initial blage Bit <	1,515,674,546 1,515,675 252,612 92.5 13,337,014 21.7 7.4 0.3 0.0 6.0 6.6 48.0
Powell 4 Powell 5	N50 00 36.0 W124 22 33.8 50.01001 124.37605 1000 LM Fresh Mi	Mixed N Y Lake to Man Made 18.3 728 460 33 Mixed N Y Lake to Man Made 26.5 493 915 33	25.4 3.9 86 0.2% 12445 56 0 0.0 26.9 5.4 86 0.2% 12445 56 0 0.0 26.9 5.4 86 0.2% 12445 56 0 0.0	5 0.0 6,586,306 6,000 1800 437 24% 305 2	I3 Single-Stage 8.6 6 8 1,362,304,981	
Pretty Girl - Ellen Quimper - Bulson			10.4 17.4 133 0.4% 95.9 74 300 18 1.3 121 0.1% 33.3 261 225 18.0 0.0 0.1% 5610 0.4 0.0 0.4	14.4 11,844,508 6,000 4200 243 6% 548 3 11 3,010,686 3,000 2600 478 18% 139 5 0.0 0.041,500 0.000 2400 247 8% 204 5	34 Single-Stage 8.6 6 8 1,626,049,767 8 Single-Stage 8.6 6 8 952,708,170 20 Single Stage 9.6 0 0 4 502,708,170	1,082,697,745 2,165,395 360,899 132.2 14,290,623 5.3 3.0 3.8 0.6 6.0 5.4 4.8 28.9
Salsbury - Stave Sechelt - Henriette Skwim - Freda	N49 21 34.0 W122 16 28.9 49.35944 122.2747 1000 LM Fresh Mi N49 40 24.8 W123 20 21.0 49.67354 123.33917 1000 LM Fresh Mi N50 00 25.8 W124 08 56.2 50.00716 124.14894 1000 LM Fresh Mi	Mixed N Lake to Lake 78.3 431 1200 Mixed N N Lake to Lake 111.3 1183 1800 Mixed N N Lake to Lake 26.6 1275 700	12.6 3.9 97 0.1% 5640 84 0 0.1 9.7 4 105 0.1% 56.9 847 400 0 0.1 18.7 1.8 86 0.1% 60.1 627 400 0 0	5 0.0 8,294,569 6,000 4100 347 8% 384 2 17.1 8,566,118 6,000 3800 336 9% 397 2 9.4 4,441,691 6,000 4000 648 16% 206 1	Single-Stage 8.6 6 8 1,503,373,858 78 Single-Stage 8.6 6 8 1,521,882,363 14 Single-Stage 8.6 6 8 1,234,819,253	1,708,497,457 1,708,497 284,750 104.3 15,033,739 6.8 3.4 0.8 0.0 6.0 6.5 6.2 29.6 1,729,531,303 1,729,531 288,255 105.6 15,218,824 5.8 4.2 8.3 1.4 6.0 6.4 5.7 37.9 1,403,300,677 1,403,301 233,883 85.6 12,348,193 6.5 2.7 4.1 0.9 6.0 6.3 6.5 33.0
Sliammon - Powell Slippery - Clowhom	N49 56 16.3 W124 32 48.9 49.93787 124.54691 1000 LM Fresh Mi	Mixed N Lake to Lake 20.0 127.5 700 Mixed Y Y Lake to Lake 175.8 126 575 3 Mixed N N Lake to Lake 11.3 1332 450 3	1.5 36 0.1% 60.1 62.7 400 25.4 43.4 33 0.1% 12445 56 0 0.3 22.0 1 105 0.1% 748.1 57 0 0.3	3 0.0 41,117,364 6,000 1400 70 5% 1904 13	Arr Single-Stage 8.6 6 8 2,220,236,979 33 Multi-Stage 8.6 6 8 1,383,471,589	2,523,170,941 2,523,171 420,528 154.0 22,202,370 22.7 2.9 2.6 0.0 6.0 7.2 2.1 43.5
Slollicum - Harrison Stukolait - Chochiwa	N49 24 08.6 W121 45 34.0 49.40238 121.75946 1000 LM Fresh Mi	Mixed Y Lake to Lake 26.0 1258 200 Mixed N N Lake to Lake 67.3 1435 850	10.9 1.6 57 0.1% 22263 11 0 0.0 14.6 13.8 50 0.2% 64.1 1095 425 425	0.0 2,308,112 6,000 3900 1247 32% 107 7 15.2 8,465,340 6,000 5100 340 7% 392 2	Solution	1,701,975,614 1,701,976 283,663 103.9 14,976,350 3.3 0.5 0.1 0.0 6.0 6.2 12.5 28.6
Tsable - Comox Tsable - Nimnim	N49 34 04.8 W125 10 07.3 49.56801 125.16869 1000 VI Fresh Mi N49 30 02.7 W125 09 16.3 49.50075 125.15452 1000 VI Fresh Mi	Mixed Y Lake to Man Made 65.0 1017 250 Mixed N N Lake to Lake 65.0 1017 520	7.0 2.6 68 0.1% 2118 133 0 0.1 10.1 2.6 68 0.1% 44 469 900 0	5 0.0 3,255,900 6,000 6500 884 14% 151 1 13.9 5,252,218 6,000 4700 548 12% 243 1	Multi-Stage 8.6 6 8 1,733,447,222 70 Single-Stage 8.6 6 8 1,314,466,892	1,969,962,532 1,969,963 328,327 120.2 17,334,472 2.9 0.5 0.5 0.0 6.0 7.6 9.8 27.2 1,493,815,614 1,493,816 248,969 91.2 13,144,669 4.7 1.2 5.8 2.8 6.0 6.7 7.1 34.2
Tsable - Willemar Twin Lakes - Stave		Mixed Y N Lake to Lake 65.0 1017 350 Mixed N N Lake to Man Made 25.0 485 1772 350	8.1 2.6 68 0.1% 86.1 291 420 30.7 0.25 84 0.0% 5640 84 0 0.1	6.6 3,964,484 6,000 5700 726 13% 184 1 3 0.0 7,177,595 6,000 1500 401 27% 332 2	Multi-Stage 8.6 6 8 1,541,344,032 33 Single-Stage 8.6 6 8 1,514,592,258	
Tyaughton - Carpenter Un-named - Effingham	N50 54 24.6 W122 44 18.7 50.90683 122.73853 1000 LM Fresh Mi N49 09 57.6 W125 16 32.6 49.16601 125.27571 1000 VI Fresh Mi	Mixed Y N Lake to Lake 95.7 1006 250 Mixed N N Lake to Lake 23.2 1135 560	11.0 14.2 28 0.1% 4672 671 0 0.1 18.1 0.7 108 0.0% 31.5 366 522 522	3 0.0 8,591,688 6,000 4700 335 7% 398 2 13.9 3,742,803 6,000 6300 769 12% 173 1		1,723,496,4681,723,496287,249105.215,165,7216.30.60.90.06.06.97.127.81,828,498,8231,828,499304,750111.616,089,6785.82.14.91.66.07.59.537.4
Un-named - Goat Un-named - Hesquiat	N50 04 44.8 W124 13 20.4 50.07911 124.22232 1000 LM Fresh Mii N49 30 57.2 W126 23 28.4 49.5159 126.39124 1000 VI Fresh Mii	Mixed N Lake to Lake 37.5 1127 500 Mixed Y N Lake to Lake 33.3 536 230	9.2 4.2 86 0.3% 554.3 56 0 0.4 18.3 2.2 133 0.1% 477.8 7 0 1.1	3 0.0 2,687,409 6,000 5300 1071 20% 124 8 4 0.0 5,440,861 6,000 4700 529 11% 252 1	76 Single-Stage 8.6 6 8 1,607,921,235	1,674,489,879 1,674,490 279,082 102.2 14,734,493 3.2 1.1 0.8 0.0 6.0 6.9 10.7 28.7 1,827,309,505 1,827,310 304,552 111.5 16,079,212 7.0 0.9 1.8 0.0 6.0 6.7 7.1 29.4
Un-named - Huaskin Un-Named - Powell		Mixed Y N Lake to Lake 105.0 206 700 Mixed N Y Lake to Lake 26.3 719 1700 Mixed N N Lake to Lake 26.3 719 1700	19.5 6.1 67 0.0% 2146 49 0 0.8 18.5 1.8 86 0.1% 12445 56 0 0.0 10.4 14 62 0.1% 240.4 25 200	5 0.0 18,332,583 6,000 2000 157 8% 849 55 3 0.0 4,341,200 6,000 3200 663 21% 201 1 3 0.0 2,468,452 6,000 3500 1166 32% 114 14	04 Single-Stage 8.6 6 8 1,722,973,145 11 Single-Stage 8.6 6 8 1,260,370,069 0 Multi-Stage 8.6 6 8 1,260,370,069	
Un-named - Stafford Un-named - Tzoonie 1 Un-named - Tzoonie 2		Mixed N Lake to Lake 14.2 1251 250 Mixed N N Lake to Lake 24.1 1211 450 Mixed N N Lake to Lake 22.0 1249 230	19.4 1.4 63 0.1% 249.4 85 300 16.2 4.4 105 0.3% 19.3 369 220 16.9 3.8 105 0.3% 19.3 369 250	3.0 2,468,452 6,000 3500 1166 33% 114 8 19.7 3,418,308 6,000 5100 842 17% 158 1 18.9 3,270,699 6,000 3200 880 28% 151 1	0 Multi-Stage 8.6 6 8 1,359,074,099 11 Multi-Stage 8.6 6 8 1,512,904,635 06 Multi-Stage 8.6 6 8 1,415,805,177	1,544,509,124 1,544,509 257,418 94.3 13,590,741 5.0 1.0 1.1 0.3 6.0 6.0 11.7 31.1 1,719,328,634 1,719,329 286,555 104.9 15,129,046 5.2 1.6 5.9 0.9 6.0 6.8 8.4 34.8 1,608,980,715 1,608,981 268,163 98.2 14,158,052 5.2 0.8 5.6 1.0 6.0 5.8 8.8 33.3
Un-named - Izoonie 2 Un-named - Uchuck Un-named - Zeballos	N49 52 34.8 W123 37 05.0 49.87633 123.61804 1000 LM Fresh Mi N49 02 09.6 W125 05 37.2 49.036 125.09366 500 VI Fresh Mi N50 04 57.7 W126 43 40.4 50.08269 126.72788 500 VI Fresh Mi	Mixed N Lake to Lake 22.0 1249 230 Mixed N N Lake to Lake 19.7 569 800 Mixed N N Lake to Lake 25.7 727 600	16.9 3.8 105 0.3% 19.3 369 250 16 2.9 108 0.2% 115.1 44 310 16 2.5 133 0.2% 198.5 333 220	4 2,741,158 3,000 7300 525 7% 127 8	Multi-Stage 8.6 6 8 1,415,805,177 9 Single-Stage 8.6 6 8 1,120,314,456 18 Single-Stage 8.6 6 8 1,128,647,950	1,608,980,715 1,608,981 268,163 98.2 14,158,052 5.2 0.8 5.6 1.0 6.0 5.8 8.8 33.3 1,273,172,597 2,546,345 424,391 155.4 16,804,717 4.6 2.7 1.8 0.4 6.0 7.9 11.0 34.4 1.282,643,131 2.565,286 427,548 156.6 16,929,719 5.4 2.1 1.8 0.3 6.0 7.4 9.6 32.6
Un-named - Zebailos Upper Deserted - Un-named Upper Eldrid - Lower Eldrid		Mixed N Lake to Lake 25.7 727 600 Mixed N N Lake to Lake 58.5 975 225 Mixed N N Lake to Lake 131.6 1347 700	16 2.5 133 0.2% 198.5 333 220 8.8 12.2 86 0.6% 109.3 248 580 4.8 3.7 86 0.2% 17.9 575 560	4 3,652,558 3,000 6400 394 6% 169 1 5.6 3,959,031 6,000 3100 727 23% 183 1 22.8 3,728,258 6,000 2600 772 30% 173 1	No. No. <td></td>	
Upper Elsie Upper Great Central		Nixed N Lake to Lake 131.0 1347 700 Pure Y N Lake to Man Made 20.0 720 1350 330 Pure Y N Lake to Man Made 20.0 900 830	4.0 5.7 60 0.2% 17.9 575 500 39.6 1.1 43 0.0% 645 337 0 1.1 19.9 1 132 0.1% 5301 95 0 0.0	7 0.0 7,514,923 6,000 3300 383 12% 348 2	Multi-stage 8.6 6 8 1,412,010,229 14 Single-Stage 8.6 6 8 1,710,030,719 16 Multi-Stage 8.6 6 8 1,478,762,177	1,004,007,976 1,004,006 267,443 97.9 14,120,102 2.3 1.0 6.0 2.6 6.0 5.3 7.7 52.0 1,943,351,030 1,943,351 323,892 118.6 17,100,307 20.0 10.2 2.1 0.0 6.0 6.1 5.0 49.3 1,680,527,705 1,680,528 280,088 102.6 14,787,622 20.0 3.4 0.3 0.0 6.0 5.4 8.1 43.2
Upper Misery - Lower Misery Upper Misery - Un-named	N49 45 20.9 W123 36 07.1 49.75581 123.60197 1000 LM Fresh Mi N49 48 35.2 W123 35 05.3 49.80977 123.58479 1000 LM Fresh Mi	Mixed N Lake to Lake 45.4 1273 280 Mixed N N Lake to Lake 45.4 1273 360	10.5 102 0.1% 0.001 0.00 0.00 0.00 12.8 2.5 105 0.1% 16.5 688 360 17.8 2.5 105 0.1% 59 871 600 <t< td=""><td>31.8 4,920,027 6,000 1600 585 37% 228 1 14.1 7,159,740 6,000 5400 402 7% 331 2</td><td>Single-Stage 8.6 6 8 1,38,239,577 32 Single-Stage 8.6 6 8 1,552,433,642</td><td>1,293,543,461 1,293,543 215,591 78.9 11,382,396 5.3 0.8 9.7 2.2 6.0 5.0 5.9 34.9</td></t<>	31.8 4,920,027 6,000 1600 585 37% 228 1 14.1 7,159,740 6,000 5400 402 7% 331 2	Single-Stage 8.6 6 8 1,38,239,577 32 Single-Stage 8.6 6 8 1,552,433,642	1,293,543,461 1,293,543 215,591 78.9 11,382,396 5.3 0.8 9.7 2.2 6.0 5.0 5.9 34.9
Upper Quinsam - Upper Campbell		Mixed N N Lake to Lake 504.6 369 350 Mixed N N Lake to Lake 23.3 1346 218	7.5 69.2 35 0.2% 3046.7 266 0 0.9 14.6 3.1 105 0.2% 19.3 369 250 250			
Upper Vancouver - Lower Vancouve View - Great Central	ver N49 54 39.1 W123 44 08.4 49.91085 123.73566 1000 LM Fresh Mi N49 22 10.8 W125 21 42.4 49.36966 125.36177 1000 VI Fresh Mi	Mixed N Lake to Lake 34.4 1626 420 Mixed Y N Lake to Lake 101.0 310 825	17.5 1.2 105 0.1% 39.9 1085 285 15.3 8.3 132 0.2% 5301 95 0 0.2	15.3 5,320,177 6,000 1400 541 39% 246 1 5 0.0 13,387,049 6,000 1600 215 13% 620 4	Y2 Single-Stage 8.6 6 8 1,129,806,520 34 Single-Stage 8.6 6 8 1,691,240,455	1,283,959,779 1,283,960 213,993 78.4 11,298,065 6.7 1.5 6.2 0.9 6.0 4.9 5.4 31.8 1,921,996,981 1,921,997 320,333 117.3 16,912,405 9.7 2.7 1.3 0.0 6.0 5.5 2.4 27.6
Walt - Khartoum Wilson - Chehalis	N49 25 52.6 W122 02 18.7 49.43127 122.03853 1000 LM Fresh Mi	Mixed N Lake to Lake 38.2 971 290 Mixed Y N Lake to Lake 38.2 821 400	11.0 3.9 86 0.2% 482.3 133 0 0.7 14.6 3.5 99 0.2% 629.6 221 0 0.7	6 0.0 4,797,026 6,000 4500 600 13% 222 1	55 Single-Stage 8.6 6 8 1,328,232,054	1,674,607,607 1,674,608 279,101 102.2 14,735,529 4.0 0.7 1.1 0.0 6.0 6.8 8.4 27.0 1,509,458,924 1,509,459 251,576 92.1 13,282,321 5.7 1.3 1.4 0.0 6.0 6.5 6.8 27.6
Windsor - Goat Windsor - Powell	N50 01 35.5 W124 17 31.1 50.02653 124.29197 1000 LM Fresh Mii N50 01 23.9 W124 19 23.9 50.0233 124.32332 1000 LM Fresh Mii				39 Single-Stage 8.6 6 8 1,963,870,353	
Woss 1 Woss 2 M(1)03100313)01\0\Data\Task 200	N50 08 37.4 W126 37 05.8 50.14372 126.61827 1000 VI Fresh Mi	Mixed Y N Lake to Man Made 25.0 763 1772 2 Mixed Y N Lake to Lake 14.5 969 460 2	20.7 2 133 0.1% 1404 148 0 0.3 26.2 1.4 133 0.1% 1404 148 0 0.2		52 Single-Stage 8.6 6 8 1,352,149,741 14 Multi-Stage 8.6 6 8 1,620,000,128	1,536,639,9931,536,640256,10793.813,521,49725.07.50.90.06.05.86.251.41,841,036,4691,841,036306,839112.416,200,0017.32.40.70.06.07.28.732.2
M:\1\03\00313\01\A\Data\Task 200	0 - Screening Assessment\[Summary Pump Storage Sites 20101123.xlsx]Freshwater					

 0
 25NOV'10
 ISSUED WITH REPORT VA103-313/1-1
 TMF
 SRM
 JPH

 REV
 DATE
 DESCRIPTION
 PREPD
 CHK'D
 APPD

TABLE 3.1

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SUMMARY OF FRESHWATER PUMPED STORAGE SITES

Name	Latitude	Longitude Latitude	Longitude C	Capacity Loo	cation Sal	alt/Fresh P	Pure/Mixed	Type U	Jpper Reservoi Area	ir Upper Reservoir Base Elevation	Upper Reservoir Crest Length	Upper Reservoir Dam Height	Storage Requirement	Storage Requirement	2D Waterway Length	Gross Head	H/L Ratio	Design Flow (Generation)	Design Flow (Pumping), 70% of Generation Flow	Pump/Turbine Type	Pumping Duration at Peak Output	Duration at Peak	Development and T Construction Time	otal Estimated Capital Cost	Loaded Capital Cost	Unit Cost of Capacity (Loaded Capital Cost/Capatity)	Unit Cost of Store Energy	ed Levelized Cost	Estimated Annual Operating Cost	Upper Reservoir Footprint	Tailwater Canal / Breakwater Footprint	Staging/ Spoil Laydown Footprint Footprint	11/30/2 Roads Footprint	2010 16:40 Total Footprint
		dd mm ss.s dd.dddd	dd.dddd	MW L	.M/VI				ha	masl	m	m	m3	MWh	m	m	%	m3/s	m3/s		hrs	hrs	years	\$	\$	\$/MW	\$/MWh	\$/kW-yr	\$/yr	ha	ha	ha ha	ha	ha
McDonald Upper Frell		W125 31 48.2 50.60383 W123 54 46.9 49.86358	125.53005	1000		Salt	Pure	Lake	20 20	720 620	300 200	21	3,844,675 4 464 784	6,000	2200	620	33% 41%	178 207	125	Multi-Stage Single-Stage	8.6	6		1,366,839,478 1,371,053,971	1,553,334,029 1,558,123,557	1,553,334 1,558,124	258,889	95	27,336,790	22	5	5 5	7.2 6.2	44
Shamrock		W125 31 17.6 50.64367	125.52155	1000	LM	Salt	Pure	Lake	20	620	300	24	4,464,784	6,000	1800	620	34%	207	145	Single-Stage	8.6	6		1,399,269,762		1,590,189	265,032	97	27,985,395	22	5	5 5	6.2	43
Hulton	N50 43 11.5	W126 14 20.0 50.71986	126.23888	1000	LM	Salt	Pure	Man Made	20	670	900	23	4,131,591	6,000	1000	670	67%	191	134	Single-Stage	8.6	6	9	1,410,533,553	1,602,989,819	1,602,990	267,165	98	28,210,671	22	5	5 5	6.7	44
Foster		W126 01 32.4 50.78005	126.02567	1000	LM	Salt	Pure	Lake	20	520	240	29	5,323,396	6,000	1100	520	47%	246	173	Single-Stage	8.6	6		1,414,280,422		1,607,248	267,875	98	28,285,608	22	5	5 5	5.2	42
Griffin Tsakonu		W125 33 26.2 50.60682 W126 10 06.9 50.6387	125.55729	1000	LM	Salt	Pure	Lake	50	680	200	10	4,070,832	6,000	1400	680	49%	188	132	Single-Stage	8.6	6		1,425,415,447		1,619,902	269,984 277,253	99	28,508,309	55	5	5 5	6.8	77 53
Fawn		W125 06 48.9 50.48234	125.11359	1000	LM	Salt	Pure	Lake	50	515	140	13	5,375,080	6,000	1300	515	40%	240	173	Single-Stage	8.6	6		1,497,183,643		1,701,463	283,577	102	29,943,673	55	5	5 5	5.15	75
McNab	N49 34 00.7	W123 20 52.3 49.56686	123.34785	1000	LM	Salt	Pure	Man Made	40	490	500	16	5,649,319	6,000	1200	490	41%	262	183	Single-Stage	8.6	6		1,503,839,437		1,709,027	284,838	104	30,076,789	44	5	5 5	4.9	64
Bobs		W124 16 12.7 49.62061	124.2702	1000	LM	Salt	Pure	Lake	40	640	1600	13	4,325,260	6,000	2300	640	28%	200	140	Single-Stage	8.6	6		1,545,471,159		1,756,339	292,723	107	30,909,423	44	5	5 5	6.4	65
Storm		W123 46 41.7 49.63818	123.77826	1000	LM	Salt	Pure	Lake	60	580	800	10	4,772,700	6,000	1600	580	36%	221	155	Single-Stage	8.6	6		1,546,241,106		1,757,214	292,869	107	30,924,822	66	5	5 5	5.8	87
Nelson Island		W124 08 01.6 49.75961 W126 46 34.4 51.00816	124.13377	1000		Salt	Pure	Man Made	20 50	430	300	29 15	5,323,396 6 437 596	6,000	1200	430	36%	246	209	Single-Stage Single-Stage	8.6	6		1,551,698,743 1,555,406,877	1,763,415,894	1,763,416 1,767,630	293,903 294,605	108	31,033,975	55	5	5 5	5.2 4.3	42
Walter		W124 47 04.2 50.22132	124.7845	1000	LM	Salt	Pure	Lake	10	480	350	60	5,767,013	6,000	1500	480	32%	267	187	Single-Stage	8.6	6		1,567,873,808		1,781,798	296,966	109	31,357,476	11	5	5 5	4.8	31
Cosby	N50 32 34.3	W125 33 52.0 50.54287	125.56443	1000	LM	Salt	Pure	Man Made	20	500	1100	30	5,536,332	6,000	1100	500	45%	256	179	Single-Stage	8.6	6	9	1,580,948,256	1,796,656,274	1,796,656	299,443	110	31,618,965	22	5	5 5	5	42
Grant		W124 16 25.4 49.62283	124.27372	1000	LM	Salt	Pure	Man Made	10	620	900	47	4,464,784	6,000	1800	620	34%	207	145	Single-Stage	8.6	6	-		1,862,984,656	1,862,985	310,497	114	32,786,264	11	5	5 5	6.2	32
Burley		W126 45 51.2 50.90024	126.76422	1000	LM	Salt	Pure	Lake	20	900	150	17	3,075,740	6,000	900	900	100%	142	100	Multi-Stage	8.6	6		1,646,726,523		1,871,409	311,902	114	32,934,530	22	5	5 5	9	46
Downie		W124 18 56.8 49.65809 W125 02 53.3 50.44814	124.31578	1000		Salt	Pure	Man Made	50 40	330	400	15 23	6,291,287	6,000	1500	330	29%	291 388	204	Single-Stage Single-Stage	8.6	6		1,647,817,409 1,679,644,287		1,872,649 1,908,819	312,108 318,136	114	32,956,348	55	5	5 5	4.4	74 62
Lawrence		W125 07 04.4 50.42969	125.11788	1000	LM	Salt	Pure	Man Made	30	370	1100	27	7,481,530	6,000	800	370	46%	346	242	Single-Stage	8.6	6		1,687,122,565		1,917,317	319,553	117	33,742,451	33	5	5 5	3.7	52
Snout		W124 37 53.5 50.39918	124.63153	1000	LM	Salt	Pure	Lake	100	440	400	8	6,291,287	6,000	1000	440	44%	291	204	Single-Stage	8.6	6		1,708,340,360		1,941,430	323,572	118	34,166,807	110	5	5 5	4.4	129
Appolina	N50 54 46.2		126.32445	1000	LM	Salt	Pure	Lake	20	1060	1000	15	2,611,477	6,000	1100	1060	96%	121	85	Multi-Stage	8.6	6		1,718,851,515		1,953,375	325,563	119	34,377,030	22	5	5 5	10.6	48
Thors		W124 42 00.3 50.05896	124.70009	1000		Salt	Pure	Man Made	10	780	300	37	3,548,931	6,000	1800	780	43%	164	115	Multi-Stage	8.6	6	9	1,719,796,818		1,954,450	325,742	119	34,395,936	11	5	5 5	7.8	34
Amor		W126 16 46.2 50.91065 W124 59 31.6 50.56492	126.2795	1000		Salt	Pure	Lake	30	900	120	12	3,075,740	6,000	2200	900	41% 45%	142	100	Multi-Stage Multi-Stage	8.6	6	9	1,729,359,348	1,965,316,898	1,965,317	327,553	120	34,587,187	33	5	5 5 5 5	9	57 59
Hkusam Mountain	N50 22 47.1	W125 51 13.4 50.37974	125.85372	1000	VI	Salt	Pure	Man Made	16	1220	360	16	2,268,989	6,000	3100	1220	39%	105	74	Multi-Stage	8.6	6	.	1,735,830,885	.,,	1,972,671	328,779	120	34,716,618	17.6	5	5 5	12.2	45
Jordan River South	N48 24 29.1	W123 59 52.1 48.40808	123.9978	1000	VI	Salt	Pure	Man Made	48	600	2450	12	4,613,610	6,000	4670	600	13%	214	150	Single-Stage	8.6	6	9	1,750,082,368	1,988,867,412	1,988,867	331,478	121	35,001,647	52.8	5	5 5	7.005	75
Breg	N50 18 47.9	W124 49 10.7 50.3133	124.81964	1000	LM	Salt	Pure	Lake	30	840	800	13	3,295,436	6,000	1600	840	53%	153	107	Multi-Stage	8.6	6	-	1,751,241,978	.,,	1,990,185	331,698	121	35,024,840	33	5	5 5	8.4	56
Altwood		W124 39 55.3 50.3169	124.66537	1000	LM	Salt	Pure	Man Made	10	440	600	65	6,291,287	6,000	1300	440	34%	291	204	Single-Stage	8.6	6		1,753,671,479		1,992,946	332,158	122	35,073,430	11	5	5 5	4.4	30
Calder		W123 57 12.8 49.9015 W125 01 11.8 50.52574	123.95355	1000		Salt	Pure	Lake	30 10	1120	900	14 27	3,504,008	6,000	2600	1120	56% 43%	162	80	Multi-Stage	8.6	6		1,754,092,337		1,993,425 2.001.850	332,237	122	35,081,847	33	5	5 5	7.9 11.2	56 37
Ramsay		W123 01 11.0 50.32314 W124 58 20.4 50.4361	124.97233	1000	LM	Salt	Pure	Lake	40	1040	300	9	2,661,698	6,000	2500	1040	42%	123	86	Multi-Stage	8.6	6	.	1,779,800,133	2,001,000,100	2,022,640	337,107	123	35,596,003	44	5	5 5	10.4	69
Camp	N50 38 25.3	W125 57 42.5 50.64036	125.96181	1000	LM	Salt	Pure	Man Made	20	1000	1700	16	2,768,166	6,000	1200	1000	83%	128	90	Multi-Stage	8.6	6	9	1,784,718,978	2,028,229,917	2,028,230	338,038	124	35,694,380	22	5	5 5	10	47
Saumarez		W123 56 17.7 49.89696	123.93826	1000	LM	Salt	Pure	Man Made	20	950	1400	17	2,913,859	6,000	1800	950	53%	135	94	Multi-Stage	8.6	6	9	1,791,012,107	2,035,381,694	2,035,382	339,230	124	35,820,242	22	5	5 5	9.5	47
Misery		W123 33 25.5 49.68668	123.55707	1000	LM	Salt	Pure	Lake	30	790	750	14	3,504,008	6,000	2600	790	30%	162	114	Multi-Stage	8.6	6		1,796,587,232		2,041,718	340,286	125	35,931,745	33	5	5 5	7.9	56
Highland Point		W123 49 22.3 49.68976 W124 02 36.1 49.74966	123.82286	1000		Salt	Pure	Man Made	20	940	1400	17	2,944,858	6,000	2000	940 320	47% 64%	136	95 280	Multi-Stage Single-Stage	8.6	6		1,800,774,597 1.801,134,359		2,046,476	341,079	125	36,015,492	22	5	5 5	9.4	46 62
Gustafson		W123 39 26.0 49.66023	123.65721	1000	LM	Salt	Pure	Lake	40	1400	300	7	1,977,261	6,000	3500	1400	40%	92	64	Multi-Stage	8.6	6		1,814,858,030	,,,	2,062,481	343,747	126	36,297,161	44	5	5 5	14	73
Stakawus	N50 03 16.3	W123 47 03.9 50.05452	123.78441	1000	LM	Salt	Pure	Man Made	30	280	1100	35	9,886,307	6,000	600	280	47%	458	320	Single-Stage	8.6	6	9	1,822,354,125	2,071,000,085	2,071,000	345,167	126	36,447,082	33	5	5 5	2.8	51
Albert	N50 11 25.1		123.93834	1000	LM	Salt	Pure	Man Made	10	1670	1200	19	1,657,584	6,000	2300	1670	73%	77	54	Multi-Stage	8.6	6	9	1,837,676,183	2,088,412,718	2,088,413	348,069	127	36,753,524	11	5	5 5	16.7	43
Hays		W124 57 00.0 50.33091		1000	LM	Salt	Pure	Man Made	10	800	1000	37	3,460,208	6,000	750	800	107%	160	112	Multi-Stage	8.6	6		1,837,891,860	_,000,001,011	2,088,658	348,110	127	36,757,837	11	5	5 5	8	34
Hat		W124 32 41.1 50.39493 W123 35 46.0 49.65978	124.54474	1000		Salt	Pure	Lake	60 70	1160	260	6	2,386,350	6,000	2600	1160	45%	110	84	Multi-Stage Multi-Stage	8.6	6		1,848,555,960 1,880,263,414		2,100,777	350,129	128	36,971,119	66 77	5	5 5	11.6	93
Lyon		W123 51 37.6 49.65503	123.86044	1000	LM	Salt	Pure	Lake	60	1060	850	6	2,611,477	6,000	2900	1060	37%	121	85	Multi-Stage	8.6	6		1,882,854,911		2,139,756	356,626	131	37,657,098	66	5	5 5	10.6	92
Purcell	N50 47 28.8	W124 54 41.8 50.79133	124.91161	1000	LM	Salt	Pure	Man Made	40	940	3300	9	2,944,858	6,000	1500	940	63%	136	95	Multi-Stage	8.6	6	9	1,888,139,893	2,145,761,806	2,145,762	357,627	131	37,762,798	44	5	5 5	9.4	68
Raza	N50 16 49.6	W125 00 46.3 50.28045	125.01286	1000	LM	Salt	Pure	Man Made	10	820	1200	36	3,375,812	6,000	1200	820	68%	156	109	Multi-Stage	8.6	6		1,895,441,174		2,154,059	359,010	131	37,908,823	11	5	5 5	8.2	34
Young		W125 42 21.6 50.76165	125.70599	1000	LM	Salt	Pure	Lake	70	1040	400	6	2,661,698	6,000	2800	1040	37%	123	86	Multi-Stage	8.6	6		1,897,349,610	, , - ,	2,156,228	359,371	132	37,946,992	77	5	5 5	10.4	102
Mount Hallowell	N49 41 39.1	W123 53 07.2 49.6942 W124 44 35.6 50.357	123.88534	1000		Salt	Pure	Man Made	50	975	2300	8	2,839,145	6,000	3100	975	31%	131	92 80	Multi-Stage	8.6	6		1,901,742,534 1,916,488,125		2,161,220	360,203	132	38,034,851	55	5	5 5	9.75	80 81
Davie		W124 22 48.1 49.59804	124.38002	1000	LM	Salt	Pure	Man Made	60	300	2000	17	9,227,220	6,000	1500	300	20%	427	299	Single-Stage	8.6	6	-	1,916,884,196	, ,- ,	2,178,428	363,071	133	38,337,684	66	5	5 5	3	84
Elk Bay South	N50 12 04.5	W125 23 04.7 50.20126	125.38463	1000	VI	Salt	Pure	Man Made	117	740	3830	5	3,740,765	6,000	5700	740	13%	173	121	Multi-Stage	8.6	6	9	1,943,745,532	2,208,954,400	2,208,954	368,159	135	38,874,911	128.7	5	5 5	8.55	152
Mid Point		W123 42 42.8 49.64993		1000	LM	Salt	Pure	Man Made	70	1160	2400	5	2,386,350	6,000	2800	1160	41%	110	77	Multi-Stage	8.6	6			2,227,969,591	2,227,970	371,328	136	39,209,555	77	5	5 5	11.6	
		W125 44 34.5 50.3612 W126 44 31.4 50.52996			VI	Salt	Pure	Man Made	113	550	3770	6	5,033,029	6,000	4000	550	14%	233	163	Single-Stage	8.6	6		1,966,247,230		2,234,526	372,421	136	39,324,945 39,453,486	124.3	5		6	145
Mt Collison Mount Troubridge		W126 44 31.4 50.52996 W124 12 00.0 49.77898		1000	LM	Salt	Pure	Man Made	60	960	3470 3100	7	2,636,349 2,883,506	6,000	3700	960	38% 26%	122	93	Multi-Stage Multi-Stage	8.6 8.6	6		1,972,674,282 2,004,969,208		2,241,830 2,278,532	373,638 379,755	137		66	5		10.5 9.6	92 91
Halfway		W123 50 26.4 49.61808		1000	LM	Salt	Pure	Man Made	90	915	2800	5	3,025,318	6,000	1800	915	51%	140	98	Multi-Stage	8.6	6		2,005,968,194		2,279,667	379,944	139	40,119,364	99	5	5 5	9.15	
Newcastle Peak	N50 26 19.3	W126 03 29.0 50.4387	126.05806	1000	VI	Salt	Pure	Man Made	67	1050	2700	6	2,636,349	6,000	3960	1050	27%	122	85	Multi-Stage	8.6	6	9	2,012,495,801	2,287,085,105	2,287,085	381,181	140	40,249,916	73.7	5	5 5	10.5	99
Cataract Lake		W125 11 43.5 48.98838	125.19543	1000	VI	Salt	Pure	Man Made	154	540	4390	5	5,126,233	6,000	2440	540	22%	237	166	Single-Stage	8.6	6		2,041,196,521		2,319,702	386,617	142	40,823,930	169.4	5	5 5	5.4	190
Homfray		W124 37 26.1 50.27917 W123 53 08.2 50.14617		1000	LM	Salt	Pure	Lake	130	1040	500	4	2,661,698	6,000	1600	1040	65%	123	86	Multi-Stage Multi-Stage	8.6	6		2,061,929,695 2,081,711,864		2,343,264 2,365,745	390,544 394,291	143	41,238,594	143	5	5 5	10.4 8.2	
McConnel Mt Collison South		W123 53 08.2 50.14617 W126 40 44.5 50.51437		1000	VI	Salt	Pure Pure	Lake Man Made	88	1300	300	5	3,375,812 2,129,359	6,000	2100 4590	1300	39% 28%	99	69	Multi-Stage Multi-Stage	8.6 8.6	6		2,081,711,864 2,108,875,779		2,365,745	394,291 399,436		41,634,237	96.8	5	5 5 5 5		
Mt Palmerston		W126 20 50.7 50.48037		1000	VI	Salt	Pure	Man Made	105	1050	3645	5	2,636,349	6,000	2910	1050	36%	122	85	Multi-Stage	8.6	6		2,117,947,492		2,406,925	401,154	140	42,358,950	115.5	5		10.5	
Jordan River East	N48 25 14.8	W124 03 04.7 48.42077	124.0513	1000	VI	Salt	Pure	Man Made	32	300	2000	31	9,227,220	6,000	3000	300	10%	427	299	Single-Stage	8.6	6	9	2,144,486,233	2,437,084,598	2,437,085	406,181	149	42,889,725	35.2	5	5 5	4.5	55
Syren		W124 01 58.3 49.88196		1000	LM	Salt	Pure	Man Made	30	240	2100	40	11,534,025	6,000	100	240	240%	534	374	Single-Stage	8.6	6		2,156,399,238		2,450,623	408,437	150	43,127,985	33	5			50
Myers Pictop		W123 52 32.1 49.68432		1000	LM	Salt	Pure	Lake	140	1060	2400	4	2,611,477	6,000	2600	1060	41%	121	85	Multi-Stage	8.6	6		2,187,785,522		2,486,292	414,382	152	43,755,710	154	5	5 5		180
Picton Crucil		W125 24 58.450.45949W123 45 31.049.5458		1000	LM	Salt Salt	Pure	Man Made Lake	40 130	180	1600 2400	40	15,378,700 2,611,477	6,000	600 4700	1060	30% 23%	712 121	498	Single-Stage Multi-Stage	8.6 8.6	6		2,212,299,291 2,237,200,201		2,514,150 2,542,449	419,025 423,741	153	44,245,986	44 143	5	5 5 5 5	1.8 10.6	61 169
Port Alberni		W124 50 18.1 49.23241		1000	VI	Salt	Pure	Man Made	148	410	5000	7	6,751,625	6,000	3130	410	13%	313	219	Single-Stage	8.6	6		2,259,360,007		2,567,632	427,939	157	45,187,200	162.8	5	5 5		182
Dinner		W124 43 09.0 49.9485		1000	LM	Salt	Pure	Man Made	70	200	3000	22	13,840,830	6,000	1500	200	13%	641	449	Single-Stage	8.6	6		2,301,988,481		2,616,077	436,013	160	46,039,770	77	5	5 5		
Alberni Inlet		W124 53 46.0 48.99984		1000	VI	Salt	Pure	Man Made	254	500	5650	4	5,536,332	6,000	1890	500	26%	256	179	Single-Stage	8.6	6		2,406,426,318		2,734,764	455,794	167	48,128,526	279.4	5	5 5		299
Colvin		W123 54 26.2 49.48979		1000	LM	Salt	Pure	Man Made	130	180	3700	14	15,378,700	6,000	1400	180	13%	712	498	Single-Stage	8.6	6		2,444,431,198		2,777,955	462,992	170	48,888,624		5	5 5	2.1	
Elk Bay Caren		W125 26 21.3 50.27863 W123 50 33.9 49.6212		1000	LM	Salt	Pure Pure	Man Made Lake	154	250	4390 2500	9	11,072,664 3,145,643	6,000 6,000	3870 2700	250 880	6% 33%	513 146	359 102	Single-Stage Multi-Stage	8.6 8.6	6		2,554,160,461 2,935,913,377		2,902,656 3,336,496	483,776 556,083	177	51,083,209 58,718,268	169.4 385	5	5 5 5 5		190 409
M:\1\03\00313\01\A\Da		eening Assessment\[Summary P						Luite			2000		0,110,010	0,000	2100				102	main oldge	0.0			_,000,010,011	0,000,100,104	0,000,400	000,000	<u> </u>	50,110,200				0.0	100
0 25NOV'10 ISSUED	/ITH REPORT VA103-313/	3/1-1 TMF SRM JPH																																

 0
 25NOV'10
 ISSUED WITH REPORT VA103-313/1-1
 TMF
 SRM
 JPH

 REV
 DATE
 DESCRIPTION
 PREP'D
 CHK'D
 APP'D

TABLE 3.2

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

SUMMARY OF SALTWATER PUMPED STORAGE SITES

11/30/2010 16:40

TABLE 3.3

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

UNDERGROUND MINES IN THE PROJECT AREA

Print: 11/30/2010 10:27

Site Name	Type of Operation	Products
Myra Falls Operations ¹	Operating Underground Mine	Copper, Gold, Silver, Zinc
Quinsam Mine ²	Operating Underground Mine	Coal
Britannia Mine ²	Historic Underground Mine	Copper
Pioneer Mine ²	Historic Underground Mine	Gold
Bralorne Mine ²	Historic Underground Mine	Gold
Minto Mine ²	Historic Underground Mine	Gold

M:\1\03\00313\01\A\Data\Task 100 - Technology Review\[Table 3.3_Underground PSH.xlsx]Sheet1

NOTES:

1. SOURCE: http://mmsd.mms.nrcan.gc.ca/stat-stat/mine-mine/bcm-pcm-eng.aspx?CID=11

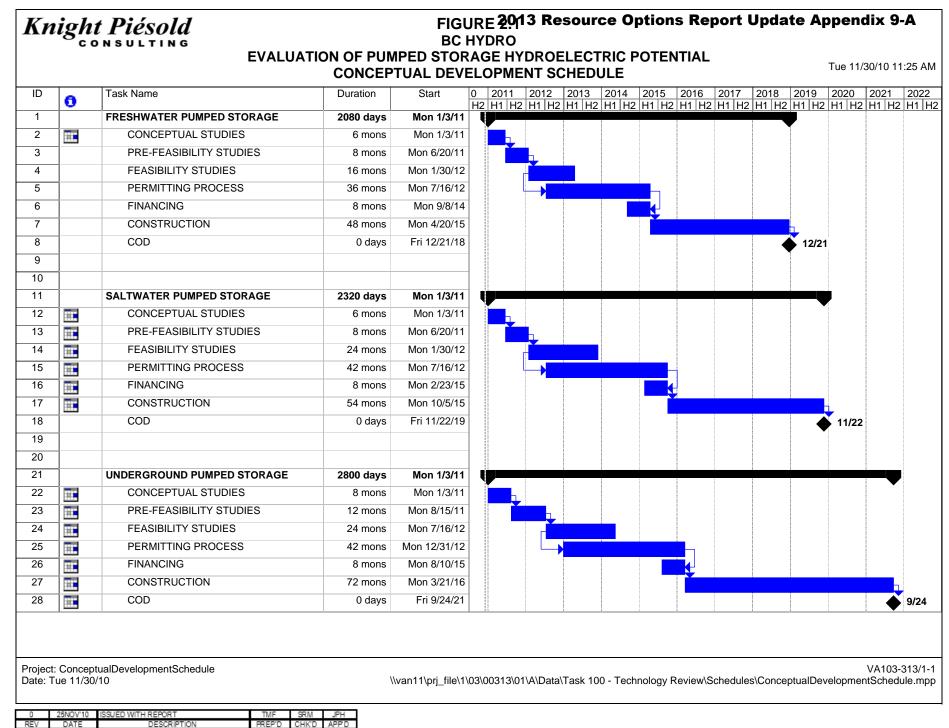
2. SOURCE: http://en.wikipedia.org/wiki/List_of_ghost_towns_in_British_Columbia

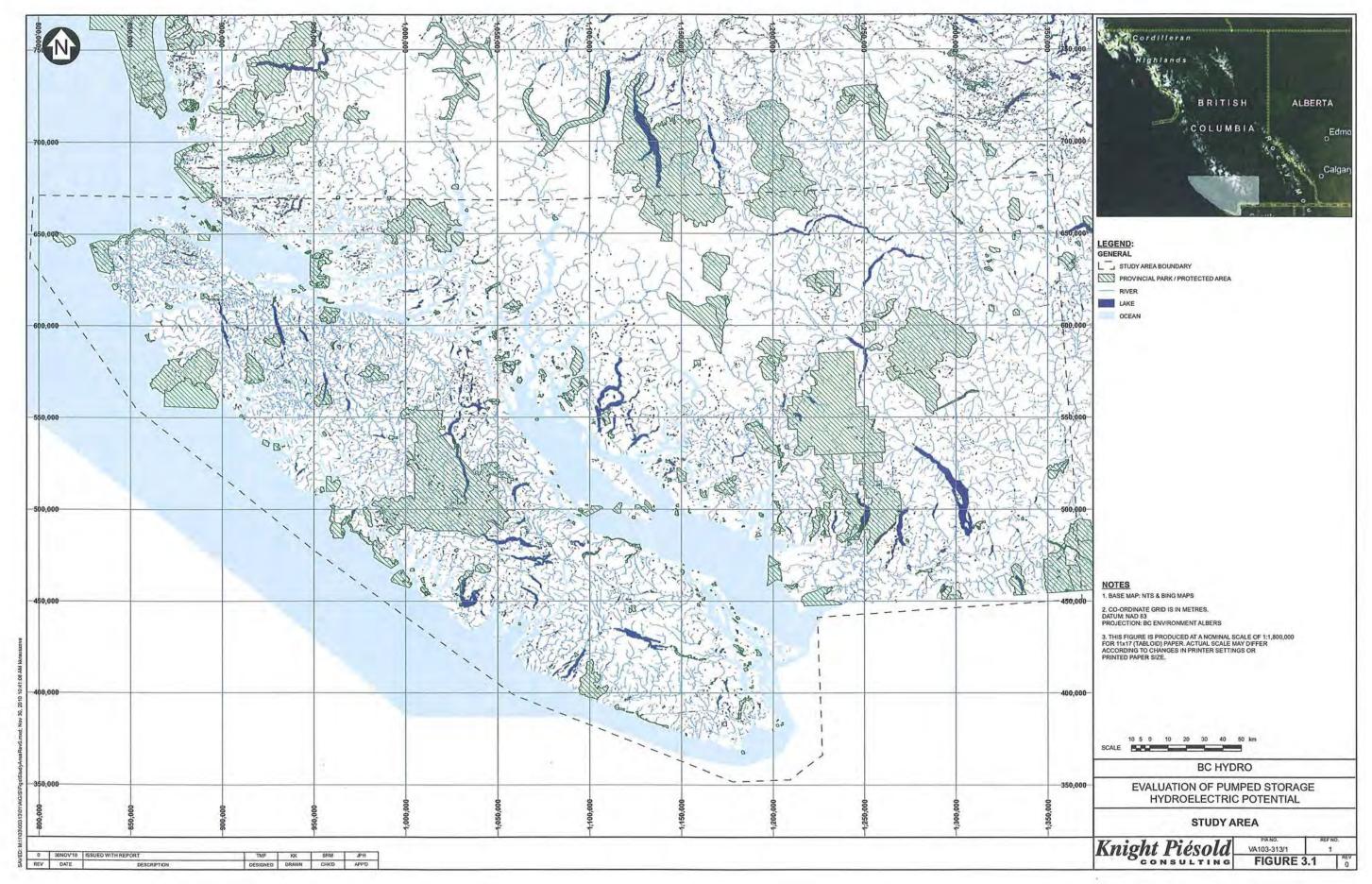
ſ	0	25NOV'10	ISSUED WITH REPORT VA103-313/1-1	TMF	SRM	JPH
[REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

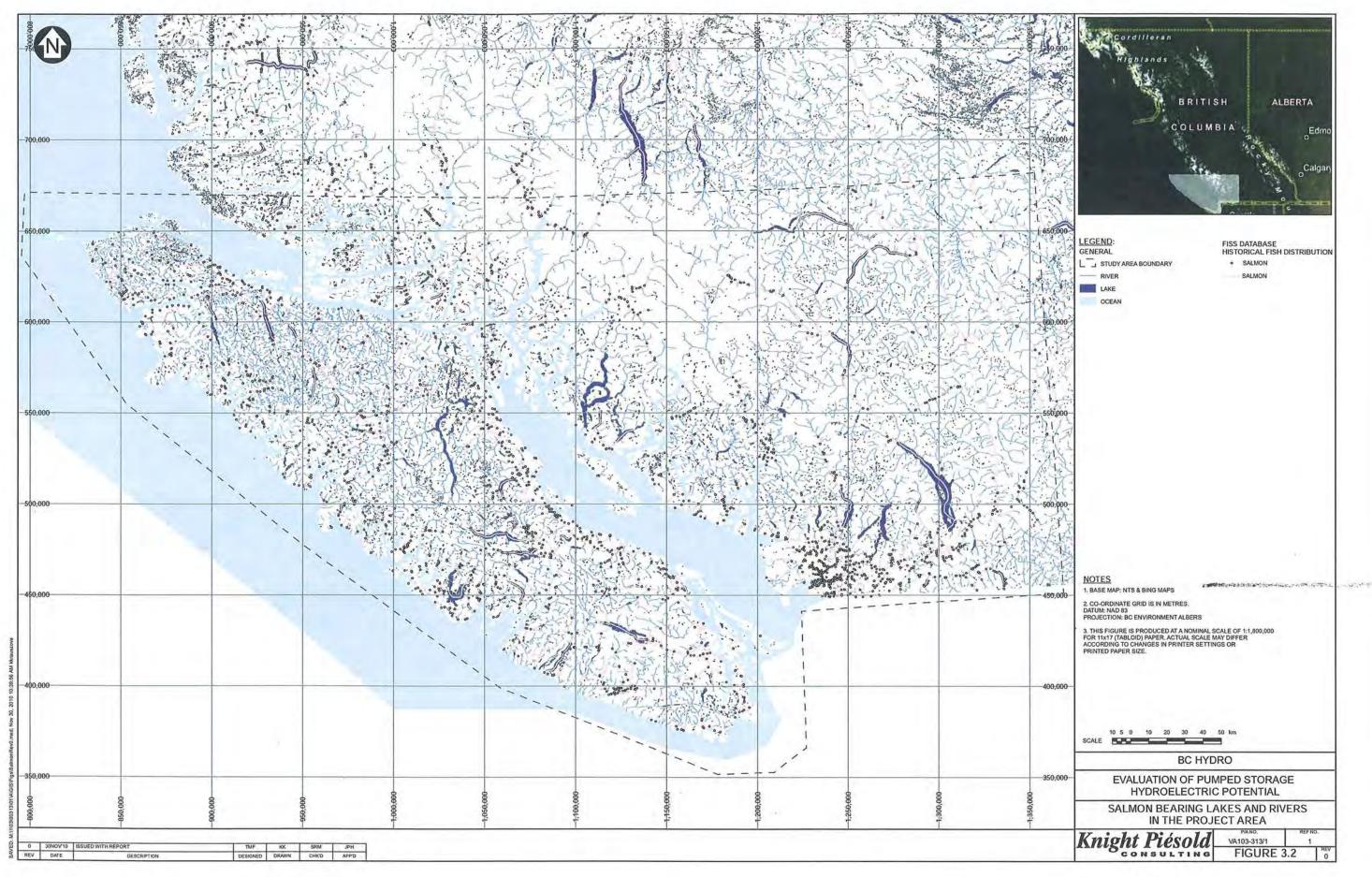
TABLE 3.4

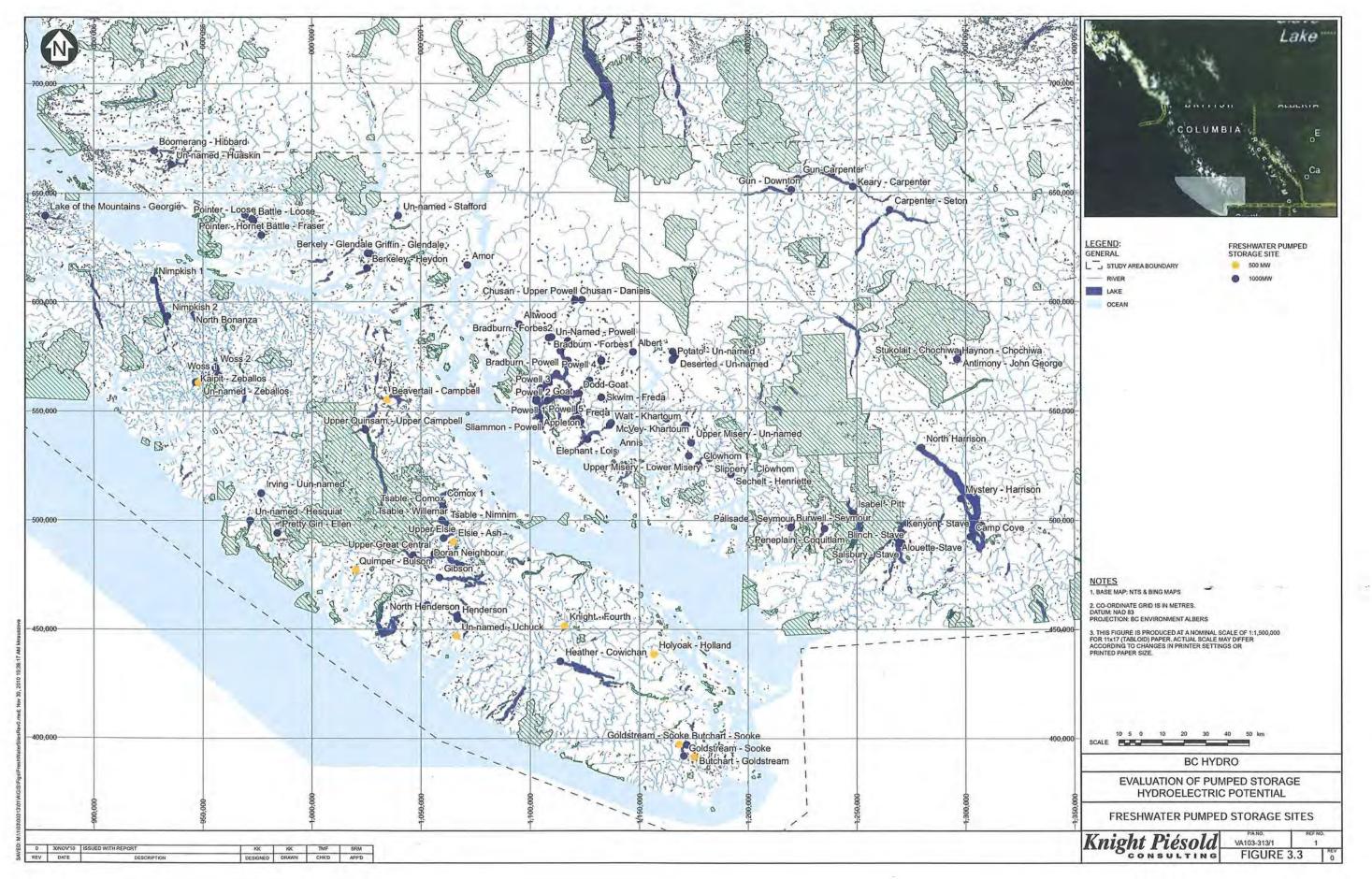
BC HYDRO

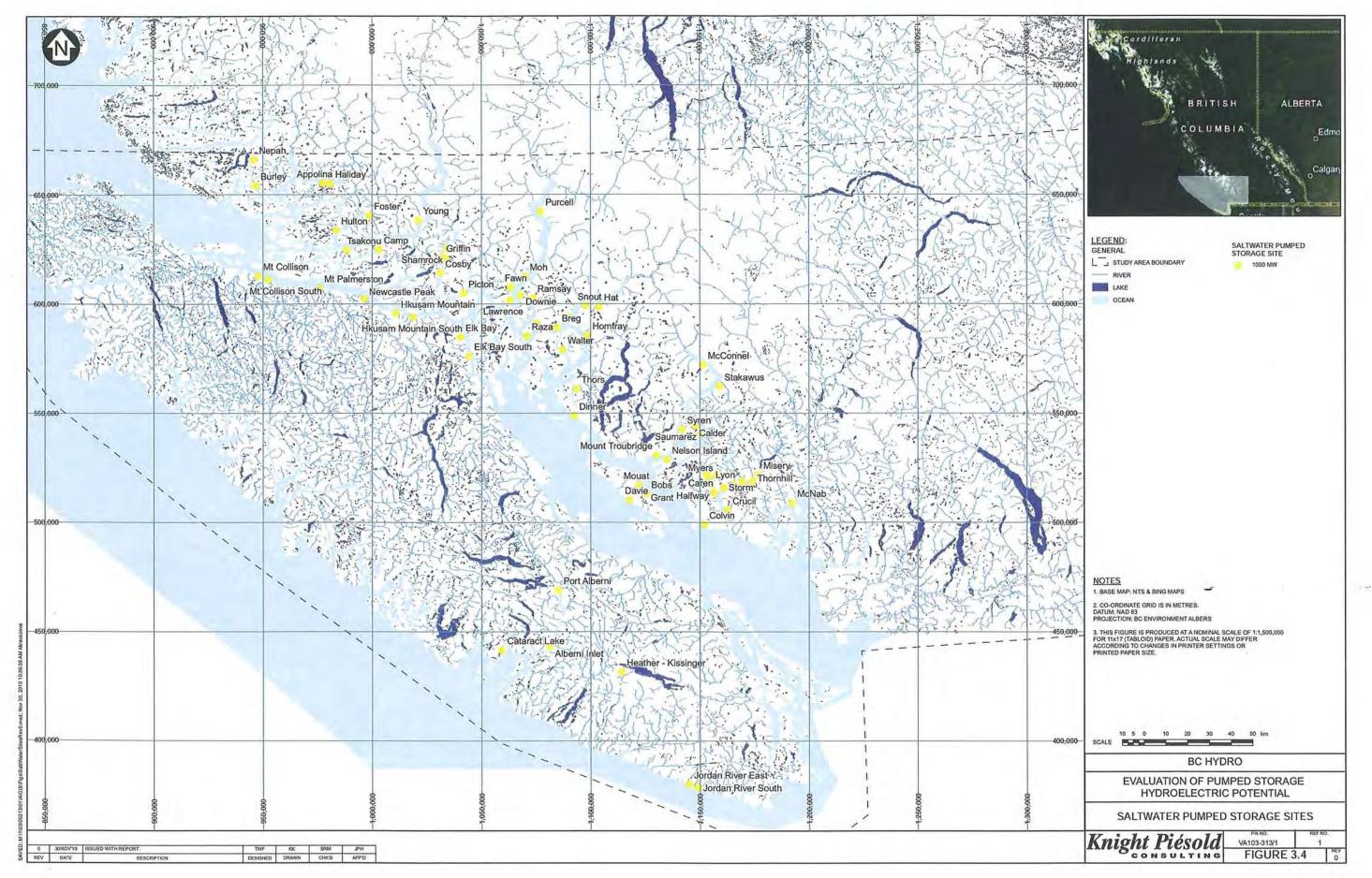
EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

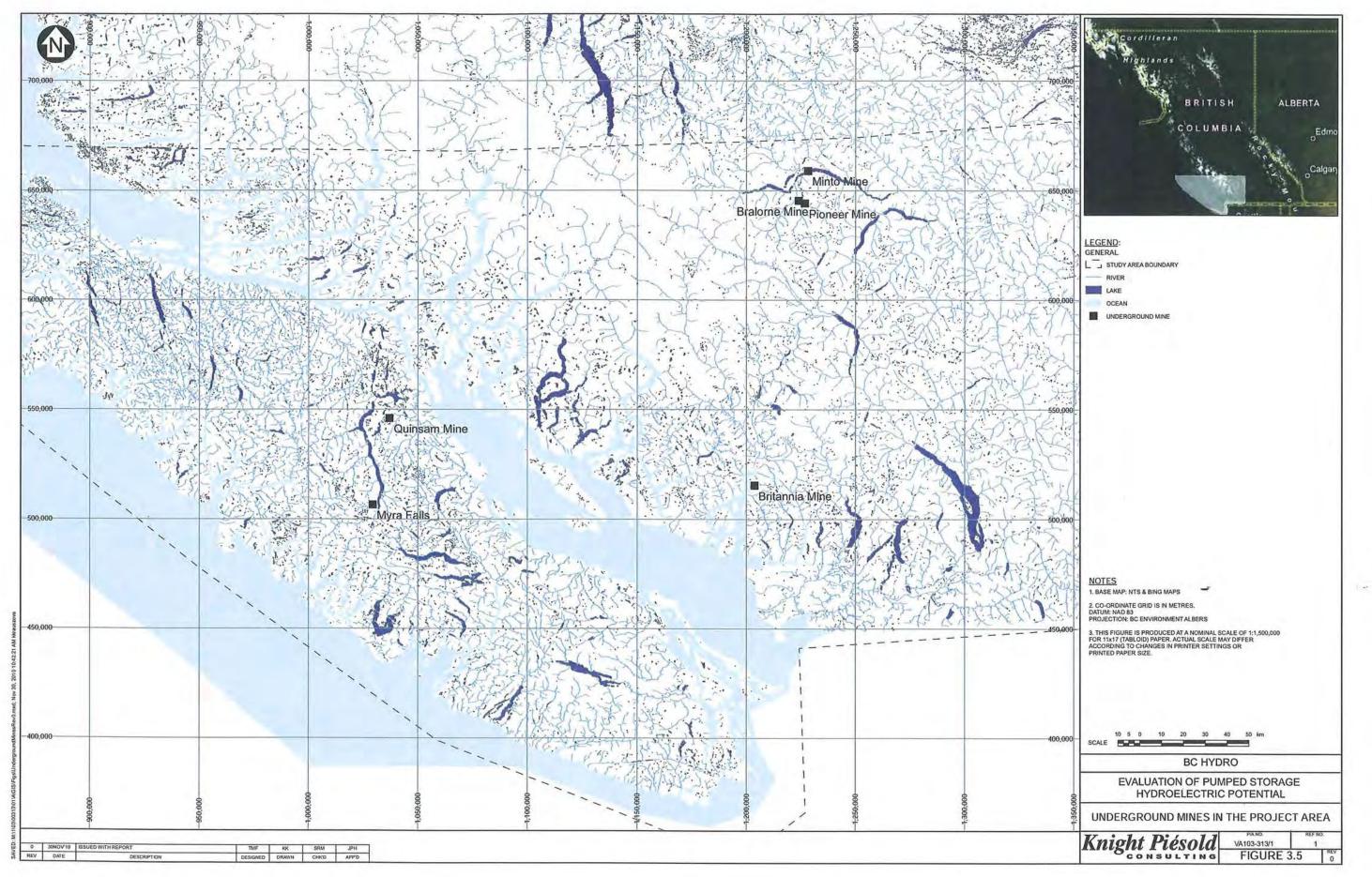

DEVELOPMENT COST DISTRIBUTION BY PUMPED STORATE TYPE

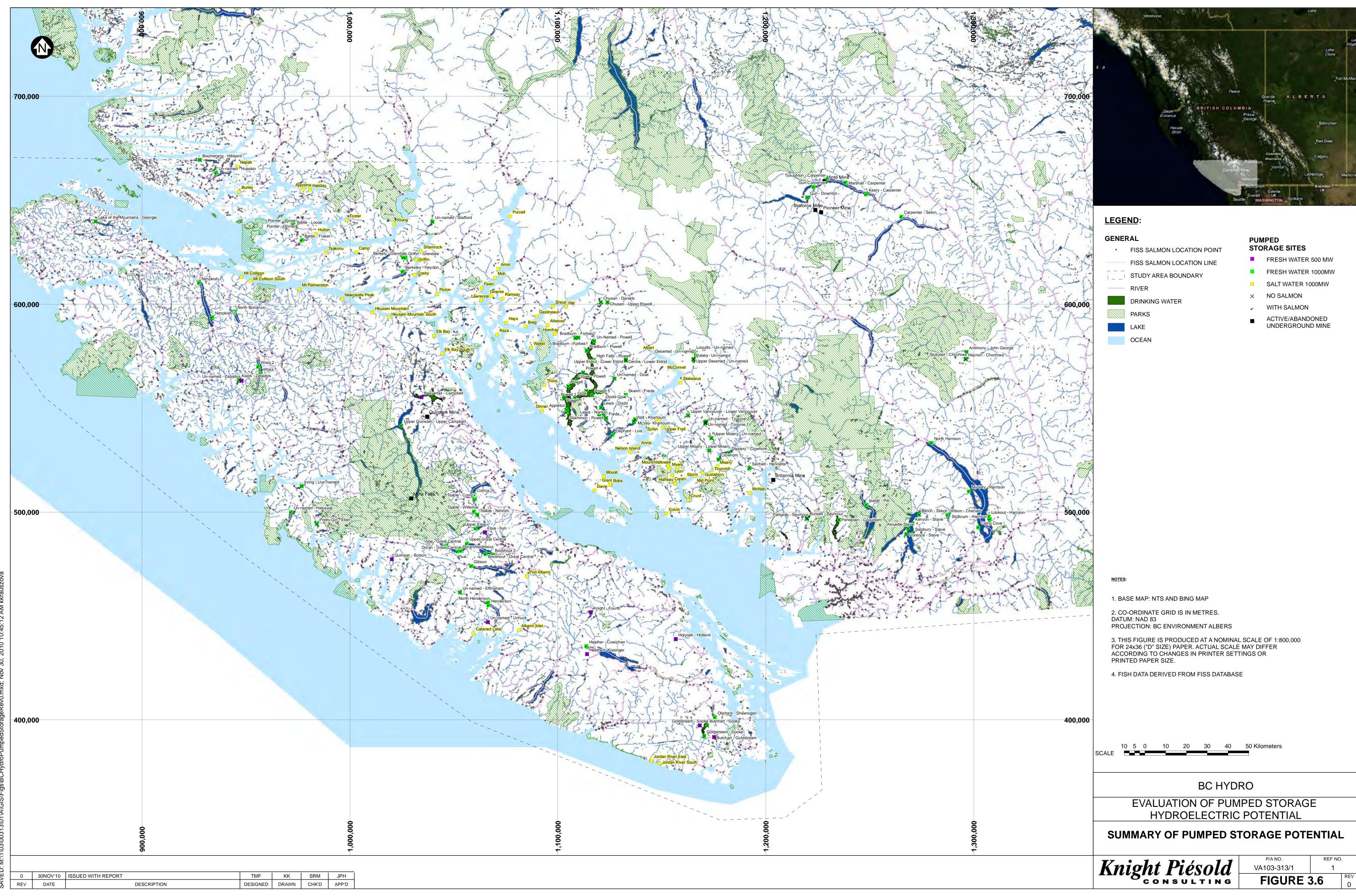

Print: 11/30/2010 10:29

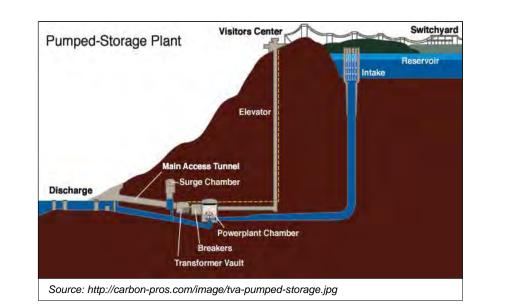

	Development Cost Distribution							
Year	Freshwater	Saltwater	Underground					
Year 1	0%	0%	0%					
Year 2	0%	0%	0%					
Year 3	5%	0%	0%					
Year 4	10%	5%	0%					
Year 5	20%	10%	0%					
Year 6	30%	20%	5%					
Year 7	30%	30%	10%					
Year 8	5%	30%	20%					
Year 9		5%	30%					
Year 10			30%					
Year 11			5%					
Total	100%	100%	100%					

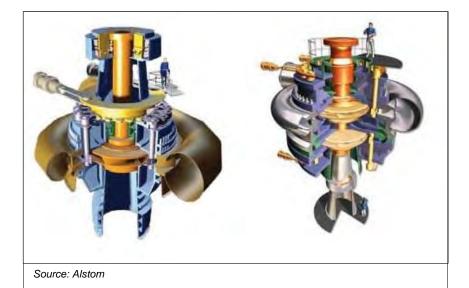

 $\label{eq:minimum} M:\label{eq:minimum} M:\label{$


Г	0	25NOV'10	ISSUED WITH REPORT VA103-313/1-1	TMF	SRM	JPH
- [REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D









D: M:\1\03\00313\01\A\GIS\Figs\BCHydroPumpedStorageRev0.mxd; Nov 30, 2010 10:45:12 AM kkrauszov

PHOTO 1 – Schematic of Pumped Storage Scheme.

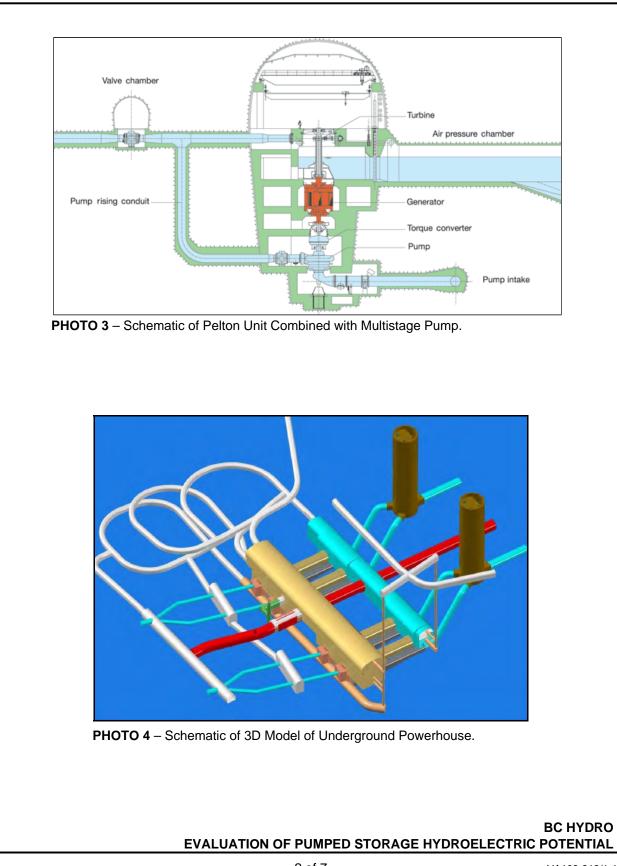


PHOTO 2 – Schematic of Single-Stage vs. Multistage Reversible Pump Turbines.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

1 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

2 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

PHOTO 5 – Spirit of Ireland Project – Artistic Rendition of Saltwater Pumped Storage Scheme.

PHOTO 6 – Okinawa Saltwater Pumped Storage Plant – Cutaway Model of Plant.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

3 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

PHOTO 7 – Ingula Pumped Storage Scheme – CFRD Dam.

PHOTO 8 – Ingula Pumped Storage Scheme – Intake Tower Under Construction.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

4 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

PHOTO 9 – Ingula Pumped Storage Scheme – Machine Hall Under Construction.

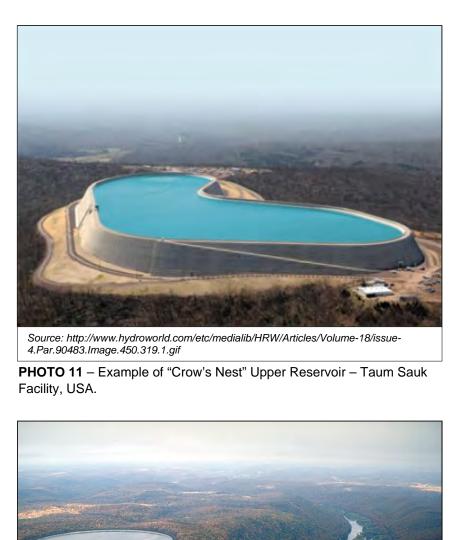


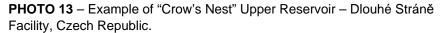
PHOTO 10 – Ingula Pumped Storage Scheme – Outlet Structure Under Construction.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

5 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

Source: http://lostontheshore.typepad.com/photos/uncategorized/2008/02/20/usace_ kinzua_dam_downriver.jpg

PHOTO 12 – Example of "Crow's Nest" Upper Reservoir – Seneca Facility, USA.


BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL


6 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

Source: http://data.czechtourism.com/aktivity/foto/2008-09-01-0953-za-poznanim-pesituristika-loucna-nad-desnou/e474ebbb-77fa-11dd-addc-001a64a218ce.jpg

Source: http://4.bp.blogspot.com/_Wylc2oXjvmc/SzqzWWU6j1I/AAAAAAABfk/ YH75vjWDXus/s400/Japan+hydro.jpg

PHOTO 14 – Aerial View of Okinawa Saltwater Pumped Storage Plant, Japan.

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL

7 of 7 M:\1\03\00313\01\A\Report\1-Report\Rev 0\Photos\Photo And Schematic Log.Doc

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT

PREPARED FOR:

BC Hydro 333 Dunsmuir Street Vancouver BC, V6B 5R3

PREPARED BY:

Knight Piésold Ltd. Suite 1400 – 750 West Pender Street Vancouver, BC V6C 2T8 Canada p. +1.604.685.0543 • f. +1.604.685.0147

VA103-313/2-1 Rev 0 March 15, 2012

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

	Approved
March 15, 2012	SRM
	-
	March 15, 2012

Knight Piésold Ltd.

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 278 Telephone: (604) 685-0543 Facsimile: (604) 685-0147 www.knightpiesold.com

Knight Piésold

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

EXECUTIVE SUMMARY

BC Hydro engaged Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the North Coast Region of British Columbia. The purpose of this assessment was to determine whether there are potentially viable greenfield pumped storage hydroelectric sites in the North Coast Region of British Columbia. This report illustrates that there are a number of potentially viable sites, all of which are freshwater.

The assessment was limited to an area within 50 km of BC Hydro's two main transmission lines within the North Coast Region (2L101 and 2L99). Within the area surrounding 2L99, sites of up to 1000 MW capacity were assessed, while sites were limited to 500 MW in the region near 2L101. In addition, potential pumped storage sites were assessed along a likely transmission corridor from the West Coast of Banks Island to Douglas Channel, given the high potential for wind resources in the area.

Potential basins were identified using a combination of existing lakes and/or man-made reservoirs. Using these potential candidate basins, an in-house GIS screening tool identified sites that could provide storage for 16 or 48 hours of continuous generation with a minimum dam embankment construction volume. In addition, potential saltwater sites were identified. The 120 potential sites identified using Knight Piésold's in-house GIS screening tool were then ranked using a cost estimation spreadsheet in order of levelised capital cost (\$/kW-year).

From the list of possible sites, a total of 33 were identified as having the potential to provide 16 hrs of continuous generation at either 500 MW or 1000 MW capacity below a threshold of \$200/kW-yr. In addition, 29 sites were identified as having the ability to provide 48 hrs of continuous generation below a threshold of \$500/kW-yr. The 25 best sites had estimated costs ranging from \$83/kW-yr to \$140/kW-yr for 16 hours of continuous generation, and \$181/kW-yr to \$430/kW-yr for 48 hours of continuous generation. While a number of potential saltwater sites were identified, it appears that development of freshwater pumped storage sites would be more cost effective. The saltwater pumped storage sites identified ranged in cost between \$267 – 490/kW-yr. In addition, the development of freshwater pumped storage.

The North Coast Region of British Columbia has a high technical potential for freshwater pumped storage development due to the steep topography and existence of many natural lakes and other suitable basins for constructing pumped storage reservoirs. The development costs appear to be similar to the Lower Mainland and Vancouver Island, but with fewer viable sites, due to the relative lack of existing hydropower reservoirs in the region. Based on the potential for pumped storage in the North Coast, and the projected increase in loads and renewable energy in the region, we recommend further assessment of these sites, commencing with estimation of transmission, access and interconnection costs.

BC HYDRO

EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

TABLE OF CONTENTS

EXECUTIVE SUMMARYI
TABLE OF CONTENTS i
SECTION 1.0 - INTRODUCTION
1.1 INTRODUCTION
1.2 PREVIOUS STUDIES 1
1.3 BACKGROUND TO PUMPED STORAGE1
SECTION 2.0 - SCREENING METHODOLOGY
2.1 SPATIAL LIMITATIONS
2.2 LIMITATIONS ON GENERATION CAPACITY
2.3 MINIMUM STORAGE REQUIREMENTS
2.4 ENVIRONMENTAL LIMITATIONS
2.5 TECHNICAL CONSTRAINTS
2.5.1 Freshwater Lake to Lake Sites4
2.5.2 Man-Made Reservoir Sites
2.5.3 Saltwater Pumped Storage Sites5
2.5.4 Screening Assessment5
2.5.5 Site Characterisation and Costing5
SECTION 3.0 - SCREENING ASSESSMENT RESULTS
3.1 FRESHWATER SITE IDENTIFICATION7
3.2 SALTWATER SITE IDENTIFICATION
SECTION 4.0 - CONCLUSIONS AND RECOMMENDATIONS
SECTION 5.0 - REFERENCES
SECTION 6.0 - CERTIFICATION

PAGE

TABLES

Table 2.1 Rev 0	Development Cost Distribution by Pumped Storage Type
Table 3.1 Rev 0	Summary of Sites with Storage for 16 hrs of Continuous Generation
Table 3.2 Rev 0	Summary of Sites with Storage for 48 hrs of Continuous Generation

FIGURES

Figure 2.1 Rev 0	Study Area
Figure 2.2 Rev 0	Salmon Bearing Waterways in the Study Area
Figure 2.3 Rev 0	Potential Locations for Saltwater Reservoirs
Figure 2.4 Rev 0	Potential Locations for Freshwater Reservoirs
Figure 2.5 Rev 0	Conceptual Development Schedule
Figure 3.1 Rev 0	Cost of Cumulative Installed Capacity – Storage for 16 hrs Continuous Generation
Figure 3.2 Rev 0	Cost of Cumulative Installed Capacity – Storage for 48 hrs Continuous Generation
Figure 3.3 Rev 0	Cost of Cumulative Installed Capacity – Saltwater Sites
Figure 3.4 Rev 0	Location of Pumped Storage Sites for 16 hrs of Continuous Generation
Figure 3.5 Rev 0	Location of Pumped Storage Sites for 48 hrs of Continuous Generation

BC HYDRO EVALUATION OF PUMPED STORAGE HYDROELECTRIC POTENTIAL IN THE NORTH COAST REGION OF BRITISH COLUMBIA

SCREENING ASSESSMENT (REF. NO. VA103-313/2-1)

SECTION 1.0 - INTRODUCTION

1.1 INTRODUCTION

BC Hydro engaged Knight Piésold Ltd. (KPL) to conduct a screening assessment of the pumped storage potential in the North Coast Region of British Columbia. This report discusses the results of the assessment.

1.2 PREVIOUS STUDIES

KPL previously conducted a similar study for the Lower Mainland and Vancouver Island region of southwest British Columbia, in 2010. KPL have adopted a similar methodology in the current report, and have adapted the same screening and assessment tools that were developed for that study.

1.3 BACKGROUND TO PUMPED STORAGE

The concept of pumped storage is the generation of electricity by capturing the energy of water being transferred from a higher elevation upper reservoir, through turbine/generator units, into a lower elevation reservoir. The system is then reversed and the water from the lower reservoir is pumped back to the upper reservoir. Though the system is a net consumer of energy, it can be advantageous to developers/utilities by:

- Providing additional capacity during high-load hours when the cost of energy is greatest
- Increasing profitability by using low-value base load energy to pump water to the upper reservoir during low-load hours
- Providing grid stability by reducing the generation differential between high-load and low-load periods,
- Relieving constrained transmission components
- Providing voltage regulation, especially at the end of long transmission systems (relevant to the North Coast Region of BC)
- Providing storage for intermittent renewable energy sources that cannot be dispatched on demand
- Providing backup capacity in the event of a planned or unplanned outage of another significant generation source connected to the grid, and/or
- Providing capacity for export.

Pumped storage projects can be either freshwater or saltwater. Nearly all pumped storage projects worldwide to date are freshwater pumped storage projects. As of 2009, it was estimated that more than 127, 000 MW of pumped storage capacity was operating worldwide.

1 of 10

The concept of saltwater pumped storage is the same as that of freshwater pumped storage, with the exception that seawater is exchanged between the ocean and an upper reservoir instead of a freshwater lower reservoir. The advantage of saltwater pumped storage over freshwater pumped storage is that construction of only one reservoir is needed, which can significantly reduce the capital cost of the development. There is currently only one saltwater pumped storage project operating worldwide. This is located in Okinawa, Japan, and has been operating for more than 10 years. There are also numerous saltwater tidal power projects around the world. However, in BC there are numerous fresh water lakes that could also act as the lower reservoir, without the additional complications of salt water corrosion, marine growth issues and added environmental permitting risk of a saltwater development.

2 of 10

SECTION 2.0 - SCREENING METHODOLOGY

2.1 SPATIAL LIMITATIONS

The study area was limited to the North Coast Region of British Columbia, limited to a 50 km boundary on either side of the 2L99 and 2L101 transmission lines of BC Hydro's grid. Within the study area, the following spatial limitations apply:

- Terrestrial parks and reserve areas are excluded from the study area
- Marine parks are included in the study area
- Private land is included in the study area, and
- Indian Reserves are included in the study area.

A summary of the study area is shown on Figure 2.1.

In addition, potential pumped storage sites were assessed along a likely transmission corridor from the West Coast of Banks Island to Douglas Channel, given the high potential for wind resources in the area.

2.2 LIMITATIONS ON GENERATION CAPACITY

Only sites that have an installed capacity of 500 MW were considered along the 2L101 corridor. Sites with either 500 MW or 1000 MW of installed capacity were considered along the 2L99 corridor. In instances where the defined study areas along 2L99 and 2L101 intersect, the requirements for 2L99 applied.

It is assumed that the additional sites along potential transmission line routes from Banks Island to Kitimat would follow the same requirements for the 2L99 region.

2.3 MINIMUM STORAGE REQUIREMENTS

Two sets of sites were identified. The first set included sites that have storage for 16 continuous hours of generation. The second set included sites that have storage for 48 hours of continuous generation. These equate to an energy storage of 8,000 MWh and 24,000 MWh for the 500 MW sites, and 16,000 MWh and 48,000 MWh for the 1,000 MW sites respectively. The volume of water required to store this amount of energy varies by project, depending on the available head.

2.4 ENVIRONMENTAL LIMITATIONS

Salmon bearing rivers were excluded from the study. The Fish Information Summary System (FISS) from the BC Ministry of Environment was used as the basis for known fish distribution data. Rivers with historical observances of Chinook, Sockeye, Chum, Coho, Pink and/or Steelhead were not considered in the screening assessment.

Existing lakes with historical observances of Salmon were included in the assessment. Only one salmon bearing lakes was identified as a potential pumped storage site, and this was not one of the more cost effective sites. Another two salmon bearing lakes (Kitsumkalum Lake and Lakelse Lake) were identified in the study area as potentially good pumped storage reservoir locations. However, these were excluded

Page 52 of 72

as it would be likely that construction of a pumped storage facility at other of these locations would require the creation of a reservoir that would impact salmon habitat on the rivers upstream of the lake. A summary of the fish distribution data for the salmon species mentioned above are shown on Figure 2.2.

2.5 <u>TECHNICAL CONSTRAINTS</u>

For each of the two sets of sites (16 hours storage and 48 hours of storage), a maximum of 25 sites were identified. A preliminary cost estimate for each of the 120 potential sites identified by the screening was undertaken in order to rank the sites in order of levelised capital cost. Only the 25 highest ranked sites for each of the two sets of sites were included in the report. Where a potential site was ranked highly for both 500 MW or 1000 MW capacity, only the lower cost (levelised capital cost) configuration was included in the list of potential sites. In order to determine the real levelised cost (\$/kW-year), the following was assumed;

- Design Life = 70 years, and
- Discount Rate = 6%

2.5.1 Freshwater Lake to Lake Sites

The North Coast Region of British Columbia has an abundance of small lakes in combination with the steep topography. Due to this high number of potential sites, lakes with the most attractive characteristics were targeted, and were included in the pool of candidate basins for further assessment. All existing lakes within the study area were screened as follows;

- Lakes > 2 ha were assessed as potential reservoir basins.
- Existing lakes within a 10 km horizontal distance that could be used as an upper and lower reservoir respectively (i.e. waterway length is limited to approximately 10 km or less).
- For existing lakes, all water storage was assumed to be constructed above the natural lake water level.

A total of approximately 100 "existing lake" basins were identified using an automated GIS searching tool.

2.5.2 Man-Made Reservoir Sites

Due to the relatively undisturbed nature of the North Coast Region, there are few existing reservoirs, and large existing lakes are concentrated towards the west coast. For this reason, it was necessary to assess the potential of new man-made reservoirs to serve as potential upper and/or lower reservoirs. A visual assessment was undertaken using TRIM mapping to manually identify potential reservoir basins. For each potential basin, a "nominal" reservoir size was calculated using GIS, including the dam height and crest length, reservoir storage volume, and reservoir elevation. A total of approximately 200 "man-made reservoir" basins were identified using a visual assessment of the entire study area.

4 of 10

2.5.3 Saltwater Pumped Storage Sites

The same constraints for the freshwater "man-made reservoir" sites were applied to the screening assessment of saltwater pumped storage sites. Additionally, freshwater lakes were not considered as upstream reservoirs, due to the high environmental impact of pumping saltwater into a freshwater ecosystem. In some instances, upstream reservoirs were proposed in areas that contained either wetland or small ponds. Since it is difficult to determine at what size threshold this may not be permissible, a certain amount of judgement was required to satisfy this constraint. Only sites whose watershed flows directly to the ocean were considered and any saltwater site that would flow into an existing lake or salmon bearing river was not considered. Using visual assessment, a total of approximately 20 potential saltwater basins were identified in the study area. These potential basins are shown on Figure 2.3.

2.5.4 Screening Assessment

From the above, a list of 320 potential basins for freshwater reservoirs was created as shown on Figure 2.4. A screening was undertaken using an automated GIS tool to choose the best combinations of freshwater basins that would lead to viable pumped storage sites. This tool identifies any two basins within approximately 10 km. In some cases, two basins slightly more than 10 km apart were assessed. Between any two basins, the GIS tool will assess the gross head between the two sites and will calculate the storage volume required to meet the project assessment requirements. The GIS tool then determines whether the two basins can be constructed as a potential pumped-storage facility with a dam embankment construction volume below a certain threshold. This threshold was chosen as dam embankment construction can potentially add up to 33% or more of project construction costs, and so minimising dam embankment volume appears to be a useful mechanism to screen some of the best sites from the pool of potentially infinite combinations of sites between the basins identified. The GIS assessment tool was used with the following two constraints;

- A total dam embankment construction volume of 1,000,000 m³, with a reservoir storage capacity for 48 hrs of continuous generation.
- A total dam embankment construction volume of 500,000 m³, with a reservoir storage capacity for 16 hrs of continuous generation.

Using these constraints, the GIS tool flagged a total of 120 potential pumped-storage sites.

2.5.5 Site Characterisation and Costing

Using the 120 potential sites flagged by the GIS tool, each site was characterised in order to determine the project properties, which were then used as the basis of the cost estimate for each alternative. The main parameters of the characterisation include overall project parameters (gross head, design flow, capacity), reservoir parameters (required storage volume, reservoir area, embankment height and length, embankment volume), and waterway parameters (length, diameter, lining requirements). Due to the coarse resolution of the data, and the automated nature of the calculations, some of the site parameters (such as dam

5 of 10

height, crest length and reservoir area) may vary once each site is assessed in greater detail on an individual basis.

Cost estimates were prepared for each identified pumped-storage site by using a cost template of unit rates for project components. The unit rates used in the costing were based on experience from other pumped storage and hydroelectric projects that KPL has experience in. To provide comparison, these were the same costs as were adopted for the Assessment of Pumped Storage Potential in South-West BC, so all costs are in 2010 dollars. The capital cost estimates do not include transmission, interconnection or access to the site. As such, it would not be prudent to compare the sites based purely on a cost basis until these additional costs have been determined. The cost of transmission, interconnection and access will favour those sites closer to load centres or transmission lines.

The costs for each site are presented as loaded capital costs (based on the schedules presented in Figure 2.5, a discount rate of 6% and cost distributions as presented in Table 2.1). Cost per MW installed, cost per MWh stored, and levelized capital cost (\$/kW-yr) were also determined.

Annual Operation and Maintenance costs were also estimated for each site. These costs are estimated as a percentage of the total estimated capital cost as follows;

- Freshwater pumped storage sites, 1000 MW 1.0%
- Freshwater pumped storage sites, 500 MW 1.5%, and
- Saltwater pumped storage sites, 500 MW 2.0%.

VA103-313/2-1 Rev 0 March 15, 2012

SECTION 3.0 - SCREENING ASSESSMENT RESULTS

3.1 FRESHWATER SITE IDENTIFICATION

A total of 33 potential freshwater sites with storage for 16 hrs of continuous generation and levelised capital cost below \$200/kW-yr were identified. These included;

- Four sites with costs less than \$100/kW-yr
- Fourteen sites with costs between \$100 125/kW-yr
- Eleven sites with costs between \$125 150/kW-yr, and
- Ten sites with costs greater than \$150/kW-yr.

The cost of cumulative installed capacity is indicated on Figure 3.1. The characteristics and costs of the 25 sites with the lowest estimated levelised cost are shown in Table 3.1 and Figure 3.4.

A total of 29 potential freshwater sites with storage for 48 hrs of continuous generation and levelised capital cost below \$500/kW-yr were identified. These included;

- Three sites with costs less than \$200/kW-yr
- Eleven sites with costs between \$200 300/kW-yr
- Nine sites with costs between \$300 400/kW-yr, and
- Six sites with costs greater than \$400/kW-yr.

The cost of cumulative installed capacity is indicated on Figure 3.2. The characteristics and costs of the 25 sites with the lowest estimated levelised cost are shown in Table 3.2 and Figure 3.5

3.2 SALTWATER SITE IDENTIFICATION

A total of 12 potential saltwater sites with storage for 16 hrs of continuous generation and levelised capital cost below \$500/kW-yr were identified. These included;

- Three sites with costs less than \$300/kW-yr
- Four sites with costs between \$300 400/kW-yr, and
- Five sites with greater than \$400/kW-yr.

The cost of cumulative installed capacity is indicated on Figure 3.3. No saltwater sites with potential for storage for 48 hrs continuous generation were identified. The lists of the lowest estimated cost sites (Tables 3.1 and 3.2), did not include any saltwater sites.

SECTION 4.0 - CONCLUSIONS AND RECOMMENDATIONS

The North Coast Region of British Columbia has a high technical potential for freshwater pumped storage development due to the steep topography and existence of many natural lakes and other suitable basins for constructing pumped storage reservoirs. The potential appears to be slightly less than in the Lower Mainland and Vancouver Island, primarily due to the relatively undisturbed nature of the landscape and the lack of many existing hydropower and other man-made reservoirs suitable for use as part of a pumped storage facility. In addition, it appears that larger lakes are concentrated in the western portion of the region, where there are a large number of parks and few suitable high elevation basins for use as an upper reservoir. These factors appear to limit the total number of sites, however the most cost effective sites appear to be similar in terms of unit cost (\$/kW-yr) to the best sites in the Lower Mainland.

A total of 33 sites were identified with the potential to provide 16 hrs of continuous generation at either 500 MW or 1000 MW capacity. In addition, 29 sites were identified having the ability to provide 48 hrs of continuous generation. The 25 best sites had estimated costs ranging from \$83/kW-yr to \$140/kW-yr for 16 hours of continuous generation, and \$181/kW-yr to \$430/kW-yr for 48 hours of continuous generation. Of the top 25 sites for 48 hours of continuous generation, all were of 500 MW capacity. While some sites can be developed to 1000 MW capacity, it appears to be more cost effective to constrain these larger sites to 500 MW. Still, it is likely that it would be more cost effective to develop some of the best sites to a capacity of 1000 MW than to develop two lower ranked sites to a capacity of 500 MW each.

While a number of potential saltwater sites were identified, it appears that development of freshwater pumped storage sites would be more cost effective. The saltwater pumped storage sites identified ranged in cost between \$267 – 490/kW-yr. In addition, the development of freshwater pumped storage sites will likely be easier to permit, and pose fewer technical challenges in comparison to construction of saltwater pumped storage sites.

Should BC Hydro wish to further pursue pumped storage potential in BC, KPL recommends the items below. KPL is aware that some of these items are underway already;

- Estimate the costs of transmission, interconnection and access to each of the sites identified in order to meaningfully compare each potential project.
- Conduct a system-wide study to determine the benefits/impacts of integrating pumped storage into the BC Hydro grid.
- Determine the "ideal" characteristics of a pumped storage facility, in terms of providing the maximum benefits to the BC Hydro system, improving export opportunities and firming of renewable energy (especially wind power).
- Conduct a screening assessment for the remaining portions of the province where there is a high resource potential of intermittent loads or renewable energy sources such as wind, run-of-river hydro, solar, tidal and/or wave energy.
- Conduct a more detailed assessment of the most favourable sites identified in this assessment.

SECTION 5.0 - REFERENCES

American Society of Civil Engineers. 1989. *Civil engineering guidelines for planning and designing hydroelectric developments.* Volume 5, Pumped Storage and Tidal Power. New York, NY: American Society of Civil Engineers.

Knight Piésold Ltd. 2010. Evaluation of Pumped Storage Hydroelectric Potential in South-West BC – Screening Assessment Report. Ref: VA103-313/1-1.

9 of 10

Knight Piésold

SECTION 6.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

	M. G. PULLINGER # 162140	
Prepared:	a second (
	Michael Pullinger, M.Sc., P.Eng.	
	Project Engineer	
	- H	
	NS.M)	
	a d	
Reviewed:	T	
tononou.	Sam Mottram, P.Eng	
	Power Services Manager	
	Power Services Manager	
	1 SM	
Approved:	J for.	
	Jeremy Haile, P.Eng	
	President	

This report was prepared by Knight Piésold Ltd. for the account of BC Hydro. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

10 of 10

VA103-313/2-1 Rev 0 March 15, 2012

TABLE 2.1

BC HYDRO NORTH COAST PUMPED STORAGE ASSESSMENT

DEVELOPMENT COST DISTRIBUTION BY PUMPED STORAGE TYPE

		Print: 3/15/2012 10:38
	Development C	ost Distribution
Year	Freshwater	Saltwater
Year 1	0%	0%
Year 2	0%	0%
Year 3	5%	0%
Year 4	10%	5%
Year 5	20%	10%
Year 6	30%	20%
Year 7	30%	30%
Year 8	5%	30%
Year 9		5%
Total	100%	100%

M:\1\03\00313\02\A\Report\1 - North Coast Region Pumped Storage\Rev 0\Tables\[Table2-1.xlsx]Sheet1

ſ	0	6MAR'12	ISSUED WITH REPORT VA103-313/2-1	MGP	SRM	JPH
[REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

TABLE 3.1

BC HYDRO NORTH COAST PUMPED STORAGE ASSESSMENT

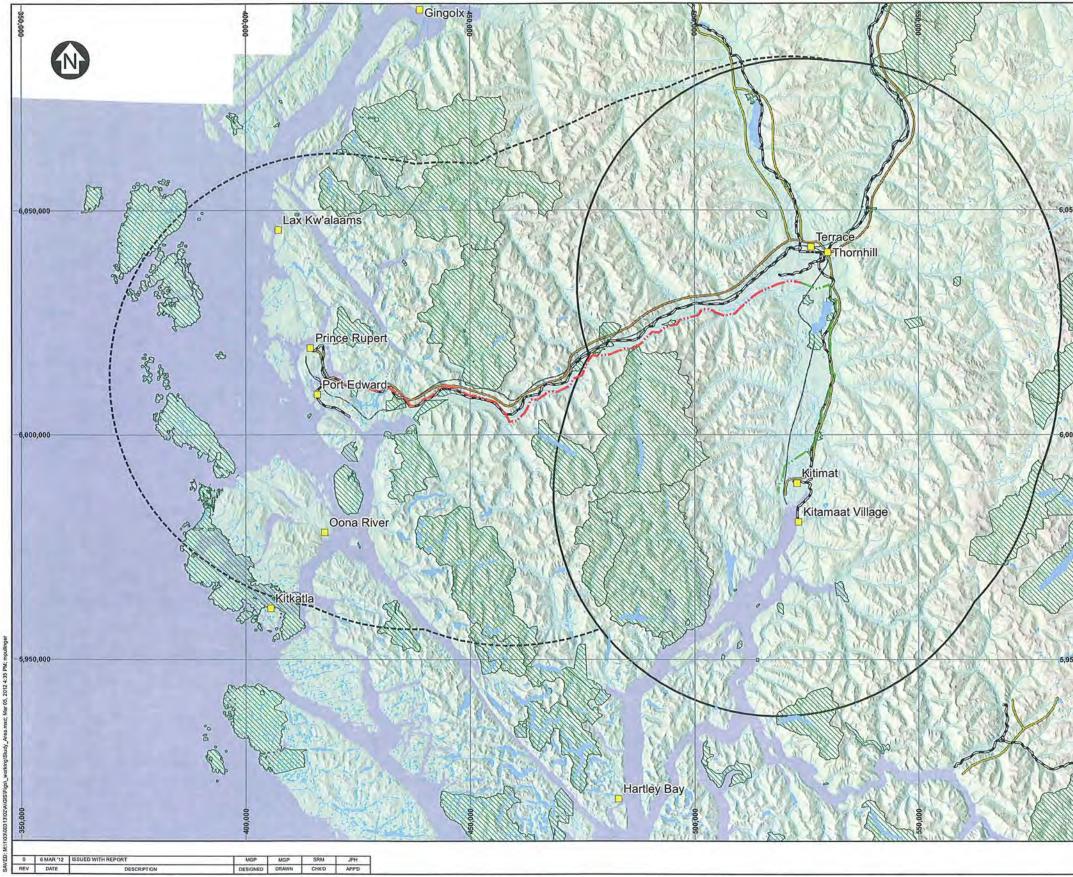
SUMMARY OF SITES WITH STORAGE FOR 16 HRS OF CONTINUOUS GENERATION

																																		Print: 3/6/2	/2012 9:35
Name	Latitude	Longitude	Latitude	Longitude	Capacity	Location	Upper Reservoir Area	Upper Reservoir Base Elevation	Upper Reservoir Crest Length	Upper Reservoir Dam Height	Lower Reservoir Area	Lower Reservoir Base Elevation	Lower Reservoir Dam Crest Length	Lower Reservoir Dam Height	Storage Requirement	Storage Requirement	2D Waterway Length	Gross Head	H/L Ratio	Design Flow (Generation)	Design Flow (Pumping), 70% of Generation Flow		Total Estimated Capital Cost	Loaded Capital Cost	Unit Cost of Capacity (Loaded Capital Cost/Capa city)	Unit Cost of Stored Energy	Levelized Cost	Upper Reservoir Footprint	Upper Dam Footprint	Lower Reservoir Footprint	Lower Dam Footprint	Staging/La ydown Footprint	Spoil Footprint	Roads Footprint	Total Footpri
	decimal	decimal	decimal	decimal	MW	Trans.	ha	masl	m	m	ha	masl	m	m	m3	MWh	m	m	%	m3/s	m3/s		\$	s	\$/MW	\$/MWh	\$/kW-yr	ha	ha	ha	ha	ha	ha	ha	ha
pper Clore	degrees 54.212	-127.933	54.184	-127 975	1000	Line 2L99	101.6	1260	369	51	46.9	580	164.2	48.5	11.287.120	16.000	4150	680	16%	196	137	Single-Stage	1.199.967.306	1 363 693 455	1 199 967	74.998	83.2	38.4	3.5	25.3	1.5	6.0	6.3	6.8	87.7
leeman	53.671	-128.675	53.697	-128.672	1000	21.99	105.1	900	555	54	115.1	300	598.7	49.9	12,792,069	16.000	2825	600	21%	222	155		1 1	,,	1.329.292	83.081	92.2	41.6	5.5	39.3	5.5	6.0	5.7	6.0	109.5
irsch	54.027	-128.380	54.033	-128.334	1000	2L99	89.5	1340	636	64	36.7	400	223.8	22.4	8,165,150	16,000	3076	940	31%	142	99		1.408.031.541	1,600,146,427	1,408,032	88.002	97.7	46.1	7.3	9.3	1.0	6.0	5.8	9.4	84.8
ower Falls	53.735	-128.498	53.702	-128.527	1000	2L99	71.5	700	481	83	119.1	120	102.2	7.8	13,233,175	16,000	4122	580	14%	230	161	Single-Stage	1,418,849,098	1,612,439,955	1,418,849	88,678	98.4	56.8	7.2	4.5	0.2	6.0	6.4	6.2	87.2
lugh	53.750	-128.774	53.697	-128.672	1000	2L99	85.3	900	397	39	82.2	60	110.3	25	9,137,192	16,000	8897	840	9%	159	111	Multi-Stage	1,450,922,536	1,648,889,562	1,450,923	90,683	100.6	25.9	2.8	15.8	0.5	6.0	8.8	13.3	73.2
pper Falls	53.700	-128.488	53.702	-128.527	1000	2L99	74.0	700	499	86	123.4	140	611.0	37.4	13,705,788	16,000	2622	560	21%	238	167	Single-Stage	1,481,452,194	1,683,584,754	1,481,452	92,591	102.8	60.1	7.7	29.5	4.2	6.0	5.6	5.6	118.6
liver	54.803	-128.193	54.820	-128.165	1000	2L99	74.3	1020	468	63	74.3	400	829.7	66.1	12,379,422	16,000	2580	620	24%	215	150	Single-Stage	1,484,079,322	1,686,570,332	1,484,079	92,755	102.9	41.9	5.3	44.3	9.9	6.0	5.5	6.2	119.2
itimat 1	54.044	-128.120	54.049	-128.032	1000	2L99	67.2	1300	421	90	62.2	560	370.1	36.6	10,371,948	16,000	5798	740	13%	180	126	Single-Stage	1,517,064,912	1,724,056,548	1,517,065	94,817	105.2	61.1	6.8	20.9	2.5	6.0	7.2	8.7	113.1
ower Hirsch 2	54.088	-128.487	54.017	-128.446	1000	2L99	56.3	1140	711	54	90.1	220	165.5	4.6	8,342,654	16,000	8383	920	11%	145	101	Multi-Stage	1,564,032,935	1,777,432,991	1,564,033	97,752	108.5	30.8	6.9	1.8	0.2	6.0	8.5	12.6	66.9
ndesite	54.409	-129.268	54.384	-129.186	1000	2L99	114.7	900	829	72	59.2	200	62.9	18.5	10,964,631	16,000	5996	700	12%	190	133	Single-Stage	1,581,949,905	1,797,794,590	1,581,950	98,872	109.7	59.4	10.8	9.3	0.2	6.0	7.3	9.0	102.0
esse Creek 1	53.929	-128.901	53.939	-128.929	1000	2L99	215.9	360	783	67	431.7	40	1177.8	25.1	23,985,129	16,000	2095	320	15%	416	291		1,624,035,890	1,845,622,879	1,624,036	101,502	112.6	73.2	9.5	34.6	5.6	6.0	5.5	3.2	137.6
ower Hirsch 1	54.098	-128.484	54.033	-128.334	1000	2L99	77.7	1340	534	53	74.0	220	136.0	3.8	6,852,894	16,000	12186	1120	9%	119	83	Multi-Stage	1,638,581,601	1,862,153,238	1,638,582	102,411	113.7	35.4	5.2	1.1	0.1	6.0	10.5	18.3	76.6
ower Clore 2	54.295	-127.924	54.341	-127.793	1000	2L99	287.8	980	901	45	50.8	500	108.4	13.8	15,990,086	16,000	9902	480	5%	278	194	Single-Stage	1,649,729,649	1,874,822,351	1,649,730	103,108	114.4	54.1	7.4	6.1	0.3	6.0	9.4	14.9	98.2
itimat 2	54.070	-128.123	54.049	-128.032	1000	2L99	64.0	1300	399	86	106.3	520	545.4	35.0	9,840,053	16,000	6392	780	12%	171	120	Multi-Stage	1,652,999,182	1,878,537,986	1,652,999	103,312	114.7	56.2	6.1	25.5	3.5	6.0	7.5	9.6	114.4
ower Clore 1	54.275	-127.940	54.184	-127.975	1000	2L99	90.9	1260	330	46	32.1	500	68.8	8.7	10,099,002	16,000	10424	760	7%	175	123	Multi-Stage	1,690,199,438	1,920,813,926	1,690,199	105,637	117.2	32.2	2.8	2.8	0.1	6.0	9.6	15.6	69.1
esse Lake	53.917	-128.898	53.935	-128.934	1000	2L99	203.2	360	737	63	1776.5	20	714.7	49	22,574,239	16,000	3094	340	11%	392	274	Single-Stage	.,,,	1,940,695,047	1,707,694	106,731	118.4	66.5	8.4	144.1	6.4	6.0	6.0	4.6	242.1
himdemash	54.615	-128.220	54.593	-128.195	1000	2L99	28.8	1300	587	93	53.1	700	567.7	63.6	12,792,069	16,000	2938	600	20%	222	155	Single-Stage	1,713,917,122	1,947,767,702	1,713,917	107,120	118.9	44.8	9.7	36.6	6.5	6.0	5.7	6.0	115.4
Iorth Hirsch	54.063	-128.253	54.034	-128.327	1000	2L99	109.3	1340	808	81	62.2	600	725.6	49.5	10,371,948	16,000	5813	740	13%	180	126		.,,	1	1,810,945	113,184	125.6	66.2	11.7	29.4	6.6	6.0	7.2	8.7	135.8
Jpper Lukes	54.132	-128.845	54.196	-128.884	1000	2L99	90.2	980	719	86	76.2	300	394.8	38.1	11,287,120	16,000	7544	680	9%	196	137	0 0	1,811,198,926	2,058,322,847	1,811,199	113,200	125.6	65.3	11.1	23.9	2.8	6.0	8.1	11.3	128.5
liana	54.206	-130.150	54.205	-130.168	500	2L101	107.9	400	104	30	699.5	80	328.7	11.0	11,992,565	8,000	1165	320	27%	208	146	g	912,036,809	1,036,477,095	1,824,074	114,005	126.5	21.4	0.6	17.0	0.8	6.0	4.7	3.2	53.7
ower Lukes	54.147	-128.733	54.196	-128.884	1000	2L99	80.4	980	627	75	35.4	200	51.9	11.0	9,840,053	16,000	11270	780	7%	171	120	· · ·	1,859,125,119		1,859,125	116,195	129.0	53.0	8.4	3.9	0.1	6.0	10.1	16.9	98.4
ue-Bardon 1	53.675	-129.018	53.639	-129.100	1000	2L99	162.8	400	193	44	230.3	100	292.4	109.7	25,584,138	16,000	6667	300	4%	444	311		1,876,885,771	, - , - ,	1,876,886	117,305	130.2	40.1	1.6	130.4	5.7	6.0	7.9	10.0	201.7
ue-Bardon 2	53.668	-129.048	53.639	-129.100	1000	2L99	190.7	400	263	60	194.4	180	546.2	68.3	34,887,461	16,000	4658	220	5%	606	424		1,924,007,175	1	1,924,007	120,250	133.5	60.9	2.9	71.0	6.7	6.0	7.1	7.0	161.6
esse Creek 2	53.963	-128.948	53.940	-128.934	1000	2L99	246.7	360	895	77	296.0	80	572.4	60.9	27,411,576	16,000	2643	280	11%	476	333		1,963,207,318	1 - 7 - 7	1,963,207	122,700	136.2	90.2	12.3	76.2	6.3	6.0	5.9	4.0	200.9
veling	54.221	-128.883	54.196	-128.884	1000	2L99	92.5	980	741	88	89.7	320	890.8	81.0	11,629,154	16,000	2776	660	24%	202	141	Single-Stage	2,010,547,752	2,284,871,260	2,010,548	125,659	139.5	68.3	11.7	60.9	13.0	6.0	5.6	6.6	172.1

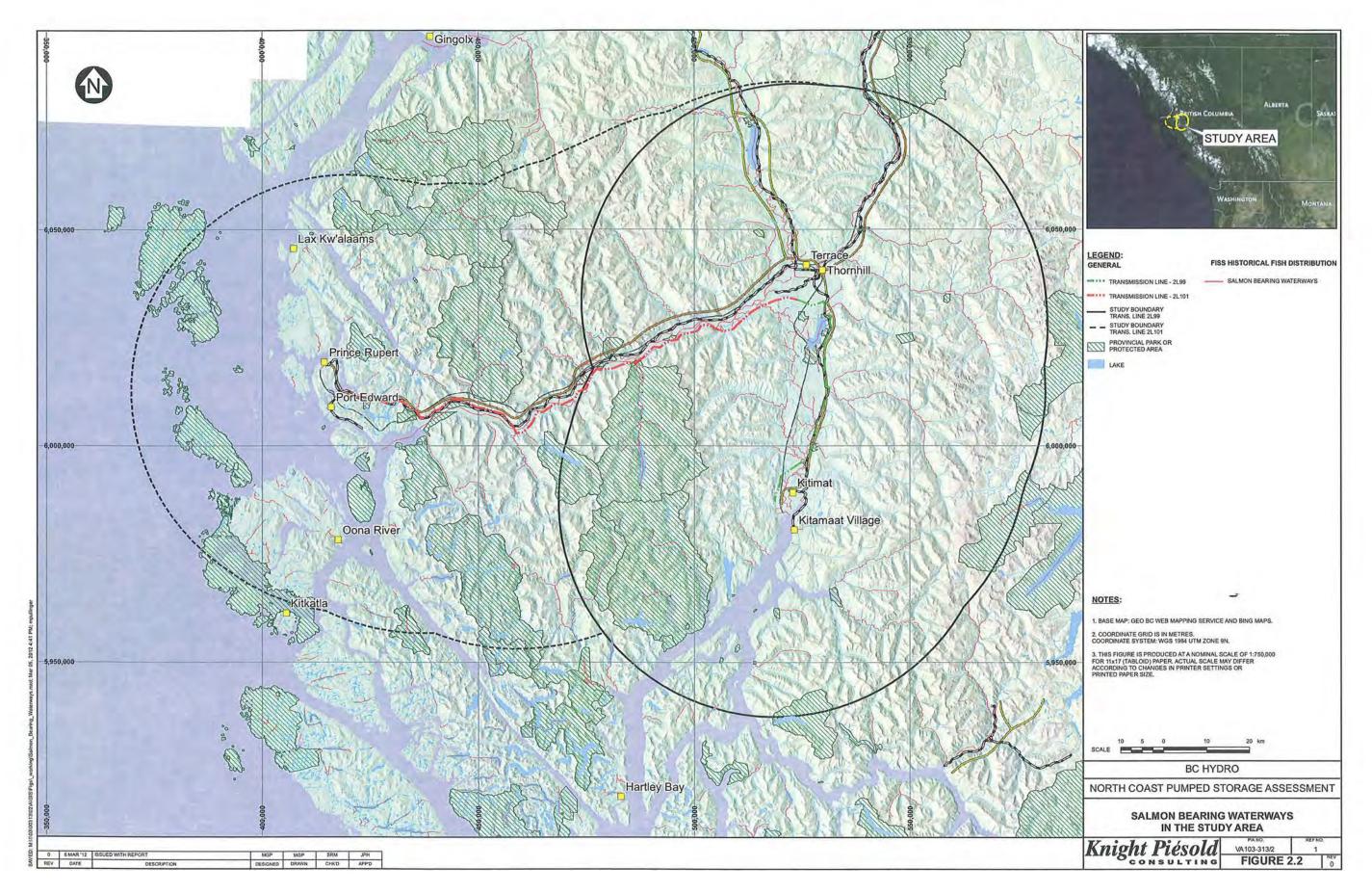
 0
 6MAR'12
 ISSUED WITH REPORT
 VA103-313/2-1
 MGP
 SRM
 JPH

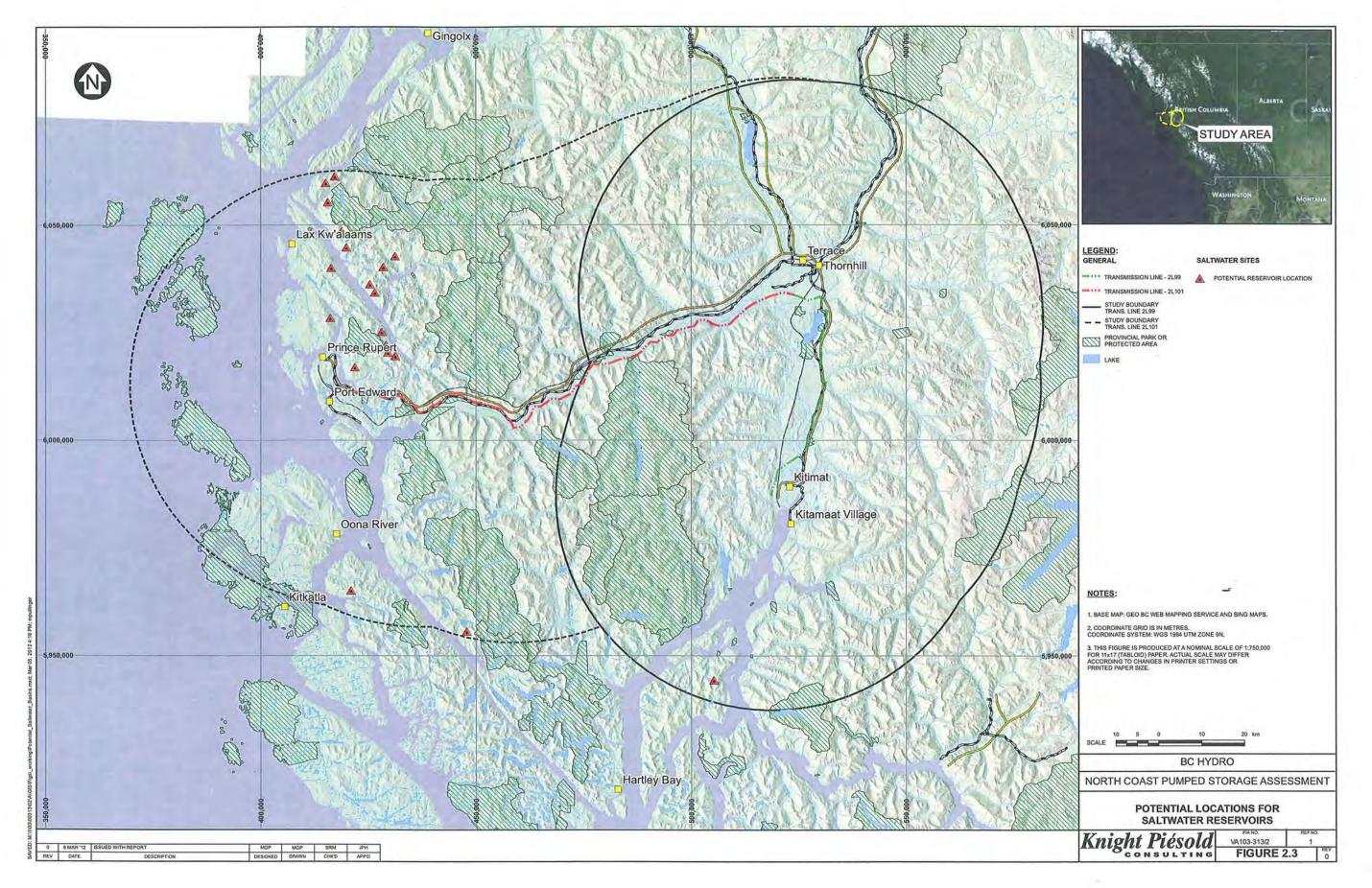
 REV
 DATE
 DESCRIPTION
 PREP'D
 CHK'D
 APP'D

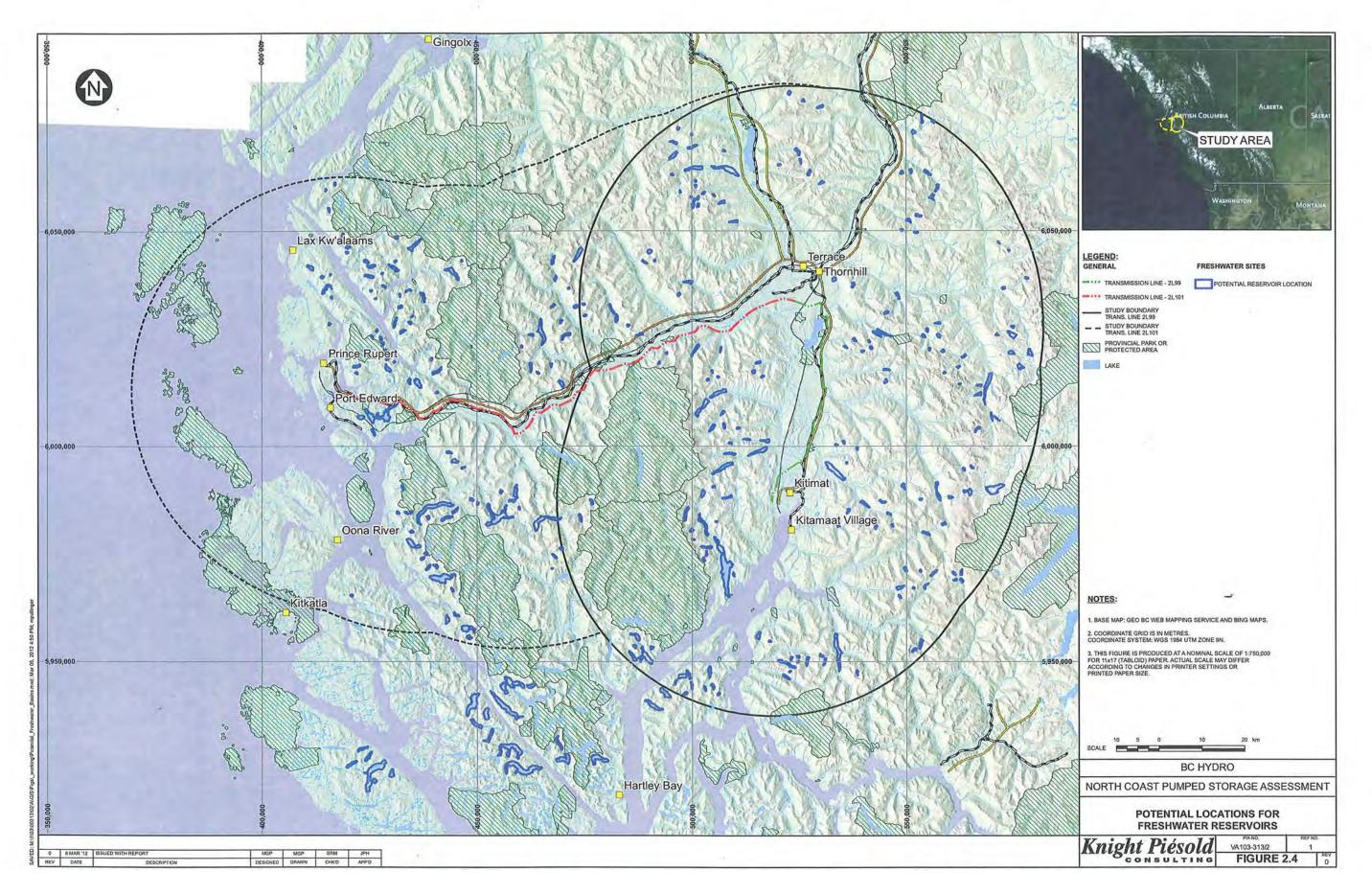
TABLE 3.2


BC HYDRO NORTH COAST PUMPED STORAGE ASSESSMENT

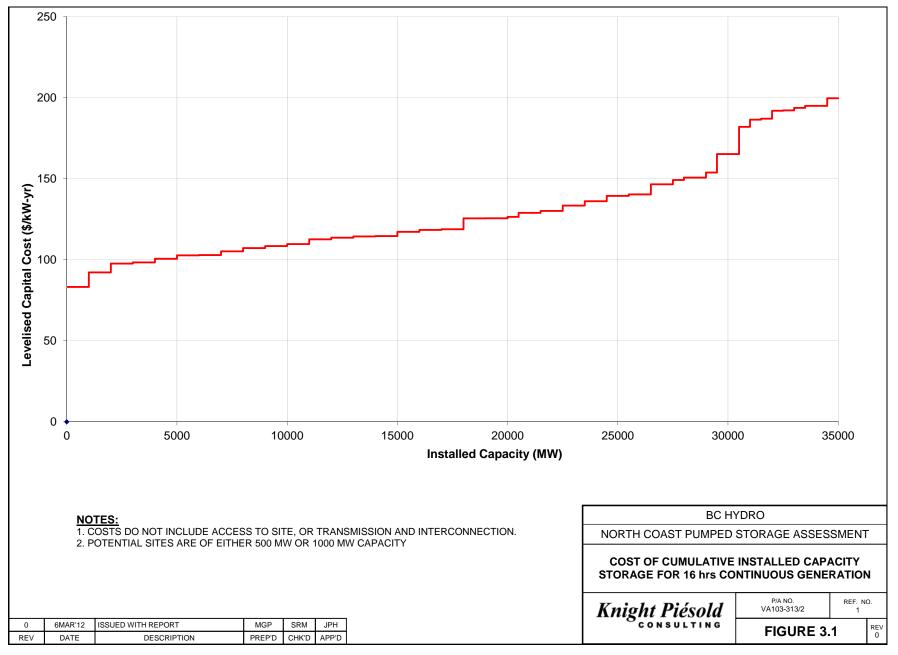
SUMMARY OF SITES WITH STORAGE FOR 48 HRS OF CONTINUOUS GENERATION

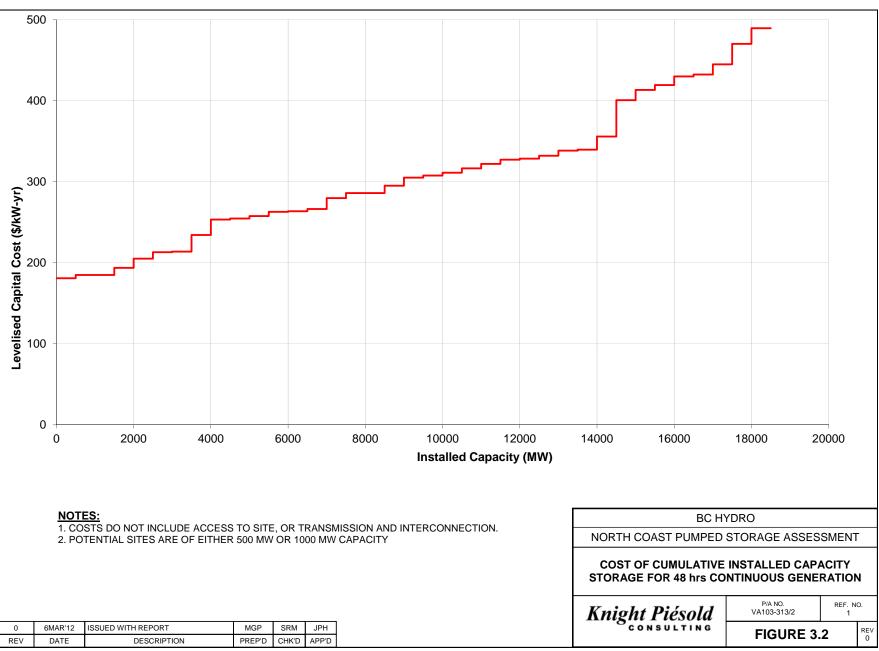

														•••••								0												Print: 3/6/2	2012 9:36
																									Unit Cost										
Name	Latitude	Longitude	Latitude	Longitude	Capacity	/ Location	Upper Reservoir Area	Upper Reservoir Base Elevation	Upper Reservoir Crest Length	Upper Reservoir Dam Height	Lower Reservoir Area	Lower Reservoir Base Elevation	Lower Reservoir Dam Crest Length	Lower Reservoir Dam Height	Storage Requirement	Storage Requirement	2D Waterway Length	Gross Head	H/L Ratio	Design Flow (Generation)	Design Flow (Pumping), 70% of Generation Flow	Pump/Turbine Type	Total Estimated Capital Cost	Loaded Capital Cost	(Loaded	Unit Cost of Stored Energy	Levelized Cost	Upper Reservoir Footprint	Upper Dam Footprint	Lower Reservoir Footprint	Lower Dam Footprint	Staging/La ydown Footprint	Spoil Footprint	Roads Footprint	Total Footprint
	decimal degrees	decimal degrees	decimal degrees	decimal degrees	MW	Trans.	ha	masl	m	m	ha	masl	m	m	m3	MWh	m	m	%	m3/s	m3/s		\$	\$	\$/MW	\$/MWh	\$/kW-yr	ha	ha	ha	ha	ha	ha	ha	ha
Diana	54.206	-130.150	54.205	-130.168	500	2L101	323.8	400	312	89	958.6	80	986.2	33.1	35.977.694	24.000	1165	320	27%	208	146	Single-Stage	1.304.491.993	1.482.479.718	2.608.984	54.354	181.0	120.8	5.0	69.5	6.1	6.0	4.7	3.2	215.2
Upper Clore	54.212	-127.933	54.184	-127.975	500	2L99	152.4	1260	553	77	70.3	580	246.3	72.8	16,930,679	24,000	4150	680	16%	98	69	Single-Stage	1,397,056,169	1,587,673,551	2,794,112	58,211	193.8	72.9	7.7	48.4	3.2	6.0	6.2	6.8	151.1
Hugh	53.750	-128.774	53.697	-128.672	500	2L99	110.0	900	595	58	123.4	60	165.4	38.2	13,705,788	24,000	8897	840	9%	79	56	Multi-Stage	1,478,930,471	1,680,718,961	2,957,861	61,622	205.2	45.9	6.3	30.1	1.2	6.0	8.7	13.3	111.5
Lower Clore 1	54.275	-127.940	54.184	-127.975	500	2L99	136.3	1260	495	69	48.1	500	103.2	13.1	15,148,503	24,000	10424	760	7%	88	61	Multi-Stage	1,541,842,715	1,752,215,088	3,083,685	64,243	213.9	61.1	6.2	5.6	0.3	6.0	9.5	15.6	104.3
Loretta-Bardon	53.689	-128.940	53.636	-129.088	500	2L99	201.1	400	289	66	148.0	100	308.4	100	38,376,207	24,000	11474	300	3%	222	155	Single-Stage	1,827,119,264	2,076,415,390	3,654,239	76,130	253.5	69.4	3.4	97.0	5.5	6.0	10.2	17.2	208.8
Lower Hirsch 1	54.098	-128.484	54.033	-128.334	500	2L99	108.5	1340	801	80	111.0	220	204.0	5.7	10,279,341	24,000	12186	1120	9%	59	42	Multi-Stage	1,836,259,420	2,086,802,648	3,672,519	76,511	254.7	65.3	11.5	2.8	0.3	6.0	10.5	18.3	114.6
Sleeman	53.671	-128.675	53.697	-128.672	500	2L99	139.6	900	833	82	172.7	300	898.0	74.8	19,188,103	24,000	2825	600	21%	111	78	Single-Stage	1,857,558,607	2,111,007,943	3,715,117	77,398	257.7	74.7	12.2	74.5	12.1	6.0	5.5	6.0	191.1
Lower Clore 2	54.295	-127.924	54.341	-127.793	500	2L99	431.7	980	1351	68	76.2	500	162.6	20.6	23,985,129	24,000	9902	480	5%	139	97	Single-Stage	1,895,746,349	2,154,406,104	3,791,493	78,989	263.0	102.0	16.5	12.0	0.6	6.0	9.2	14.9	161.1
Lower Hirsch 2	54.088	-128.487	54.017	-128.446	500	2L99	84.5	1140	1067	80	135.2	220	248.3	6.9	12,513,980	24,000	8383	920	11%	72	51	Multi-Stage	1,900,653,182	2,159,982,436	3,801,306	79,194	263.7	58.9	15.4	4.1	0.4	6.0	8.4	12.6	105.8
Hirsch	54.027	-128.380	54.033	-128.334	500	2L99	126.2	1340	954	95	55.1	400	335.6	33.6	12,247,726	24,000	3076	940	31%	71	50	Multi-Stage	1,920,277,472	2,182,284,307	3,840,555	80,012	266.4	85.4	16.3	17.9	2.1	6.0	5.6	9.4	142.6
Lower Falls	53.735	-128.498	53.702	-128.527	500	2L99	107.2	700	722	125	178.6	120	153.2	11.6	19,849,762	24,000	4122	580	14%	115	80	Single-Stage	2,017,465,362	2,292,732,723	4,034,931	84,061	279.9	108.8	16.0	9.3	0.4	6.0	6.2	6.2	152.8
Big Falls	53.995	-129.678	53.976	-129.557	500	2L101	431.7	200	392	51	1599.2	80	647.9	50.8	95,940,517	24,000	8201	120	1%	555	389	Single-Stage	2,062,223,752	2,343,598,046	4,124,448	85,926	286.1	75.3	3.6	141.4	6.0	6.0	8.9	12.3	253.5
Sue-Bardon 1	53.675	-129.018	53.639	-129.100	500	2L99	201.1	400	289	66	345.4	100	438.6	164.5	38,376,207	24,000	6667	300	4%	222	155	Single-Stage	2,128,012,525	2,418,363,182	4,256,025	88,667	295.2	69.4	3.4	247.3	12.8	6.0	7.6	10.0	356.5
Sue-Bardon 2	53.668	-129.048	53.639	-129.100	500	2L99	243.0	400	394	90	288.6	180	819.3	102.4	52,331,191	24,000	4658	220	5%	303	212	Single-Stage	2,199,503,331	2,499,608,349	4,399,007	91,646	305.1	106.8	6.3	133.6	15.0	6.0	6.7	7.0	281.4
Kitimat 1	54.044	-128.120	54.049	-128.032	500	2L99	98.3	1300	631	135	93.3	560	555.1	54.9	15,557,922	24,000	5798	740	13%	90	63	Single-Stage	2,218,247,521	2,520,910,038	4,436,495	92,427	307.7	116.1	15.2	39.8	5.5	6.0	7.1	8.7	198.3
Kitimat 2	54.070	-128.123	54.049	-128.032	500	2L99	93.6	1300	599	128	159.4	520	818.1	52	14,760,080	24,000	6392	780	12%	85	60	Multi-Stage	2,282,387,994	2,593,801,976	4,564,776	95,099	316.6	106.7	13.7	48.3	7.8	6.0	7.4	9.6	199.6
Upper Falls	53.700	-128.488	53.702	-128.527	500	2L99	111.0	700	748	129	185.0	140	916.5	56.1	20,558,682	24,000	2622	560	21%	119	83	Single-Stage	2,321,789,285	2,638,579,265	4,643,579	96,741	322.1	115.1	17.2	55.9	9.3	6.0	5.4	5.6	214.5
Oliver	54.803	-128.193	54.820	-128.165	500	2L99	111.4	1020	703	94	111.4	400	1244.6	99.1	18,569,132	24,000	2580	620	24%	107	75	Single-Stage	2,359,396,713	2,681,317,932	4,718,793	98,308	327.3	79.8	11.9	84.5	22.1	6.0	5.4	6.2	215.9
Jesse Creek 1	53.929	-128.901	53.939	-128.929	500	2L99	323.8	360	1175	101	647.6	40	1766.7	37.6	35,977,694	24,000	2095	320	15%	208	146	Single-Stage	2,368,897,655	2,692,115,204	4,737,795	98,704	328.6	138.1	21.1	65.8	12.3	6.0	5.2	3.2	251.8
Andesite	54.409	-129.268	54.384	-129.186	500	2L99	164.0	900	1244	108	88.8	200	94.3	27.7	16,446,946	24,000	5996	700	12%	95	67	Single-Stage	2,394,690,377	2,721,427,140	4,789,381	99,779	332.2	110.6	24.0	18.0	0.5	6.0	7.2	9.0	175.3
Jesse Lake	53.917	-128.898	53.935	-128.934	500	2L99	304.8	360	1105	95	2081.3	20	1072.1	73.9	33,861,359	24,000	3094	340	11%	196	137	Single-Stage	2,440,122,755	2,773,058,411	4,880,246	101,672	338.5	125.6	18.7	239.2	14.3	6.0	5.7	4.6	414.2
Lower Lukes	54.147	-128.733	54.196	-128.884	500	2L99	113.6	980	940	112	53.1	200	77.9	16.5	14,760,080	24,000	11270	780	7%	85	60	Multi-Stage	2,448,676,842	2,782,779,636	4,897,354	102,028	339.7	98.6	18.8	7.7	0.3	6.0	9.9	16.9	158.2
Upper Lukes	54.132	-128.845	54.196	-128.884	500	2L99	128.3	980	1078	129	114.3	300	592.2	57.1	16,930,679	24,000	7544	680	9%	98	69	Single-Stage	2,889,369,258	3,283,601,084	5,778,739	120,390	400.8	122.0	24.7	45.6	6.1	6.0	8.0	11.3	223.7
Chimdemash	54.615	-128.220	54.593	-128.195	500	2L99	43.2	1300	880	139	79.7	700	851.5	95.4	19,188,103	24,000	2938	600	20%	111	78	Single-Stage	3,023,828,919	3,436,406,713	6,047,658	125,993	419.5	87.4	21.7	70.1	14.5	6.0	5.6	6.0	211.3
North Hirsch	54.063	-128.253		-128.327		2L99	156.0	1340	1212	121	93.3	600	1088.4	74.2	15,557,922	24,000	5813	740	13%	90	63	Single-Stage	3,100,066,059	3,523,045,814	6,200,132	129,169	430.0	123.4	26.2	56.0	14.5	6.0	7.1	8.7	241.9
M:\1\03\00313\02\A\Rep	ort\1 - North Coast I	Region Pumped S	torage\Tables\[Fig_Table_3-2	.xlsx]Table3.	.2																													


 0
 6MAR12
 ISSUED WITH REPORT VA103-3132-1
 MGP
 SRM
 JPH

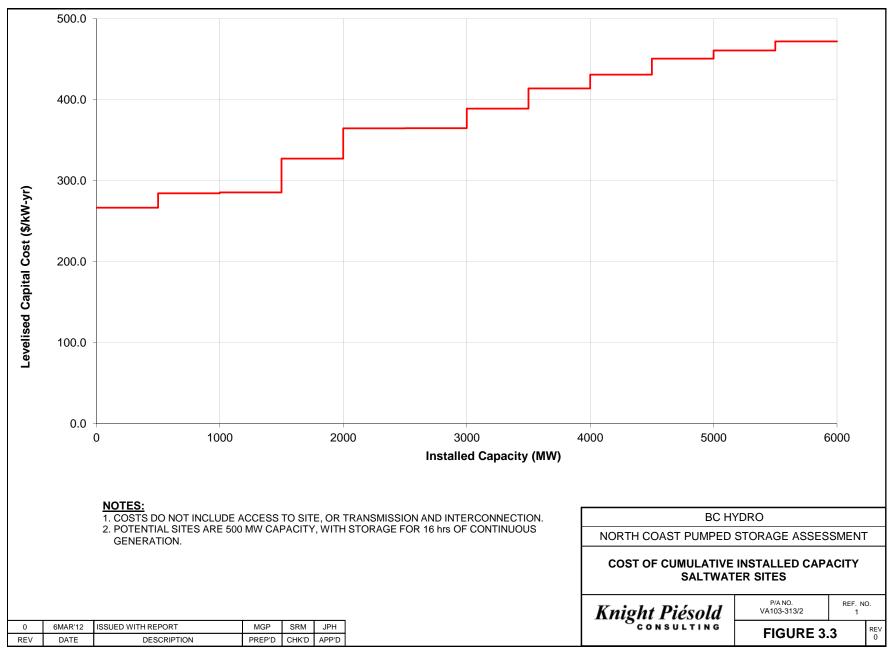

 REV
 DATE
 DESCRIPTION
 PREPD
 CHKD
 APPD

104	
1º	
7 - J.	
-2	ALBERTA
24	Barrish Columbia Saskal
1	STUDY AREA
1	Alter Alter
1	MAY
1.75	WASHINGTON MONTANA
	The State
50,000-	
	LEGEND: GENERAL
191	TRANSMISSION LINE - 2L99
M	TRANSMISSION LINE - 2L101
	STUDY BOUNDARY TRANS, LINE 2L99 - STUDY BOUNDARY TRANS, LINE 2L101
	PROVINCIAL PARK OR PROVINCIAL PARK OR
Y A	
00,000	
XI	
R	
XIII	
IS .	
All a	
	BASE MAP: GEO BC WEB MAPPING SERVICE AND BING MAPS. COORDINATE GRID IS IN METRES. COORDINATE GRID IS IN METRES.
	COORDINATE SYSTEM: WGS 1984 UTM ZONE 9N. 3. THIS FIGURE IS PRODUCED AT A NOMINAL SCALE OF 1:750,000 EOR MARCHAEL ON DEER ACTUAL SCALE MARCHAEL
50,000	FOR 11x17 (TABLOID) PAPER, ACTUAL SCALE MAY DIFFER ACCORDING TO CHANGES IN PRINTER SETTINGS OR PRINTED PAPER SIZE.
-	
12	10 5 0 10 20 km
0	SCALE
m	BC HYDRO
	NORTH COAST PUMPED STORAGE ASSESSMENT
	STUDY AREA
MUM	Knight Pigsold VAID 2102 REFNO.
	Knight Piésold VA103-313/2 1 CONSULTING FIGURE 2.1 0

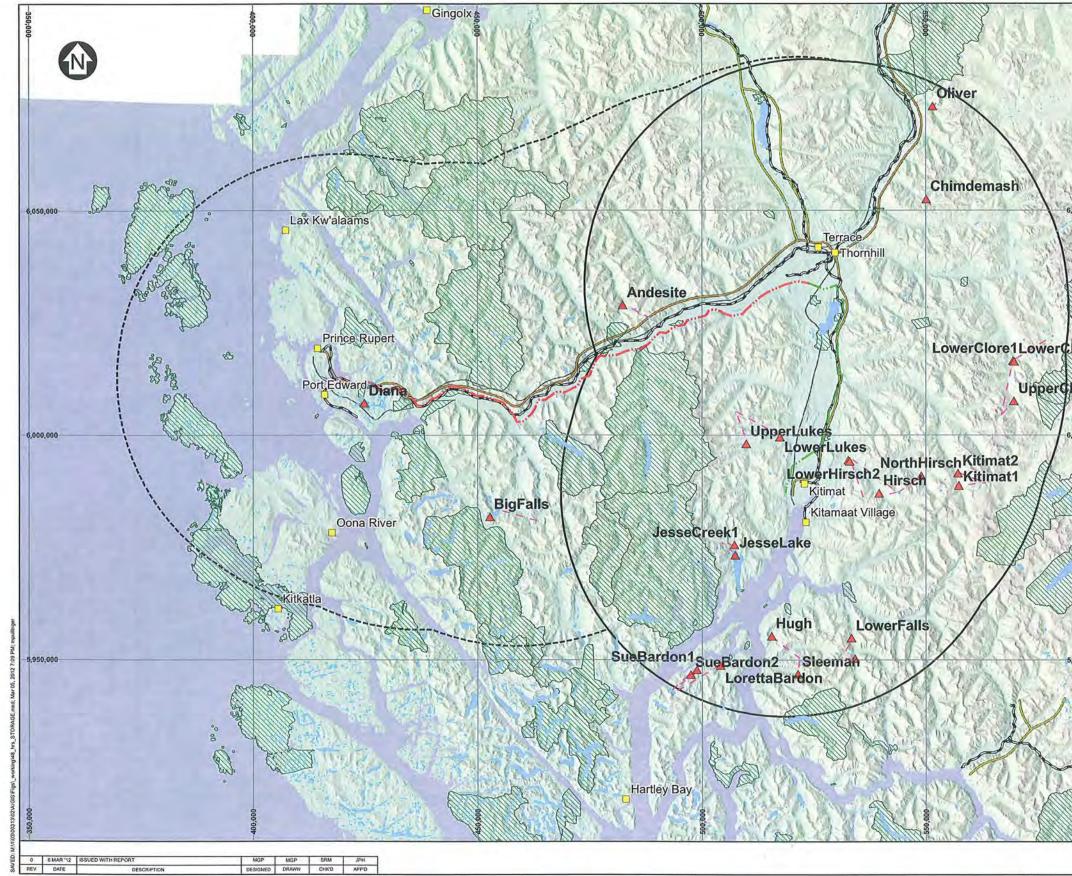



D	0	Task Name	Duration	Start) LLC	2011	2011	2 12 12 12 12 12 12 12 12 12 1	013	2014	201 	I5 2	2016 Lu Lu 2	2017	2018 I2 H1 H	2019	202 цария	20 1 H2	2021	20 12 L
1		FRESHWATER PUMPED STORAGE	2080 days	Fri 6/1/12	2															
		CONCEPTUAL STUDIES	6 mons	Fri 6/1/12	2															
		PRE-FEASIBILITY STUDIES	8 mons	Fri 11/16/12	2															
		FEASIBILITY STUDIES	16 mons	Fri 6/28/13	3															
		PERMITTING PROCESS	36 mons	Fri 12/13/13	3															
		FINANCING	8 mons	Fri 2/5/16	6									J						
		CONSTRUCTION	48 mons	Fri 9/16/16	6													Ь		
		COD	0 days	Thu 5/21/20	0													5/2	1	
)																				
		SALTWATER PUMPED STORAGE	2320 days	Fri 6/1/12	2				_				_							
		CONCEPTUAL STUDIES	6 mons	Fri 6/1/12	2															
		PRE-FEASIBILITY STUDIES	8 mons	Fri 11/16/12	2			_												
		FEASIBILITY STUDIES	24 mons	Fri 6/28/13	3			T												
		PERMITTING PROCESS	42 mons	Fri 12/13/13	3															
;		FINANCING	8 mons	Fri 7/22/16	_															
		CONSTRUCTION	54 mons	Fri 3/3/17	_									T 🚬						
B		COD	0 days	Thu 4/22/21	_														4	1/22

06/03/20129:40 AM




06/03/20129:42 AM


06/03/20129:38 AM

A. I.	
1.	
	ALL ALL
24	
12 -	Rattish Columbia Alberta Saskat
1	
1	STUDY AREA
	Alter 1974
1.8	AN ALL
1 the	
1.1.1	WASHINGTON MONTANA
	NO DAMAL
50,000	
See.	LEGEND:
24	GENERAL PUMPED STORAGE SITES
11	LOWER RESERVOIR LOCATION
1774	TRANSMISSION LINE - 2L101 WATER CONVEYANCE TUNNEL TO UPPER RESERVOIR
	TRANS. LINE 2L99
	STUDY BOUNDARY TRANS. LINE 2L101
All	PROVINCIAL PARK OR PROTECTED AREA
pre2	LAKE
<u>IIII</u>	
ore	
10	
1.	
0,000-	
7 1	
X	
M	
11111	
XIII	
W.	
alle.	
XIII	
	NOTES:
D	1. BASE MAP: GEO BC WEB MAPPING SERVICE AND BING MAPS.
D.	2. COORDINATE GRID IS IN METRES. COORDINATE SYSTEM: WGS 1984 UTM ZONE 9N.
5.4	3. THIS FIGURE IS PRODUCED AT A NOMINAL SCALE OF 1:750,000
50,000	FOR 11x17 (TABLOID) PAPER, ACTUAL SCALE MAY DIFFER ACCORDING TO CHANGES IN PRINTER SETTINGS OR PRINTED PAPER SIZE
1.5	
M.	
1.	
121	10 5 0 10 20 km
1	10 5 0 10 20 km
T	BC HYDRO
	NORTH COAST PUMPED STORAGE ASSESSMENT
11111	NORTH OUNDER ON TOWARD STORAGE ASSESSIVIENT
(HHB	
	LOCATION OF PUMPED STORAGE SITES FOR
	16 hrs OF CONTINUOUS GENERATION

1 24	
1	
44	ALBERTA
1	SAGAN
N	STUDY AREA
1.13	1 (1 () () () () () () () () (
0.6	WASHINGTON MONTANA
050,000-	
58.5	LEGEND:
	GENERAL PUMPED STORAGE SITES
atte	
	STUDY BOUNDARY TRANS, LINE 2L99
	TRANS. LINE 2L101 PROVINCIAL PARK OR PROVINCIAL PARK OR PROVINCIAL PARK OR
lore2	
ore	
000,000	
J.K	
() (II)	
X	
	NOTES:
	1. BASE MAP; GEO BC WEB MAPPING SERVICE AND BING MAPS.
	2. COORDINATE GRID IS IN METRES. COORDINATE SYSTEM: WGS 1984 UTM ZONE 9N.
950,000	3. THIS FIGURE IS PRODUCED AT A NOMINAL SCALE OF 1:58,000 FOR 11x17 (TABLDID) PAPER ACTUAL SCALE MAY DIFFER ACCORDING TO CHANGES IN PRINTER SETTINGS OR PRINTED PAPER SIZE.
100	
1	
10	10 5 0 10 20 km
-	BC HYDRO
	NORTH COAST PUMPED STORAGE ASSESSMENT
	LOCATION OF PUMPED STORAGE SITES FOR
	48 hrs OF CONTINUOUS GENERATION
	Knight Piésold VA103-313/2 1 FIGURE 3.5 0